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Abstract

Binary translation is a relatively new field of research. Existing binary translators rely on machine-dependent
analyses that are written by hand. Such analyses are required to identify procedures, to find the code
attached to those procedures, to find the targets of indirect branches, and to identify call sites and parameters.
Redevelopment and hand implementation of such analyses makes it difficult and time-consuming to develop
binary translators for new platforms.

In contrast, we propose to circumvent these problems by developing a machine-independent framework for
analyzing binary codes. The framework will include register transfer lists (RTLs)—a machine-independent,
machine-level representation of the effects of instructions—together with machine-independent analyses of
code in RTL form.

We are also interested in applying these analyses to the translation of real binary programs on a variety
of hardware platforms, including SPARC, x86, and Alpha. We have developed formal descriptions of the
syntax and semantics of instructions on the first two platforms, and we plan to use the descriptions to derive
the machine-dependent components used to translate between binary codes and RTLs. These automatically
generated components will be useful not just in binary translators, but also in other binary manipulation tools,
hence making it easier to port them to other architectures.

In the long term, we expect this framework to enable the development of new analyses to help improve the
quality of automatically translated code.

This report attempts to document the design and implementation ofUQBT, the University of Queensland
Binary Translation framework, a retargetable translator for multiplatform operating systems.

We tried to keep this document up to date. It has been written throughout the last few years, some chapters
are more up-to-date than others.
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Preface

This book is the documentation of the University of Queensland Binary Translation (UQBT) framework. I
developed this framework over the years with help from colleagues and students, who had input into the
design and implementation of the system.

The UQBT project was started in 1996 by myself, Cristina Cifuentes, when prompted by colleagues at
Sun Microsystems Laboratories about the possibility of working with binaries (executable programs), and
transforming them into binaries for another machine. I had input from Mike Van Emmerik and Norman
Ramsey in determining the shape of the project.

Cristina’s and Mike’s prior experience with thedcc decompilation project had shown that users were often
interested on applying the technology to binaries that run on machines and operating systems different to
those it was designed for. Our standard reply was “you can write it yourself, just get the API for the new
binary-file format and also code in the new instruction set for the machine of interest; oh, and remember
that the current IR is not machine-independent, so you will need some tweeking”. Clearly, this did not help
users. The lesson we learned was that we could write a framework in such a way that we could support
different machines and operating system conventions in a more generic way. It’s similar to the situation with
compilers; you don’t need to writen compilers to supportn target machines. We wanted to be able to support
n source machines andm target machines without having to writen �m translators, or evenn front ends and
m back ends.

Norman was interested in using formal descriptions of machine properties in order to write assemblers and
disassemblers, as well as other tools. With Norman’s help, we thought it would be ideal to be able to
understand how to create a binary translation framework that separated machine dependent from machine
independent concerns. We would use specification files for the machine dependent concerns and support
generic, machine independent analyses in the framework. Norman and Mary Fern´andez had written the New
Jersey Machine Code (NJMC) toolkit, which supports the SLED (Specification Language for Encoding and
Decoding) language. It is a language for describing the syntax of machine instructions, that is, the mappings
between bits and instructions. Both Norman and I were interested in also describing the semantics of machine
instructions. Norman was interested in the use of formal descriptions for tools such as compilers, debuggers,
emulators and binary translators. I was mainly interested in parameterizing the machine and operating system
conventions in such a way that we could write a binary translator system without having to reimplement it
each time we have a binary for a different machine or OS.

While at the University of Queensland (1996-1999) I was a full time academic, while Mike was a full time
research assistant. The UQBT system was built by stages, with the help of several students. Mike and I spent
our Australian summers (Dec-Feb) working with students who were keen to learn and try out new things. We

19
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worked with: Shane Sendall throughout 1997, Shane and Doug Simon during the summer of 97/98, David
Ung throughout 1998, Ian Walters, Shawn Coyne and Trent Waddington during the summer of 98/99, Doug
Simon and Trent Waddington through most part of 1999, Ian Walters throughout 1999, and Simon Long
during the summer of 99/00, as well as the summer of 00/01 and part of the 2001 year.

While at Sun Microsystems Laboratories (1999-2001) I was initially visiting on sabbatical leave, subse-
quently, I joined the staff of the Labs and continued some work in this framework. Brian Lewis joined me at
the Labs and contributed towards the backends. Brian and I worked with several interns: Sameer Gulrajani
and Pavan Kumar during the US summer of 2000, Manel Fern´andez during the first months of 2001 and
Bernard Wong during the summer of 2001. Nathan Keynes migrated us toconfigure during May. Other
work in this area was in the form of a dynamic retargetable binary translation system, which is documented
in the Walkabout document.

The documentation in this book is not fully up-to-date, it reflects when parts of the system were developed and
the state of that part at that point in time. We have tried to update key sections to make the document useful to
others. I know my students have used it “as is”, but have also relied on the source code comments of course,
as well as email communication. Another resource for documentation are the papers that have been written
about the system, all are publicly available athttp://www.csee.uq.edu.au/csm/uqbt.html ,
along with forthcoming technical reports that summarize our experiences with the development of this system
(forthcoming in early 2002).

We hope you find the UQBT framework useful for ideas or experiments in the areas of binary translation,
binary rewriting or manipulation, code obfuscation, binary or assembly migration via decompilation, and
more. We have certainly enjoyed working with this system.

Enjoy!

Cristina Cifuentes
Mountain View, California

27 Nov 2001



Chapter 1

How to Read this Book

Documentation: Cristina [Nov 01]

This book represents documentation on the design and development of theUQBT framework, a resourceable
and retargetable binary translation framework for experimentation with different types of translations. The
documentation has not necessarily kept up to date, and some views of the framework have evolved throughout
the years. The following is a summary of the main three frameworks that are described in different parts of
this book, followed by a roadmap on where to find information within the chapters of this book.

1.1 The UQBT Frameworks

There are three main frameworks described in this book: the original 1997 framework which were Cristina’s
and Norman’s ideas on how to build a retargetable binary translation system. In 1999 we published a variation
of the 1997 framework, the 1999 framework was based on the implemetation of the 1997 ideas and as such
represents the pragmatic choices Cristina and Mike made to have the framework up and running with several
source and target machines. The 2001 framework represents an extension of the 1999 framework, which
mainly has tried to address the backend issues of the framework. As such, four different experimental
translators were written. The 2001 framework represents Cristina’s and Brian’s ideas on this matter.

1.1.1 The Proposed 1997 UQBT Framework

The UQBT framework was initially designed in 1997 by Cristina Cifuentes and Norman Ramsey. The main
aim of the design was to allow for separation of machine-dependent from machine-independent concerns, by
using specifications to describe machine-dependent information, and building a framework that could make
use of such specifications in a machine-independent way.

Figures 1.1 and 1.2 represent the architecture and data flow framework of the proposed system. This
framework is described in Chapter 4, Section 4.1.
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Figure 1.1: The Proposed 1997 Architecture for UQBT
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1.1.2 The 1999 UQBT Framework

The 1999 UQBT framework represents the original resourceable and retargetable implementation of the
UQBT system that worked for several source and target machines. This framework was designed by Cristina
and Mike Van Emmerik, with input from students. It was student’s Trent Waddington’s idea to try out using
C as a suitable optimizer for our backend, we were initially using the VPO optimizer for one target machine
only. By using the C compiler, we would not be limited to one machine but instead would be able to compile
for any of numerous target machines (we used GNU’s gcc compiler).

Figure 1.3 illustrates the 1999 UQBT framework, which is described at length in Chapter 4, Section 4.2.
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Figure 1.3: The 1999 UQBT Framework

1.1.3 The 2001 UQBT Framework

The 2001 UQBT framework concentrated on creating a retargetable backend, the current implementation
reflects the experimentation done with four different backends–one that generates low-level C code (the 1999
backend), another that generates JVML code1, another that generates VPO RTLs to interface with the VPO
optimizer, and last, a backend to generate object code without performing register allocation to interface with

1JVML stands for the Java Virtual Machine Language, otherwise known as the Java bytecode language.
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an optimizer of object code (such as a post optimizer). This experimentation reflects the ideas of Cristina and
Brian in this area, as well as input from intern Manel Fern´andez.

Figure 1.4 represents the existing implementation of the UQBT framework. This framework is explained in
Chapter 4, Section 4.3.
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Figure 1.4: The 2001 UQBT Framework

Figure 1.5 illustrates the final aim of building a retargetable backend that was capable of supporting code
generation at different levels of abstraction (machine code, assembly, RTL, C or JVML). Most of the
infrastructure is in place at present for this framework, however, not all pieces have been factorized in order
to have the common view represented in the diagram. Some of the ideas in this area are documented in
Chapter 16, Section 16.1.

1.2 Roadmap

There are numerous chapters in this book, some are not even part of the 2001 UQBT source code distribution,
however, we have kept such chapters for their value in experiments run at some point in time. The
documentation is also not complete, there are parts of the system that are not documented in these chapters,
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Figure 1.5: The Ideal Framework

for those, you will have to refer to the source code. The following roadmap helps in understanding which
parts of this book are general, which are part of the 2001 distribution and which are of historical interest.

The first part of this book—Introduction—is a general overview of binary translation (Chapter 2), some
previous work in the area (Chapter 3), and a summary of the three UQBT frameworks that were documented
in the history of the project: the proposed 1997 framework, the 1999 implementation and the final 2001
implementation (Chapter 4).

The Frontend part describes most of the components of the 1999 and 2001 UQBT frameworks when these
components where built. The binary-file format API is described in Chapter 5, the decoding of machine
instructions is described in Chapter 6, the specification of semantics of machine instructions is described in
Chapter 7, and the internal UQBT intermediate representations used for RTL and HRTL levels are described
in Chapter 8.

The Analysis part deals withsomeof the analyses performed in abstracting away from machine dependent
information (RTLs) into a high-level representation (HRTL). The analyses that are described are: how to
eliminate condition codes (Chapter 9), how to remove delayed branches from the intermediate representation
(Chapter 10), how to recover parameter, local variable and function return information at procedure call sites
(Chapter 11), and how to perform low-level type analysis recovery (Chapter 12).
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The Backends part deals with explanations of the four different backends that are implemented in the 2001
UQBT framework. These are: the original 1999 (low-level) C backend (Chapter 13), the 1999 and 2000
JVML backends (Chapter 14), the 1998 and 2001 VPO backends (Chapter 15), and the object code backend
as well as the design of a retargetable backend (Chapter 16). There is also a standalone chapter on how to
use the New Jersey Machine Code toolkit for encoding purposes, the chapter is a standalone experimentation
with encoding of assembly code dynamically (Chapter 17).

The Results part of the book presents results of 5 initial experimental translators (SPARC to SPARC, SPARC
to Pentium, Pentium to SPARC, Pentium to Pentium, and SPARC to JVML); the results were collected in Sep
1999 (Chapter 18). Chapter 19 provides guidelines on how to instantiate a new translator using the UQBT
framework, Chapter 20 contains notes from 1999 and 2001 on our experiences with building new frontends
or backends for the UQBT framework. Last, Chapter 21 has some notes on ways to tackle debugging in the
UQBT framework, as no built-in debugging support exists in the framework.

The Runtime Support part is slim and outdated, it contains notes from early 1999 on an interpreter that was
built in that year; that interpreter is not part of the distribution as it is obsolete (Chapter 22).

The only Appendix that is left deals with how to configure the UQBT framework to instantiate a particular
translator. These notes were written in 2001 after we stopped using multiple Makefiles and decided to use the
configure system to generate our Makefile. There is also information on how to run the regression test
suite.

This book has not documented the graphical interface of the system, which was written in early 2000 using
the tcl/tk system. You will find this interface in thegui directory of the 2001 UQBT distribution. The GUI
allows for translations across some types of machines, and it produces its output in text and graphical forms.
To run it, emit the following command:

wish uqbt.tcl

For most of the time, we used the UQBT system in a command-line fashion, as described in the Appendix.
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Chapter 2

Binary Translation

Design: Cristina, Norman; Documentation: Cristina [c.1996]

Binary translation, the process of translating binary executables1 makes it possible to run code compiled for
source platform Ms on destination platform Md. Unlike an interpreter or emulator, a binary translator makes
it possible to approach the speed of native code on machine Md. Translated code may run more slowly
than native code because low-level properties of machine Ms must often be modeled on machine Md. For
example, the Digital Freeport Express translator (Dig95) simulates the byte order of SPARC, and the FX!32
translator (Tho96, HH97) simulates the calling sequence of the source x86 machine, even though neither of
these is native to the target Alpha.

Because code for decoding, analyzing, translating, and emitting machine instructions is highly machine-
dependent and is written by hand, existing binary translators are limited to one or two platforms. Our
research makes it much easier to build binary translators for new platforms. It also lays a foundation for
the development of new analyses that could improve the performance of translated code; for example, it
might be possible to use native byte order or calling sequences in many cases.

Commercial hardware and software companies (e.g. Digital, AT&T, Sun) have invested significant resources
in the development of automatic binary translation, but some of the approaches have been constrained by
time-to-market issues. Our research attacks problems that cannot be considered in a product setting scenario.

2.1 Is Binary Translation the Solution to all Migration Problems?

There are different expectations from binary translation technology depending on who you are or work for.
We briefly describe three different points of view to the expectations of binary translation technology based
on whether you have invested in software or in hardware.

1In this document, the termsbinary executable, executable , andbinary are used as synonyms to refer to the binary image file
generated by a compiler or assembler to run on a particular computer.
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From the point of view of an organization which has invested large resources into the development of
software, ideally, binary translation should aid in the migration of legacy2 applications from Ms to a newer
platform Md, to take full advantage of Md’s computing resources, but also to maximize the investment in
software systems and minimize retraining costs on new systems.

From the point of view of a hardware manufacturing organization which has invested large resources into the
development of new state of the art computers, binary translation should aid in the fast/immediate migration
of application programs to run on and benefit from the full performance of the new machines. Unless software
is made available on the new machines, users will not be able to use the machines efficiently.

Finally, from the point of view of a software developer, binary translation could provide the solution to
making software available on a variety of hardware platforms at a reduced cost overhead due to a reduction
in the testing cycle (for each different machine).

Binary translation techniques aim to translate the object code (i.e. image) of an application (i.e. its binary
code) from an old machine to an equivalent object code for a newer machine. Although it is not very difficult
to translate some sequences of machine instructions from one machine to another, other considerations make
the task very difficult in practice. For example, binary code often mixes data and instructions in the same
address space in a way that cannot be distinguished given the same representation for data and code in Von
Neumann machines. This problem is exacerbated with indirect or indexed jumps, where the target value
of the jump is known at runtime, but hard to determine statically. Further, some of the older operating
systems did not provide systems programmers with an ABI (application binary interface) to low-level system
calls, hence allowing application writers to directly access the memory and by pass the operating system.
All of these problems and more are common to binary-code manipulation tools such as disassemblers and
decompilers, as the static parsing of the machine instructions in the binary file is a partially incomplete step
given its equivalence to the halting problem (HM79) and hence undecidable in general. Nevertheless, for
binary translation purposes, this does not mean that the problem cannot be solved at all. In fact, given that
the translated binary file will need to be executed, the information that could not be decoded statically will be
available dynamically, hence allowing for runtime translation or interpretation of the binary code.

Problems that are specific to binary translation are due to the multi-platform nature of the translation: there
is need to address the differences in source and target architectures (e.g. CISC vs RISC), the endianess of the
machines (e.g. little vs big), machine-dependent issues (e.g. delay branches or register windows on SPARC),
and compiler-generated idioms, as well as the differences in operating system services and GUI calls—which
are the hardest to address. The work reported in the literature so far suggests that a new binary translator is
hand-crafted to address each different pair of platforms due to machine dependency constraints.

It is clear that an “all purpose” binary translator is very hard to develop, therefore some bounds for the
research are established in the next section.

2The IEEE standard 1219-1993 (IEE93) defines a legacy system as any system whose documentation does not conform to the
Standard’s requirements. This normally is used to describe systems that were constructed before structured programming techniques
were universally adopted. In the context of this document, legacy software is that built in the last 5 to 10 years for register-based
machines, which needs to be ported/migrated to a new(er) platform.
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2.2 Goals and Objectives

Binary translation requires such machine-level analyses as finding procedures and code attached to those
procedures, finding targets for indirect transfers of control, identifying calling conventions and sequences,
and recovering type information for procedure parameters. Other analyses may make it possible to improve
translated code, e.g., by eliminating byte swapping, by promoting local variables to registers, or by translating
platform Ms calling sequences to native platform Md calling sequences. We plan to simplify the implemen-
tation of such analyses by having them operate on register transfer lists (RTLs), a machine-independent
representation of the effects of instructions. This simplification will reduce retargeting costs by making it
easier to implement analyses for new platforms. Moreover, in some cases it will be possible to eliminate the
retargeting cost entirely by making the analysis itself machine-independent.

To use the analyses on real binary codes, we must be able to transform them into RTLs and back again.
We plan to derive transformers from formal descriptions of the representation and semantics of machine
instructions.

Thegoalsof the project are therefore:

� to understand what aspects of instruction representation and semantics are needed to perform binary
translation,

� to write those aspects as formal machine descriptions,

� to derive components of binary translators from those descriptions,

� to understand how to implement existing machine-dependent analyses on a machine-independent RTL
representation, and

� to understand which of these analyses can be made machine-independent, and how, and

� to develop a framework for experimentation with binary manipulation ideas.

To keep things simple,translation is limited to user routines (i.e. applications programs), not kernel code
or system calls (i.e. systems programs), or dynamically linked libraries (as these are sometimes written in
assembly code and relate to systems programs). Note that this approach is not limiting, Digital has used it for
their FX!32 hybrid translator for x86 Windows 32-bit binaries on Alpha (HH97).

We are working within the context of amulti-platform operating system, Solaris, which runs on SPARC
and x86 (the PowerPC version was not made available). Similar ideas work on other multi-platform OSs
such as Linux and Windows NT. We also experimented with cross-OS translations where the two OSs were
similar in nature; for example, Solaris and Linux. We can successfully translate (Solaris,SPARC) binaries
onto (Linux,x86), provided the same libraries are made available in both systems.

2.3 Types of Binary Translation

The first binary translators written, VEST and mx by Digital (SCK+93), were static in nature, that is, all
analysis was performed statically and a fallback mechanism (an interpreter) was used at runtime to handle
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code that was not decoded statically. It has been suggested that a dynamic binary translator can be built based
on dynamic compilation techniques (CM96). This would overcome the problems found with static translation
but at the cost of execution time of the generated binary. At present, most dynamic compilers generate much
slower code than static compilers; a factor of 2x is normally quoted. Recently, a hybrid approach was used
by Digital to develop FX!32 (HH97, Tho96), a two-step translator which emulates the code the first time it is
run, and binary translates it in the background once profile information has been gathered from the program’s
execution. In the next subsections, we briefly explain the first two methods, the third method is reviewed in
Chapter 3 along with other commercial translators.

2.3.1 Static binary translation

The structure of a static binary translator is presented in Figure 2.1. The front end is a (source) machine-
dependent module that loads the source binary program, disassembles it, and translates it into an intermediate
representation. The middle-end is a machine and operating system independent module that performs the
core analysis for the translation, and as such performs optimizations on the code. The back end is a (target)
machine-dependent module that generates a binary program for the target machine; performing the tasks of a
traditional compiler code generator and object code emitter that assembles the code in the binary file format
of the target platform.

Front-end

Back-end

intermediate code’

intermediate code

binary program (Ms,OSs)

binary program (Mt,OSt)
[including binary program

(Ms,OSs)]

Analysis

Figure 2.1: Structure of a static binary translator for source machineMs, target machineMt, source operating
systemOSs and target operating systemOSt.

The fallback mechanism used by static binary translators is a runtime environment that completely sup-
ports the source platform, and hence includes an interpreter for source machine instructions, and support
for translation and mapping of operating system calls into the new platform. The development of a runtime
environment is a significant overhead; especially the mapping of operating system calls. There is little per-
formance data reported in the literature regarding the amount of time spent by binary translated applications
in the interpreter mode. Code ported from a proprietary CISC to RISC machine at Tandem, where the op-
erating system was binary translated to the new machine, reports an average figure of 1% of the time being
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spent on interpretation (AS92). Informal talks with people who have developed such translators state that
the interpretation mode is seldom used if you have sufficient coverage of the patterns generated by compilers
commonly used in that platform. Existing static translators have dealt mainly with procedural code, rather
than object-oriented code, which poses new limitations to static translation due to their dynamic nature of
code dispatching through vtables.

2.3.2 Dynamic binary translator

A dynamic binary translator performs the translation of the code while the program is being executed by the
translator; that is, the input binary program is dynamically analyzed and translated into the target machine
code during runtime. Dynamic translation techniques overcome some of the shortages of static translation,
for example, determining the targets of indirect jumps. Dynamic translation is able to support most practical
cases of self-modifying code; code normally not supported in static translations. Given that all the processing
of a dynamic translator is done “on the fly”, the types of optimizations and analyzes have to be carefully
considered and optimized so that the minimum amount of time is spent during runtime.

The structure of a dynamic binary translator is depicted in Figure 2.23. The binary program is fed into the
front end which generates an intermediate representation for a block of code. This representation is then
compiled or emulated by the translator to generate (unoptimized) machine code for the target machine. If
at any time the translator determines that a new region of the program needs to be decoded, the front end
is dynamically invoked to parse that region and provide the intermediate representation. When generating
machine code, counters are kept on the number of times blocks of code are executed; once a threshold is
reached, machine code is regenerated to produce better machine code—this process can be repeated several
times, hence producing better code on a demand-driven basis. It is important to note that the translation is
done in a lazy fashion; that is, code is only translated when its path is reached. In this way, fragments of the
program that are not executed during runtime, are not translated either. Self-modifying code is handled by
invalidating the existing intermediate representation and re-parsing the binary code with the changed bytes.

Dynamic compilers can perform runtime optimizations of the code based on the execution profile of the
program, hence several optimizations, such as dynamically-dispatched calls and procedure inlining, can only
be possibly done on a dynamic compiler rather than using static techniques. The performance penalty
of code generated by such a translator is estimated between 0.9X to 2.4X times that of code generated
by a native optimizer C++ compiler (these figures are based on code generated by the SELF-93 dynamic
compiler (Hol95)).

An interesting point to note is that a dynamic binary translator for a multi-platform operating system does
not require the development of a runtime environment to support the mapping of old operating system calls,
as all translations are done “on the fly”. Using static techniques in this case will still require a runtime
environment to cater for the interpretation of old machine instructions–dynamic techniques alleviate the need
for this fallback mechanism, but compromise the speed of execution of the program at the expense of less
analysis and code quality.

3Figure 2.2 by the SELF team at Sun Microsystems Labs.
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Figure 2.2: Structure of a dynamic binary translator for a source machine Ms, a target machine Mt and a
multi-platform operating system OS.



Chapter 3

Previous Work

Documentation: Cristina [c.1996, 2001]

Binary translation is a relatively new field of research, were the techniques are derived from the compilation,
emulation and decompilation areas. Nevertheless, the techniques are ad hoc in nature and little has been
published about them (mainly driven by commercial interests of the parties involved).

In this chapter we describe the related work, which we have classified into two main groups: works related
to binary translation and interpreters (or emulators), and works related to binary-code manipulation tools that
may aid in the process.

3.1 Binary translators and interpreters

Binary translation techniques were developed from emulation techniques at research labs in the late 1980s.
Projects like the HP3000 emulation on HP Precision Architecture computers (BKMM87) and MIMIC, an
IBM System/370 simulator on an IBM RT (RISC) PC (May87) were the catalist for these techniques. One
of the goals of the HP project was to run existing MPE V binaries on the new MPE XL operating system.
For this purpose, a compatibility mode environment was provided, which was composed of two systems: a
HP 3000 emulator and a HP 3000 object code translator. The emulator duplicated the behavior of the legacy
hardware, and the translator provided efficient translated code which relied on the emulator when indirect
transfers of control where met.

Tandem developed an object code translator for TNS CISC binaries to TNS/R (RISC) in order to provide a
migration path for existing vendor and user software (AS92). This approach allowed them to market their
new RISC machines years earlier than if no migration path was available. Part of the rationale for the project
was also the fact that no reprogramming was involved and that the techniques would provide faster code than
emulation techniques. Less than 1% of the time was spent on emulation.

Digital developed two translators, VEST and mx, to provide a migration path from their OpenVMS VAX and
Ultrix MIPS systems to their new Alpha machine (SCK+92, SCK+93). Interestingly enough, they decided
to do careful static translation once instead of on-the-fly dynamic translation at each execution time for

35



36 Previous Work

performance issues. In both their translators, the old and new environments were, by design, quite similar,
plus both provided similar operating system services. Some of the goals were to take full advantage of the
performance capabilities of the Alpha and avoiding the problem of not having all the tools available to port a
program to a new architecture (because they are still not available on the new hardware). This was seen as an
interim solution, while the user’s environment was made available on the new machine and then code could
be recompiled/rebuilt.

Up to 1992 all translators were made available by hardware manufacturers to provide a migration path from
their legacy hardware platform (normally a CISC) to their new platform (normally a RISC).

Back in 1994, AT&T Bell Laboratories provided services to migrate software in object code form from
one platform to another through the FlashPort binary translator (T94). Translations of PDP 11, 680x0 and
IBM 360 code was made to platforms like MIPS, RS/6000, PowerPC and SPARC. Translation time was
based on the type of application, with some large applications being translated in 1 month, whereas others
in 6 months; which means that manual changes were done to assure consistency of the translation, plus to
provide compatibility libraries to cater for the differences in operating systems and services. The FlashPort
technology was initially developed by Bell Laboratories researchers and was commercialized through the
1991-formed Echo Logic company. The first production release of the technology was provided to Apple
Computers in 1993 to translate Macintosh binaries to the then forthcoming PowerPC-based Macintosh
computers.

In an attempt to make Alpha machines more appealing to existing Unix users, Digital released FreePort
Express, a SunOS SPARC static binary translator to Digital Unix Alpha (Dig95); particularly at a time when
Sun was migrating customers to their new Solaris OS and discontinuing support for SunOS. The tool was
advertised as a way of migrating to the Alpha even when source code and compiler tools from the source
machine were not available; then do a native port at your own leisure. Since the translated programs and
libraries provided support for Xview, OpenLook, Motif and other X11-based applications, this migration
path was suitable for users who did not want to be trained in the use of new tools.

To improve Alpha’s usability as a desktop alternative to Intel PCs, Digital developed FX!32, an WindowsNT
x86 to WindowsNT Alpha translator (Tho96, HH97). Emulation was used as it provided a quick way to
provide support for changes in WindowsNT. However, binary translation on the background was also used in
order to save the translations to a file and, over time, incrementally build the new Alpha binary. This hybrid
translator uses profiling information in order to optimize the code the next time it is run.

The TIBBIT project looks at real-time applications that are to be binary translated between processors of
different speeds (CS95, Cog95). The translated software needs to retain the implicit time-dependency of the
old software in order to function correctly.

We summarize the features of a variety of binary translators and interpreters in Table 3.1. The column
Purposedescribes the general use of the tool, columnsSource PlatformandTarget Platformdescribe the
nature of the translation supported by the tool (i.e. multi-platform or within the one platform), columnName
refers to the name of the software; if unnamed, then it refers to the people that worked on it, and column
Affiliation refers to the affiliation of the authors of the software at the time of development.
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Name Affiliation Ref Purpose Source Platform Target Platform
Bergh et al
(1987)

HP (BKMM87)Software emulation and object code transla-
tion.

(HP3000, MPE
V)

(HP Precision Ar-
chitecture, MPE
XL)

Mimic
(1987)

IBM (May87) Software emulator with a 1:4 code expansion
factor per old machine instruction.

IBM System/370 IBM RT PC

Johnson
(1990)

Stardent (Joh90) Postloading optimizations. RISC RISC

Bedichek et
al (1990)

U.Wash (Bed90) Efficient architecture simulation and debug-
ging.

Motorola 88000 Motorola 88000

Accelerator
(1992)

Tandem (AS92) Static binary translation for CISC to RISC
migration. Uses a fallback interpreter.

TNS CISC TNS/R

VEST, mx
(1993)

Digital (SCK+93)Static binary translation from Digital’s VAX
and MIPS machines to the 64-bit Alpha.
Uses a fallback interpreter.

(VAX, Open-
VMS), (MIPS,
Ultrix)

(Alpha, Open-
VMS), (Alpha,
OSF/1)

Wabi (1994) Sun (Sun94b)Pretranslated Windows API to Unix API
calls. Dynamic execution of programs.

(x86, Windows
3.x)

(SPARC, Solaris)

Flashport
(1994)

AT&T (T94) Binary translation across a variety of source
and target platforms. Requires human inter-
vention.

680x0 Mac, IBM
System/360, 370,
380

PowerMac,
IBM RS/6000,
SPARC, HP,
MIPS, Pentium

Shade (1994) Sun (CK94) Efficient instruction-set simulation and trace
generation capability. Dynamic compilation
of code.

SPARC V8, V9 SPARC V9, V8

MAE (1994) Apple (Cor94) Macintosh environment in an XWindow,
Unix RISC-based workstation.

680x0 RISC-based Unix

Wahbe et al
(1994)

CMU (WLG94)Adaptable binaries. Binary transformations. (MIPS, Ultrix4.2) (MIPS, Ultrix4.2)

Chia (1995) Purdue (Chi95) Software emulation within the same plat-
form, with a 1:100 code expansion factor per
old machine instruction.

(SPARC, Solaris) (SPARC, Solaris)

TIBBIT
(1995)

CMU, UO (CS95,
Cog95)

Binary translation of time-sensitive applica-
tions.

Motorola 68000 (IBM RS/6000,
AIX 3.2)

Then (1995) Purdue (The95) Optimization of code within the same plat-
form.

(SPARC, Solaris) (SPARC, Solaris)

Freeport Ex-
press (1995)

Digital (Dig95) Static binary translation and fallback inter-
preter. Translates user mode programs. 32-
bit to 64-bit translation.

(SPARC,
SunOS4.1.x)

(Alpha, OSF/1)

FX!32
(1996)

Digital (Tho96,
HH97)

Hybrid emulator/binary translator of popular
x86 32-bit applications to Alpha.

(x86, Win-
dowsNT)

(Alpha, Win-
dowsNT)

Table 3.1: Summary of Binary Translators and Interpreters in Cronological Order.

3.1.1 List of recent translators

There has been a lot of work in the last few years (1998-2000) on dynamic techniques for doing binary
manipulation of one sort of another. The following is a list of projects and literature available:

� HP Aries (ZT00): Aries is a hybrid interpreter/dynamic translator which allows PA/RISC HP-UX
binaries to run in an IA-64 HP-UX environment transparently, without user intervention.

� HP Labs Dynamo (BDB00): Dynamo is a dynamic reoptimizer of PA-RISC binaries which produces
PA-RISC code. It works well for some programs and not for others.
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� IBM TJ Watson Research Center’s DAISY (EA96) and BOA (GAS+00): The DAISY and BOA
projects have looked at dynamic binary translation from conventional architectures such as the Pow-
erPC to VLIW or other novel architectures. Their work addresses precise exceptions, self-modifying
code, and reordering of memory references; all of these from an architectural point of view.

� Transmeta’s Crusoe (GP00): The Crusoe chip is a VLIW chip which includes code morphing to
dynamically binary translate from x86 to the VLIW instruction set. Some x86 instructions are
supported by the hardware itself.

� Compaq’s Wiggins/Redstone (RDGY00): Wiggins/Redstone was a dynamic reoptimizer of Alpha
binary code. It was built based on Digital’s DCPI infrastructure.

3.2 Binary-code manipulation tools

Name Ref Purpose Platform
Silberman et al
(1993)

(SE93) Framework for supporting heterogeneous instruction set ar-
chitectures.

CISC, RISC, VLIW

QPT (1994) (LB94) Rewrite executable files to measure program behavior. MIPS, SPARC
Shade (1994) (CK94) Execution profiling of application binaries. SPARC V8, V9
ATOM (1994) (Dig94,

ES95)
Sytem for building customized program analysis tools. (DecStation, Ultrix),

(Alpha, OSF/1)
NJMC (1994) (RF95,

RF94a,
RF97a)

Machine-independent encoding and decoding of machine in-
structions via the SLED language.

MIPS, SPARC, x86,
PowerPC, Alpha

EEL (1995) (LS95) Library for editing binaries. MIPS, SPARC

Table 3.2: Summary of Binary-code Manipulation Tools in Cronological Order.

Table 3.2 summarizes the available tools for handling machine binary code. The columnNamelists the name
of the tool (or its author if no name was given to the tool), columnRef lists the references in the literature
to this tool, columnPurposedescribes the purpose of the tool, and columnPlatform lists the platform(s)
supported by these tools.

ATOM is a tool-building system that provides a flexible and efficient interface for the instrumentation of
code and has been used for the construction of an instruction profiler, cache simulator and compiler auditing
tool (ES95). The user needs to write an instrumentation file in terms of ATOM’s abstractions (procedures
and basic blocks), and an analysis file (using a high-level language such as C) with the routines that are to
be included for instrumentation purposes. The performance of the generated tools compare favourably with
hand-crafted implementations of same the tools.

Shade is an instruction-set simulator which optionally allows users to profile code that traces the execution
of an application at runtime. Trace information on instruction addresses, instruction text, decoded opcode
values, and more can be collected by Shade (CK94). This tool works only on SPARC machines.

Both NJMC (New Jersey Machine-Code) toolkit (RF95, RF97a) and EEL (Executable Editing Li-
brary) (LS95) provide support for manipulating machine instructions. The NJMC toolkit supports the en-
coding and decoding of machine instructions for a variety of RISC and CISC machines, by means of SLED
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specifications. The SLED language allows for the description of the syntax of machine instructions in a
specification that resembles instruction descriptions found in architecture manuals. The toolkit has success-
fully been used in a retargetable linker (Fer95) and a retargetable debugger (RH92). The EEL library was
built based on the NJMC machine specifications, and introduced control flow support based on techniques
developed in the QPT (LB94) profiler. EEL also introduced limited support for describing the semantics of
machine instructions. The tool is not fully portable to non RISC environments.
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Chapter 4

The UQBT Framework

Design: Cristina, Norman; Documentation: Cristina [c.98, May 00, Nov 01]

The University of Queensland Binary Translator (UQBT) framework, is designed to support experimentation
in static binary translation. UQBT strives to adapt easily to changes in both source and target machines at low
cost, including translations to register-based and stack-based machines. Support for multiple architectures is
provided by means of specification of properties of machines, as well as conventions used by operating
systems. This chapter describes the overall architectural organization ofUQBT (Section 4.1) and its
components from the point of view of instruction translation (Section 4.2). Note that these two sections
are necessarily overlapping; the former section reflects more of the design and the latter section reflects more
of the implementation of the system. The chapter concludes with a small section on the state of the UQBT
framework at the end of 2001.

4.1 The Proposed 1997 Architecture of a Retargetable Binary Trans-
lator

Like a compiler and a decompiler, a binary translator can logically be divided into three phases: front end,
analysis and transformation, and back end. For a given source machine Ms and destination machine Md, the
front end decodes machine Ms’s binary file and stores the information in a machine-independent intermediate
form based on RTLs. The analysis phase maps machine Ms’s locations onto machine Md’s locations and
transforms the RTLs so that they can be readily translated into native code for machine Md. The back end
translates the intermediate form and writes a binary file for machine Md. It may also optimize instructions.

From a retargetability point of view, it is more helpful to think of a functional division into components
instead of a sequential division into phases. Such components may be used in more than one phase. Some
components will be machine-independent; others may be generated from machine descriptions. In Figure 4.1,
we identify components by putting them in boxes.

41
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Translator
Core

Binary File
Encoder

Target Memory
Manager

Binary File
Decoder

Boundary
Manager

Input
source b inary

Output
target binary

Mapping
Manager

Source     Target

Architecture

Figure 4.1: Architecture for a Retargetable Binary Translator. Components are Represented in Boxes.

Implementation of components draws on techniques developed for dcc, an 80286 decompiler (CG95), for
specifying representations of machine instructions (RF97a), and for the U.S. National Compiler Infrastructure
project.

4.1.1 Components

Ms binary file readerexports an abstraction representing the contents of the executable binary on the original
machine. This module promotes retargetability by hiding information about the source machine that one
might otherwise be tempted to exploit. The capabilities exported include:

1. The initial state of the Ms processor that would apply when about to run this binary on a native Ms

processor, including at minimum the value of the program counter,

2. A list of potential entry points for procedures, possibly empty (N.B. the initial program counter is
always available as an entry point),

3. The ability to fetch the program’s code and data, by the address those contents would occupy in a
running Ms executable, and
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4. The ability to identify calls to dynamically linked procedures, and to provide access to the code and
data associated with those procedures.

This module may therefore include much of the functionality of a dynamic linker/loader.

One of the crucial decisions made by a translator is which locations on machine Md hold what data from
machine Ms. We will encapsulate these decisions in amapping manager, which will map locations in code
space, locations in data space, and locations referring to registers or other processor state. Most mappings
will be determined automatically at translation time, but some mappings may be specified by hand for each
pair of platforms, e.g., what registers of machine Md should be used to represent the contents of registers of
machine Ms.

The mapping manager will rely on the Md memory managerto allocate locations in the destination machine’s
storage space, e.g., to store translated code.

Because it is impossible to identify and translate all code, a running image on machine Md will in general
have a mix of translated and untranslated code. Theboundary managerwill track the boundary between
translated and untranslated code and handle flow of control across the boundary. For example, a branch from
translated to untranslated code might go to an interpreter or to a dynamic translator. If the untranslated code
is subsequently translated, the boundary moves, and the boundary manager might backpatch the branch.

Thecore translatorwill translate groups of machine instructions. A group may be as small as a basic block
or as large as an entire program, and different translation strategies (e.g., full static, partial static, dynamic)
may use different group sizes.

The core translator coordinates the action of all the other components and performs the main translation
analyses. It will translate a group of Ms instructions as follows:

1. Ask the memory manager for a location in Md to hold the translated code, and inform the mapping
manager of the new mapping,

2. Translate Ms instructions to Md instructions

� using information from the mapping manager to translate access to machine Ms’s data,

� using information from the boundary manager to translate flow

of control outside the current group, and

3. Inform the boundary manager of the translation of the current group. The boundary manager may
choose to backpatch branches into the current group.

Depending on the granularity and timing of translation, these steps may be repeated on other units until some
termination condition is met. If the granularity of translation is sufficiently large, the second step may involve
translating into an intermediate form and doing some global analysis and optimization.

Finally, the Md binary file writer will export an abstraction representing the ability to create an executable
binary on machine Md. It will export the abilities to:

1. Specify the contents of the Md address space at the start of execution,

2. Establish the state of the Md processor at the start of execution,
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3. Write an executable binary file in the Md native format, and

4. Possible support for dynamic linking, e.g. of translated or native libraries.

In a dynamic translator, this component would simply write into a running process image (and possible flush
the I-cache).

4.1.2 Core Translation based on RTLs

The translation itself will be performed using register transfer lists (RTLs). An RTL is a collection of
simultaneous effects. Each effect has the form ‘location := expression’, and the expression is always evaluated
without side effects, so all state change is explicit. RTL expressions are represented as trees, the leaves of
which refer to constants or to the values contained in locations. Note that although the tree leaves refer to
locations, the values themselves are not necessarily calculated, only the location is referenced. The internal
nodes of the trees are ‘RTL operators’. For illustrative purposes, the following is an ASCII representation of
an RTL representing the effect of the SPARCandcc instruction:

$r[rd] <-- and (*$r[rs1], if i = 0 then *$r[rs2] else simm13! fi);
icc.N <-- bit (and (*$r[rs1], if i = 0 then *$r[rs2] else simm13! fi) < 0);
icc.Z <-- bit (and (*$r[rs1], if i = 0 then *$r[rs2] else simm13! fi) = 0);
icc.V <-- 0;
icc.C <-- 0

This RTL does a bitwise AND of the contents of register rs1, either with the contents of register rs2 or with a
signed immediate value (simm13). This result is stored in register rd, and it is also used to set two of the four
condition codes. The other two condition codes are set to zero by the instruction.

RTLs are obviously complex and detailed. Machine descriptions themselves will be written at a higher level
of abstraction and compiled into RTLs. Run-time representations of RTLs will be ‘collapsed’ either by
analyzing these higher-level representations or by using the ‘superoperator’ technique (Pro95). For example,
we might define a superoperator LOGICAL such that LOGICAL(X) stood for

$r[rd] <-- X;
icc.N <-- bit ((X) < 0);
icc.Z <-- bit ((X) = 0);
icc.V <-- 0;
icc.C <-- 0

Such a superoperator could be derived from the SPARC description.

An ‘RTL language’ is defined by a collection of locations and operators. For binary translation, a suitable
RTL language can be defined by taking the union of locations on machines Ms and Md and the union of the
operators used in the descriptions of machine Ms and Md. The ‘machine X invariant’ defines a sub-language
of RTLs called the X-RTLs; an RTL is an X-RTL if and only if it can be represented as a single instruction
on machine X.

As shown in Figure 4.2, the main steps in the translation are:

1. Decode the binary stream into Ms-RTLs. This step will be automated by specifying syntax and
semantics of Ms instructions.
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Figure 4.2: Flow of Data through the System

2. Build a control flow graph (CFG) for each procedure. Analysis will be needed to find code associated
with a procedure.

3. With the help of the mapping manager, map the machine Ms locations in the RTLs to machine Md
locations or to temporaries.

4. ‘Atomize’ the RTLs to expose all RTL operators at top level, and find suitable replacements for machine
Ms operators that are not available on machine Md. For example, big-endian memory access might be
replaced with explicit byte swapping.

5. Reassemble the RTLs to satisfy the machine Md invariant, making them Md-RTLs (i.e. Md-RTLs have
a 1:1 mapping with Md assembly instructions).

6. Optimize the Md-RTLs using VPO (BD88) or any other RTL optimizer.
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7. Encode the Md-RTLs into binary code for machine Md. Also automated.

The most challenging steps are steps (4) and (5). In the initial stages, these will be implemented by hand;
we hope to develop automated techniques afterwards. The other steps can be automated based on machine
descriptions or a mapping specification.

Future analyses, intended to improve translated code, might be implemented after steps (2), (3), or (4). Such
analyses might make it possible to avoid byte swapping, to use machine Md calling conventions, to put
machine Ms stack variables in machine Md registers, etc. Analyses may vary depending on the granularity
of translation.

4.2 The 1999 UQBT Framework

In order to support resourceability and retargetability, machine descriptions of machine properties are needed,
as well as descriptions of conventions and formats used by the operating system. We have identified 6
different specification languages and/or APIs to support the UQBT framework, 4 of these are currently in use
in our framework.

The framework described in this section dates from 1998, Section 4.3 describes the 2001 framework.
References in this section are to papers and chapters within this book that explain in more detail a particular
concept.

Machine specifications and APIs

Properties of a machine are represented in terms of the machine instructions (i.e. the mnemonics), the
semantics of such instructions, the identification of the instructions that transfer flow of control, and, if
needed, delayed transfers of control information. These 4 types of information are represented by the
following languages:

� SLED (Specification Language for Encoding and Decoding), which supports descriptions of the syntax
of machine instructions (RF97a). [Chapter 6];

� SSL (Semantic Specification Language), which supports descriptions of the semantics of machine
instructions (CS98). [Chapter 7];

� CTL (Control Transfer Language), which supports the identification of instructions that perform control
transfers of control (conditional jumps, jumps, calls or returns). This language was implemented as a
loose API in the end, as we decided not to specify other transfer of control information in the end.

� DCTL (Delayed Control Transfer Language), which supports the description of simple transformations
needed in order to remove dependencies on delayed instructions (in machines that support such
concept).

Support for DCTL is not in place at present. Initially, we used a program-transformation and partial-
evaluation technique to derive the transformations on instructions that support delayed transfers of
control (RC98). [Chapter 10]. The code is voluminous and we believe that code to support such
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transformations could be automated from a short specification of the required transformations. This
step would clearly increase the resourceability of the framework. However, we note that not too many
machines currently support the delayed-slot transfer of control, only SPARC, PA-RISC and MIPS do
at present time.

OS specifications/APIs

Conventions and formats used by a multiplatform operating system come in the form of calling conventions,
including where parameters are passed (i.e. stack or registers), and the format of the binary-file that the OS
supports. These 2 pieces of information are represented by the following languages/APIs:

� PAL (Procedural Abstraction Language), which supports the description of calling conventions,
parameter passing conventions, and local variables conventions (CS99). [Chapter 11]; and

� BFF (Binary File Format), which supports the description of the internal format of a binary-file, such
as the Elf format on Solaris and Linux systems (UC97). [Chapter 5].

We currently support the PAL language and have worked on an initial prototype of the BFF language, which
is incomplete at present time but proves the feasibility of specifying binary-file formats and automatically
generating code to support the decoding of such files. In our experience, it was easier to have a set API for
dealing with differences in binary-file formats than to specify the existing ones.

Figure 4.3 illustrates the components of the translation process in the form of boxes. Specifications for
different machines are illustrated with the document shape. Greyed-out shapes mean that they are not
currently supported by UQBT and therefore an implementation for a particular format or analysis has been
done instead. Arrows represent conceptual flow of control in the translation process.

4.2.1 The Decoding Phase

The binary-file decoder, instruction decoder and semantic mapper translate raw machine instructions into Ms-
RTLs for a given source machine Ms. As previously mentioned, we consider Ms-RTLs machine dependent,
as they represent how the source machine performs a given instruction, including delayed-slot semantics for
example.

In static translators, the amount of decoding from this phase is limited by indirect transfers of control (i.e.
statically, it is not always possible to determine the target of an indexed jump or an indirect call). UQBT
includes a slicing-based technique to determine the target address(es) of indirect transfers of control (CE99).
This technique allows us to decode a larger percentage of the code than otherwise possible, and is reusable
across different platforms.

4.2.2 The Analysis Phase

The translation of MS-RTLs up toHRTLis the most challenging stage of the translator. As seen in Figure 4.3,
this translation requires information about control transfer instructions, delayed control transfers (if any),
parameter and calling conventions, and locals and stack frame conventions. CTL specifications allow us to
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Figure 4.3: Framework for a Resourceable Binary Translator.

translate low-level register transfers into higher level instructions such as calls and returns. For example, a
CTL specification for SPARC states that a jump and link instruction with destination register%o7 is a call
instruction. This semantics is not necessarily obvious from the SSL description of a jump and link instruction.
Further, the same instruction using destination register%g0 is equivalent to an unconditional jump; this too
is specified in CTL.

DCTL specifications will allow us to remove delayed-slot instructions in a more machine-independent
way. At present, as previously mentioned, we implement a program transformation and partial evaluation
technique.

PAL specifications allow us to recover some of the high-level nature of the code, by recovering actual
parameters and return values for functions, and removing the MS-RTL-specific instructions that form part
of procedure prologues and epilogues, as these are represented in different ways in different machines. The
analysis is based on live and used parameter and return locations; such locations being specified in a PAL
specification, as well as abstraction to an abstract frame pointer (%afp ). For example, a PAL specification for
the Pentium would specify that parameters can be passed on the stack and that return values go into certain
registers (%eax and top of the floating point stack). A more detailed description of the analysis is available
in (CS99) and Chapter 11.



4.2 The 1999 UQBT Framework 49

r[tmp] = %sp
r[tmp2] := -120
%pwp = %cwp
%cwp = %cwp + 64
%cwp = (%cwp-1) % NWINDOWS
%sp = r[tmp] + r[tmp2]
r[9] = 69 << 10 v1 = 70656
r[8] = r[9] | 720 v0 = v1 | 720
r[15] = %pc
%pc = %npc
%npc = 0x21780 Call printf (v0, v1)
r[9] = r[30] + -20 v1 = %afp + 100
r[10] = 69 << 10 v2 = 70656
r[8] = r[10] | 736 v0 = v2 | 736
r[15] = %pc
%pc = %npc
%npc = 0x2178c Call scanf (v0, v1, v2)
r[8] := m[r[30] - 20] v0 = m[%afp + 100]
r[15] = %pc
%pc = %npc
%npc = 0x10a9c v0 = Call fib (v0)
m[r[30] - 24] = r[8] m[%afp + 96] = v0

Figure 4.4: Example of the result of the use of PAL specifications to translate SPARC-RTL code (left-hand
side) toHRTL(right-hand side) in a fibonacci program.

Figure 4.4 illustrates a snippet of SPARC-RTLs for themain of a fibonacci program, and the resultantHRTL
code. As can be seen, the RTLs for the procedure prologue were removed (and relevant information used in
the translation), the actual parameters to library functionsprintf andscanf are listed, actual parameters
were moved to variable locations, local variables are in terms of an abstract frame pointer called%afp , and
the return value for the call tofib has been determined. The example also shows that the call tofib has
the right number of parameters (i.e. one), and that the calls to the variable argument routinesprintf and
scanf each take one extra parameter than expected. These parameters were passed as they were live and
were valid parameter locations at the call site. However, when the code is executed, these parameters will not
be used as the library routines would not be expecting these parameters for processing (i.e. the format string
in both these routines specifies the number of parameters required to be processed), therefore producing the
right result at runtime.

Lifting the level of representation of the code toHRTLallows for experimentation with different types of
binary translation-specific optimizations, such as removing some of the byte swaps at loads and stores when
machines have different endianness, or promoting local variables to registers. This is future work.

4.2.3 The Encoding Phase

The last step in this phase is the translation down to the target machine’s intermediate representation; MT -
RTL in the case of register-based machines orbcodein the case of stack-based machines. The translated code
will always require an optimizer to improve its quality, therefore, the encoder phase would be equivalent
to that of an optimizing compiler. Because we interface to existing C optimizing compilers, we generate
very low-level C code from this step. Figure 4.5 shows the generated low-level C code for the example in
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void main() {
int v0;
int v1;
int v2;
char _locals[120];

v1=70656;
v0=(v1)|(720);
printf(v0,v1);
v1=(_locals)+(100);
v2=70656;
v0=(v2)|(736);
scanf(v0,v1,v2);
v0=*((int*)((_locals)+(100)));
v0=fib(v0);
*((int*)((_locals)+(96)))=v0;

Figure 4.5: Example generated low-level C code for the partial fibonacci example of Figure 4.4.

Figure 4.4. As can be seen, data addresses are not modified, therefore a call toprintf or scanf takes the
same memory address as that in the source binary.

We have successfully interfaced to VPO (BD88), whose register transfer list interface is similar to our RTLs,
and hence it is simple to translate to. The new VPO interface is part of the Zephyr project (vpo98). Generating
(low level) C allows us to experiment with different optimizers, and also is the interface to the stack based
backends. For generation of code to the Java Virtual Machine (JVM), we have written a backend and a
bytecode description that integrates with gcc.

The generation of bytecode via gcc provides us with all the classical optimizations that are too computation-
ally expensive to be performed by a just-in-time compiler. We wrote a bytecode specification file for gcc
which treats registers as locals and describes peephole optimizations. For eachHRTL instruction,n byte-
code instructions are generated, wheren is normally less than 5. The generated bytecode is similar to that
generated by a Java compiler, given the high level of abstraction of theHRTLcode. Current work under devel-
opment improves on the generated bytecode by using an intermediate language calledbcode, which allows
for stack-based optimizations to be performed, therefore minimizing the amount of loads and stores from
memory and using the stack for temporary values more. Figure 4.6 shows sample bytecode generated from
our gcc bytecode backend. Library calls are to wrapping routines which invoke the native Java library sub-
systems. For variable argument routines, we haven different wrappers, wheren is the number of parameters
and typicallyn is less than 10.

For each translation, the generated code and data are placed into a variety of C and assembly files which can
be compiled with gcc and gas on the target machine. For each function, a low-level C file is generated. For
each data section, an assembly file is generated with the relevant bytes. A makefile is provided to pack the
file into an appropriate binary for the target machine.

Static translators require the use of an interpreter/emulator to handle untranslated code that is discovered at
run time. The interpreter uses the MS-to-MT mapping to determine when it can return to translated code,
and therefore this mapping is stored in the target binary. Because the interpreter will use the original source
text section, this section is also copied to the target binary. The interpreter itself is designed to be linked
dynamically. We are currently building a resourceable interpreter/emulator which uses the same SLED and
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... (setup code)
v2=134517960; ldc 124517960 ; put string in local 10
printf(v2); istore 10
r24=(_afp)+(4); aload_0 ; call _printf
v2=r24; iload 10
v1=134517975; invokevirtual Fibo/_printf (I) I
scanf(v1,v2); istore 10

ldc 16 ; put afp+4 in local 12
lstore 9
iload 14
iload 9
iadd
istore 12
ldc 134517975 ; put string in local 10
istore 10
iload 12 ; put afp+4 in local 11
istore 11
aload_0 ; call _scanf
iload 10
iload 11
invokevirtual Fibo/_scanf(II)I
istore 10

Figure 4.6: Example of generated bytecode after gcc optimizations (right-hand side) for low-level C code
generated from Pentium fibonacci binary (left-hand side).

SSL specifications provided by the UQBT framework. The interpreter simulates Ms-RTLs and uses PAL
specifications to determine how to pass parameters to library routines. This work is not completed at present
time and is under development.

Because of potential aliasing problems, not all of which can be solved by static analysis, the data sections
(generally .rodata and .data in Elf binary files) are copied “as is” to the target binary. They are made to retain
the same Virtual Memory Address in the target binary as in the source binary. A link map file generated by
the translator is used to achieve this. The target program calculates addresses exactly as the original source
program did, and so the data is referenced correctly (although it may need to be referenced using different
endianness). Because of differences in size of pages in various architectures (e.g. 4Kb on Pentium, verses
typically 8Kb on SPARC), this mapping cannot always be achieved entirely by manipulation of addresses in
the target binary file. A very small piece of code sometimes has to perform block moves (before the normal
startup code) to achieve the correct addresses.

Translators to bytecode require extra environment support to compliment the strengths of the JVM. The lack
of a generic memory model on the JVM forces us to emulate the data and stack of a translated program.
Library functions from the source architecture must also be supplied to the translated program. This is
facilitated by a superclass from which each translated program is inherited. The superclass provides simulated
memory access in preloaded byte arrays and wrapper routines to library functions which invoke the native
Java subsystems.
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Figure 4.7: The 2001 UQBT Framework

4.3 The 2001 UQBT Framework

The final UQBT 2001 framework provides for several backends that were written for experimentation with
different ways of generating machine code, by integrating at different levels of abstraction. Figure 4.7
shows this framework, we briefly describe its components next. In the below description, we divide the
framework into two sections, the front end and the back end. The former transforms binary code to theHRTL
representation, the latter transforms down fromHRTLinto another binary representation.

Front end: We have one resourceable front end which takes 3 machine and OS descriptions and 2 APIs,
along with any extra machine-dependent code to abstract Ms-RTLs intoHRTLcode. The parts of the
front end are:

� Binary-file decoder: supports the decoding of the source binary file into an internal UQBT
representation that supports the binary-file format API. The API assumes we can obtain the code
(text) and data sections of the file, that there is at least one entry point, and that there may be a
symbol table.

� Instruction decoder: supports the disassembly of the instruction stream (the text/code section(s))
via the SLED specification for the instruction set for the source machine being used.



4.3 The 2001 UQBT Framework 53

� Semantic mapper: supports the conversion of assembly instructions into RTL instructions,
by implementing support for the SSL language, which describes the semantics of assembly
instructions.

� Ms-RTL to HRTL translator: this is the key module in the framework that allows us to obtain
machine independence in the representation of the code of the program. This module transforms
RTL instructions intoHRTL instructions, by supporting an informal control transfer API, per-
forming analyses on procedural information (such as parameters, locals and return locations),
and adding any extra hand-written code to support peculiarities of the source instruction set; such
as delayed branches on SPARC or floating point stack-based instructions on x86.

The net result of the front end phase is to transform the source binary’s code into aHRTLrepresentation
which is machine independent. Transformations on this representation are feasible in order to, for
example, reduce the number of byte swaps needed when translating to different endianness machines.
Transformations of this kind are considered binary translation-specific optimizations, as a traditional
compiler optimizer would not have to deal with them at all.

Back end: We have experimented with four different types of back ends. These back ends have common-
alities which could be extracted into a common back end that supports generation of code at different
levels of abstraction (such as RTL, assembly or object code). The back ends are:

� C back end: the C backend was the original back end we wrote for the UQBT framework that
supported several target platforms (we had earlier experimented with an RTL optimizer). In
essence, the C compiler was used as a macro assembler. We translatedHRTLcode into low-level
C code; i.e. code that makes use of goto’s and performs a lot of casting of types of expressions.
The generated low-level C code would then be compiled and optimized by the C compiler (we
normally compiled using GNU’s gcc as well as Sun’s cc compilers) and then linked against the
original data sections of the source program. The data sections were always forced to be located
at the same memory address space as in the original source program.

� JVML back end: the Java bytecode (Java virtual machine language (JVML)) back end was written
as an experiment in translating machine code to Java bytecodes. We translatedHRTLcode into
Java bytecode assembly code, which would be assembled by the Jasmin assembler in order to
generate a Java binary (.class file). Some runtime support was needed as the JVM model is
different to that of traditional machines; there was support for dealing with memory, allocating
and deallocating memory, as well as support for 32-bit integrals (all integers in the JVM model
use 31 bits and are meant to be signed).

� RTL back end: the RTL back end was an experiment at having more control over the optimizations
that were applied to the generated code, as by generating RTL instructions for the target machine,
we could then tell an RTL-optimizer to only use certain optimizations and to not move around
code in certain sections. We used the VPO (BD88) system for this purpose. VPO is a retargetable
optimizer that now provides an RTL interface to it. VPO makes use of specifications to describe
the syntax of the target instructions, has a series of optimizations that are machine independent,
and requires the user to write machine dependent optimizations to support any new machine.

� Object code back end: the object code back end was written as an experiment to interface with
an optimizer at the object code level, i.e. without having to generate any particular intermediate
representation. The generated code would not do register allocation of any sort, instead, it would
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place all locations (variables and registers) onto the local stack of a procedure, and would rely on
the optimizer to perform register allocation. This was an internal Sun experiment that made use
of a proprietary optimizer, as such, the code is released in the event that it is useful to others, but
the code for the optimizer is not made available (you can potentially interface with any optimizer
you see fit).
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Chapter 5

The BinaryFile and ArchiveFile classes

Design: Cristina, Mike; Documentation: Cristina, Mike; Implementation: Mike [c.1997]

The term ”loader” is generally used to describe a system program used by an operating system (OS) to load
a binary executable file onto memory to execute it. We have a class called ”BinaryFile” that can be used
by application programs to load other binary files for purposes other than directly executing them. (The
class was formerly called ”Loader”, but this contrasts with the use above). In other words, BinaryFile is
a decoder of binary-file formats; it reads a binary executable file and stores its representation in memory,
providing functions to access the different parts of the binary file; such as code and data. It provides extra
functionality in the presence of dynamically linked-in procedures; binary-file formats such as ELF and PE
(Portable Executable) support them. In this case, the BinaryFile interface provides a way of determining if a
procedure address is an address for a dynamically linked-in procedure, and if so, it allows access to its code
and data. In this regard, the BinaryFile class is more of a dynamic linker/loader.

Binary files vary widely in internal organisation and structure, nevertheless, they provide similar kinds of
information in order to run the program. The main components of a binary file are its code and its data;
everything else is a representational structure to access this information. By means of the BinaryFile and
ArchiveFile classes, we attempt to provide a uniform interface for the loading and usage of the information
stored in binary files.

Some binary file of interest are collected in library or archive files. The members of the archive are usually
object (.o) files; there is usually a symbol table associated with the archive so that the member containing
the symbol can readily be found. Archive files are obviously used rather differently than other binary files
(executable and object files), despite attempts to unify them (e.g. in the elflib library). Therefore, functions
for using archive files are separated into their own class, called ArchiveFile. (In the previous form, class
Loader had a function GetNextMember to move to the next member of an archive). When a member of the
archive is selected (by index, or procedure name, or file name), a reference to an instance of a BinaryFile
class is returned, and all the BinaryFile functions can be called (except for Load; the BinaryFile object comes
”preloaded”).

57
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5.1 Related Work

We briefly describe the two main pieces of related work in this area.

5.1.1 GNU’s Binary File Descriptor Library

GNU’s Binary-File Descriptor (BFD) Library (Cha91) is a package containing common routines that
applications can use regardless of their underlying binary-file format. The BFD library divides each specified
BFF into the front-end and the back-end. The front-end interfaces between the user and the BFD, while the
back-end provides a set of calls which the BFD front-end can use to decode and manage the object file. To
support a new BFF, the programmer needs to create a new BFD back-end and add it to the library.

BFD has its own binary representation for internal processing known as the canonical object file format.
When an binary file is opened, the front-end BFD routines automatically determine the format of the input
file. A descriptor is built in memory with information about which routines are to be used to access elements
of the binary file’s data structure. When the program wants information about the binary files, the BFD reads
from different sections of the file and processes them. Each BFD back-end will have routines to convert
section representations of the binary file to BFD’s internal canonical object-file format.

The BFD library is provided to the user as a library. This library is fairly large; the number of functions offered
in the front-end are exceptionally many. The BFD front-end was designed in mind to allow programmers to
be able to retrieve all types of information aboutany BFF; at least the existing ones at the time. Due to
its generality and bulkiness, it is difficult to use without spending a big overhead on learning how to use
it. Perhaps because it is too general, it often contain more information than is needed for particular system
applications.

5.1.2 SRL - A Simple Retargetable Loader

SRL, a simple retargetable loader, is a first attempt at developing a retargetable loader framework by means
of a simple BFF grammar (UC97). Three different environments, (x86,DOS,EXE), (x86,Windows,NE) and
(Sparc,Solaris,ELF), were used as the basis for the development and testing of SRL. The three environments
gave a good coverage of different BFFs currently in use by OSs for RISC and CISC machines.

The BFF grammar provides support for describing sections of the binary file, and to name different fields
from each section. Further, it provides support for structures which have been stored as a sequence of records
of a given type, e.g. the number of elements in the segment table on the NE (New Executable) format, by
means of an array construct – this construct clearly aids in the specification of BFFs.

The EBNF for this grammar’s syntax is provided in Figure 5.1. In the grammar,non-terminalsappear in
italics, terminals appear in normal fontface, “literal strings” appear with double quotes, andexamples
appear in courier. The start symbol for this grammar isBFFspec. Hence, the body for any BFF specification
is of the form:
spec=> format-def definfdefing load-info

SRL, the tool that implements the BFF grammar, was an attempt to demonstrate the benefit of using a
retargetable loader to build a machine-code manipulation tool. SRL was limited in a way by its simple
grammar which contained a small number of constructs. Nevertheless, the BFF grammar was suitable for
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BFFspec => fspecg.
spec => format-def definfdefing load-info
format-def => “DEFINITION” “FORMAT”

identfidentg “END” “FORMAT”
defin => “DEFINITION” ident

“ADDRESS” expression scope-def
“END” ident.

load-info => “FILEHEADER” ident
“IMAGESIZE” expression
“IMAGEADDRESS” expression

scope-def => ident type-expfident type-expg
type-exp => “SIZE” expressionj

“ARRAY” expression scope-def
“END” ident

expression => “(” ident operator expression“)”
j ident operator expressionj �

operator => “+” j “-” j “*” j “/” j “ ’̂’ j “%”
ident => “a”..“z” j “A”..“Z” f“a”..“z” j

“A”..“Z” j “ ”g

Figure 5.1: Binary-File Format Grammar

specifying most of the sections of the ELF, EXE and NE formats. SRL generates a C code in the form of a
header file (.h) and an implementation (.c) file from each parsed file written in the BFF language. The header
file contains the data structures needed for the storing of information for a particular binary file format, and
the implementation file provides functions for the loading of a file using the structures defined in the header
file.

5.1.3 Our Approach

Our approach is different to the two previous ones, as it is more specific and less retargetable. We provide
an API (via the BinaryFile class) that users must adhere to, but we do not generate code for it automatically
from specifications, nor do we provide for a complete interface suitable for a large number of binary file
formats. In contrast, we provide an object oriented abstraction which provides the base functionality of a
loader (regardless of binary file format) in an abstract class, and loaders for specific binary file formats (e.g.
EXE or ELF) inherit from this abstract class and provide new functionality specific to their format. Similarly,
there is an ArchiveFile class that defines functions for using archive files, and there are classes derived from
this class for the various types of archive file.

5.2 Binary-file formats

We briefly describe the abstract format of a binary file. Users not familiar with the internal representation of
binary files who want more detailed information may refer to the following literature: (Dun88, Sun94a, Mic)
and the web sitehttp://www.wotsit.demon.co.uk which has a compendium of binary file formats.
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The general structure of a binary file format (BFF) can be seen to be made up by the following abstraction:

� A header containing general information about the program and information needed to access various
parts of the file.

� A number of sections holding code and data (raw data).

� A relocation table containing offsets of relocatable addresses.

� A symbol table containing information about symbols of the program.

Each of thesepartsis given a name respectively:header, sections, relocation tableandsymbol table. Further,
some binary files such as ELF allow for more than one linked segment to be stored in the one physical file or
archive; we refer to these segments asmembersof the archive.

Most BFFs can be mapped to the general model in Figure 5.2; however, parts are not necessarily stored in
that order. Information regarding the location of sections, symbol tables, etc is usually identified within the
file header. Nevertheless, some BFFs do not distinguish between these structures; in the DOS EXE format,
the file header contains information about the relocation table, but there is no information about where the
symbol table is stored (if any), and where data is; there is only one section that embodies all code, data
and symbol table information. In all cases though, the program’s header will contain enough information to
determine the entry point (i.e. the start of the program’s code) in the file.

File header

Relocation Table

Symbol Table

Section 0

Section 1

...

Section n-1

...

Symbol table

BFF 0

BFF 1

BFF n-1

...

BFF Archive File

Figure 5.2: BFF and archive file abstraction

The current development domain for our tools is based on the Solaris ELF (Sun94a) format, the DOS EXE
format (Dun88, Mic), the Windows (16-bit) NE (Dun88, Mic) format, and the Palm OS .prc format (Ts’00).
Archive files are based on the Unix ar(4) file format. These formats vary in their degree of complexity and
information stored: the DOS EXE is very simple and limited in structure, whereas the Solaris ELF format
is the most complex, while the Windows NE is somewhere in between. The amount of information stored
for a simple “Hello world” program varies from format to format. The DOS EXE format contains a file
header, a relocation table and a single image for both code and data. The Windows NE version contains
most DOS EXE’s information plus additional details such as the resource table, entry table, etc. The ELF
format contains even more information; sections within the object file hold information used in dynamic



5.3 The BinaryFile Object Hierarchy 61

linking: code, data, relocation tables, symbol tables, dynamic linking information, etc. The size in bytes
of the binaries for (x86,DOS,EXE), (x86,Windows,NE) and (Sparc,Solaris,ELF) are 6432, 16384 and 5280
respectively. It can clearly be seen that although the latter two files are dynamically linked, their sizes are not
necessarily smaller than the static (first) case. This is due to the small nature of the example program and the
inclusion of the DOS EXE header information within the NE format.

5.3 The BinaryFile Object Hierarchy

BinaryFile and ArchiveFile are abstract classes; that is, they cannot be instantiated directly. The user actually
uses classes such as ElfBinaryFile or ExeBinaryFile, which are derived from the abstract BinaryFile class
(see Figure 5.3).

BinaryFile

ExeBinaryFileElfBinaryFile PEBinaryFile

ArchiveFile

ExeArchiveFileElfArchiveFile PEArchiveFile

Figure 5.3: BinaryFile Class Hierarchy

The user will call functions likeLoad that are implemented differently in the various derived classes.
Some functions likeSymbolByAddress are implemented trivially by the BinaryFile class (e.g. to always
return 0), and this behaviour is overridden by derived classes which do the real work. Even functions like
GetNumSymsthat are implemented by the BinaryFile class will return information that will be dependent
on the instantiated class.

5.4 Interface Functions to Construct and Use a BinaryFile

The BinaryFile class and each of its parts (described in the abstract format description of a binary file in
section 5.2), are explained here in terms of interface functions provided for accessing information in those
parts.

5.4.1 Construction and Loading

The BinaryFile class provides constructor and destructor functions, plus a function to load the binary file.
The loader is an abstract class and hence it does not export any types.

BinaryFile: BOOL ! BinaryFile . This is the constructor. The single BOOL argument is used to indicate
whether the object to be constructed is to be an Archive member; it defaults to false. Users should not
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use this parameter, but should use the ArchiveFile class instead (see section 5.6). The BinaryFile object
is created without a file loaded; use the Load() function below to actually load a file.

Load: (BinaryFile x STRING) ! BOOL . Load the given file and store its information in a BinaryFile
object. It returns whether the function was successful or not. If there is a problem loading the file, e.g.
the file name does not exist or there is not enough memory, a message is printed on standard error.

UnLoad: BinaryFile ! nil . Deallocates the BinaryFile object. All information about the file (e.g.
SectionInfo, pointers to section data) are invalid after calling this function.

5.4.2 Sections

For each section in the binary file, the following information is collected in a SECTIONINFO type:

� Section name: the name of the section, if any. Formats like ELF support names for each section, such
as.text and.bss ; formats such as EXE do not provide such information and hence we follow the
convention of naming them_header and.text for the header of the file and the relocatable image
respectively.

� Native address: address where the section is logically loaded. For example, all EXE files are loaded at
address 0x100000, representing 10:0000. ELF files are loaded at the address specified in the elf file,
typically 0x10000 for code and 0x20000 for data. The native address is typically used by diassemblers
to give a useful address in listing.

� Host address: the host address is where the section is actually located in virtual memory, i.e. this is a
pointer to the first byte in the section.

� Section size: size of the section in bytes.

� Number of entries: if the section is the equivalent to an array of entries, the size of each entry is given.

� bCode: This flag is set if the section contains executable instructions.

� bData: This flag is set if the section contains data. It is possible for both bCode and bData to be set at
the same time.

� bBss: This flag is set if the section is not initialised, i.e. it is for reserving space only.

� bReadOnly: This flag is set if the section is read only, i.e. it cannot be written to.

For example, with the ElfBinaryFile class, the section whose name is_rodata would have the flags bData
and bReadOnly set. A disassembler can find all the sections worth disassembling by searching through all
the sections for those with the flag bCode set.

Sections provide the following functions to determine the number of sections available in the file and access
its information:

GetNumSections: BinaryFile! int . Given a BinaryFile object, returns the number of sections that it
contains.

GetSectionInfo: (BinaryFile x int) ! SECTIONINFO . Given an BinaryFile object and a section index,
returns the information for that section. Note that sections are indexed from 1.



5.4 Interface Functions to Construct and Use a BinaryFile 63

5.4.3 Symbol Table

Symbol tables are often used for dynamic linking purposes, where the names of dynamically linked-in
routines are stored. However, sometimes program symbols are also stored in a symbol table, whether in
the same or a separate table to that of dynamic linking.

The symbol table offered by the BinaryFile class is very simple; there are three types of information stored
for each entry:

� Symbol name: the symbol’s name in the table. Type: STRING.

� Symbol address: the symbol’s native address. Type: ADDRESS.

� Symbol size: the size in bytes associated with the symbol. Type: int.

The symbol table offers three access functions to its contents:

SymbolByAddress: (BinaryFile x ADDRESS)! STRING . Given a native address, returns the symbolic
name associated with the given native address. This function is useful when getting names for
procedures at call locations.

GetAddressByName: (BinaryFile x STRING)! ADDRESS . Given the name of a symbol, returns the
native address associated with it. If the symbol is inexistent in the symbol table, an address of 0 is
returned.

GetSizeByName: (BinaryFile x STRING)! int . Given the name of a symbol, returns the size in bytes
of the symbol, or 0 if inexistent.

Not all BinaryFiles provide the ByName() functions, because in some cases the binary file format does not
support it. If the functions are not supported, they will always return 0.

Some BinaryFile classes (e.g. ExeBinaryFile) do not implement a symbol table.

5.4.4 Relocation Table

Relocation tables provide information on address that need to be relocated prior to execution of the program.
The advantage of knowing which addresses are relocatable is that when decoding a machine instruction that
takes an immediate operand, we can check if this operand is an address or not. This provides us with useful
information that is unavailable otherwise.

The functions provided to access the relocation table are:

IsAddressRelocatable: ADDRESS! BOOL . Given a native address, returns whether the address is in
the relocation table or not.

GetRelocatedAddress: ADDRESS! ADDRESS . Given a native relocatable address, returns the relo-
cated address for it. This function is tentative and not implemented as yet; RISC machines require
many bit manipulations, and this will probably require a different interface function.
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With object files, relocations are often associated with symbols. Sometimes, (e.g. with GCC), intramodule
function calls that could be resolved at compile time are left until link time, so the call has a relocation entry
with an associated symbol table entry (often not the same symbol table as the main symbols). To make use
of this, the BinaryFile provides this function:

GetRelocSym: ADDRESS! STRING . Given a native address, returns a symbol associated with the
relocation at that address, if any. If there is no symbol, the function returns 0.

5.4.5 Program Headers

Application writers normally like dumping information about the headers of the program in order to determine
format-specific information that is not otherwise accessible via the loader interface. For example, a loader
may have a verbose option to display this type of information.

Unfortunately, it is difficult to provide a clean interface for such low level details. (The previous version of
the loader attempted this, but it was not satisfactory). Therefore this version of BinaryFile provides just one
function, for dumping all the headers in a verbose manner:

DisplayDetails: BinaryFile x STRING x FILE* ! BOOL . Given a BinaryFile class and the name of the
file, sends a verbose listing of the file to the file indicated by the FILE* parameter. The STRING
parameter is merely to provide the first line of output, which is typicallyTypeheader forFilename.
The FILE* parameter can be a special stream such asstdio , or a file opened with thefopen library
function.

The addresses referred to above are host addresses, i.e. pointers to actual loaded data. (By contrast, native
addresses are those where part of a file is expected to be loaded in the native operating system. Headers have
no native address.

In the ElfBinaryFile, more specific functions are provided to access different named headers, such as
GetProgramHeader() and GetSectionHeader().

Given the address of a header, an application writer would have to know what the contents of the header looks
like, and would have to write the dump function. We do not consider this type of detail should be included in
our BinaryFile class.

5.4.6 Analysis Functions

The following functions are provided for extra functionality required under binary translation, they are:

GetInitialState: BinaryFile ! LIST<(REGxADDRESS)> . Returns a list of registers and their initial
value (normally an address) prior to program execution.

GetEntryPoints: BinaryFile ! LIST<ADDRESS> . Returns a list of native addresses which are entry
points into the program. The first address is always the initial value of the program counter (PC).

The following function is not implemented at present. It occured to me (Mike) that the mapping from
Native to Host address may vary for each section; it doesn’t in elf, but it may for other sections. Let’s
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leave this one out unless we really need it. It is easy to implement anyway: just use the difference
between native and host addresses in the section info.

NativeToHostAddress: (BinaryFile x ADDRESS)! ADDRESS . Given a native address, returns its
equivalent host address. This function allows access to a block of bytes, since a native address is
just a pointer.

IsDynamicLinkedProc: (BinaryFile x ADDRESS) ! BOOL . Given a native address, returns whether
the address is that of a dynamically linked-in procedure or not in this BinaryFile class.

LoadDynamicLinkedProc: BinaryFile ! ADDRESS! BOOL . Given the address of a dynamically
linked-in procedure (i.e. the target of a call instruction that calls such a function, which will usually
be an address in the Program Linkage Table), loads the appropriate source library file (if needed) to
resolve this call. It returns its success or otherwise, and the native address where the procedure is
loaded.

There will have to be environment variables to specify what path(s) should be searched to locate the
appropriate library. These would be called
X86 LIBRARY PATH
SPARCLIBRARY PATH
and so on. For example, if an X86 source program calls theatan function, the program’s dynamic
section specifies the DTNEEDED libraries as ”libc.so.1” and ”libm.so.1”, and the environment
variable X86LIBRARY PATH is set to ”/var/lib/x86:/usr/lib/x86”, then the following libraries will
be searched for theatan function:
/var/lib/x86/libc.so.1, /var/lib/x86/libm.so.1, /usr/lib/x86/libc.so.1, /usr/lib/x86/libc.so.1
Note that this function is only needed if/when we start supporting translations of libraries; at present
we assume a native library is available. Hence this function is not implemented at present.

5.5 Notes on Individual BinaryFiles

At present, the ElfBinaryFile is by far the most complete. It is the only version that implements DisplayDe-
tails(). The need to use ElfDetails.cc at all, and all the verbose dumping code, can be avoided by defining
NODETAILSin the make.

The ExeBinaryFile class does not handle symbols (e.g. Microsoft Codeview or Borland) as these are stored
in different ways by different EXE compilers.

ElfBinaryFile implements symbols, both by address and by name. The table of symbols looked up by value
comes from the.symtab section, if present, otherwise from the.dynsym section.

When looking up symbols by name, the.hash section is used. This section refers to the.dynsym section,
not the.symtab section (if present). Thus, it is possible to look up local (non dynamic) symbols by value,
but not by name. This is a limitation of the way that elf files are made. ElfBinaryFile implements the symbol
size field of the SYMVALUE passed to ValueByName().

Some library files (e.g. libstdc++) have silly dynamic symbol table entries (that they don’t define), with a
symbol type of STTNOTYPE. Symbols of this kind are treated as if they don’t exist in the symbol table (i.e.
ValueByName() returns 0 for these).
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5.6 Interface Functions to Construct and use an ArchiveFile

The ArchiveFile class and each of its parts (described in the abstract format description of a binary file in
section 5.2), are explained here in terms of interface functions provided for accessing information in those
parts.

ArchiveFile: nil ! ArchiveFile . This is the constructor; there are no arguments. The object is created
without a file being loaded; use the Load function below to load an archive file.

Load: STRING ! BOOL . Loads the archive file whose name is given. Returns false if the file could not
be found, not opened, or it was not an archive file. Messages may be displayed on standard error.

UnLoad: ArchiveFile ! nil . Unloads the archive file, and any members that may have been loaded and
not yet unloaded. All information about the archive file and member files are invalid after calling this
function.

GetNumMembers: ArchiveFile! int . Returns the number of members, not including any special mem-
bers that may exist merely for administrative purposes (e.g. the empty members in elf archives that
hold the symbol table).

GetMember: ArchiveFile x int ! BinaryFile* . Given an index (0 for first, etc), constructs, loads, and
returns a pointer to a BinaryFile object for that member. The binaryfile object comes pre-loaded; the
user should not call the Load function for the returned member, but should call UnLoad when done
with the member object. In the case of errors, a NULL pointer is returned.

GetMemberByProcName: ArchiveFile x STRING! BinaryFile* . Similar to the above function, except
that the relevant member is selected by procedure name, e.g. ”arctan”.

GetMemberByFileName: ArchiveFile x STRING! BinaryFile* . Similar to the above function, except
that the relevant member is selected by the name of the archive member (this will usually be an object
file without an explicit path, e.g. ”transcend.o”).

GetMemberFileName: ArchiveFile x int ! STRING . Given a member index, return the name of the
archive member.

Many of the functions above presume some knowledge of the contents of the archive, e.g. the file name of
the members, or symbols in those members. There are at present no functions to allow the user to browse
these items.

5.7 Example Code

Examples are often worth a thousand words. Here are two examples on how to use the BinaryFile and derived
classes.
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5.7.1 Example 1

Here is a complete, though simple, program to use the ElfBinaryFile class. It simply iterates through the
sections of the file, and counts how many sections contain code (i.e. have the STCODE flag set).

#include <stdio.h>
#include "ElfBinaryFile.h"

int main(int argc, char* argv[])
{

ElfBinaryFile L;
int iCnt = 0;

if (!L.Load(argv[1])) return 1;
int n = L.GetNumSections();
PSECTIONINFO pSect = L.GetSectionInfo();
for (int i=0; i < n; i++)

if (pSect[i].bCode) iCnt++;
printf("Part %d has %d code section(s)\n", iPart, iCnt);
L.UnLoad();
return 0;

}

This can be compiled as follows (assuming that the above source is insample.cc ):

gcc -o sample sample.cc BinaryFile.cc ElfBinaryFile.cc ElfDetails.cc
SymTab.cc -lelf -lstdc++

The"-lelf" is because ElfBinaryFile requires the elf library; other versions of the loader would probably
not need any libraries other than the standard template library. The results are:

% sample sample
Part 1 has 4 code section(s)

% sample /usr/lib/libelf.a
Part 1 has 1 code section(s)
Part 2 has 1 code section(s)
...
Part 42 has 1 code section(s)

5.7.2 Example 2

The following example dumps theexit function (if present) of the given input file. Assume the following
code is in file dumptext.cc.
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#include "ElfBinaryFile.h"

int main(int argc, char* argv[])
{

ElfBinaryFile L;
SYM_VALUE v;
PSECTIONINFO pText;

if (!L.Load(argv[1])) return 1;

if (L.ValueByName("_exit", &v))
{

pText = L.GetSectionInfoByName(".text");
if (pText)
{

int n = v.iSymSize;
printf("Function _exit (%d bytes):\n", n);
printf("%08X: ", pText->uNativeAddr); // Address
// Compute offset from start of text sec-

tion to this function
dword offset = v.uSymAddr - pText->uNativeAddr;
dword p = pText->uHostAddr + offset; // Start of function
for (int i=0; i < n; i++)

printf("%02X", *((unsigned char*)p++));
printf("\n");

}
}
else printf("No function ’_exit’\n");
return 0;

}

To compile it, at the command line type:

gcc -g -o dumpexit dumpexit.cc BinaryFile.cc ElfBinaryFile.cc SymTab.cc
ElfDetails.cc -lelf -lstdc++

Sample output:

% dumpexit /usr/lib/libc.so.1
Function _exit (8 bytes):
000169A0: 8210200191D02008
%

5.7.3 Example 3

The following example loads the archive ”/usr/lib/libm.a” and displays the load address for the ”sin” function.
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#include <stdio.h>
#include "ElfArchiveFile.h"
void main()
{

ElfArchiveFile af;
if (!af.Load("/usr/lib/libm.a"))
{

printf("ArchiveFile could not load file\n");
return 1;

}

printf("There are %d mem-
bers in this archive\n", af.GetNumMembers());

printf("First 5 file names:\n");
for (int i=0; i < 5; i++)
{

printf("%s\n", af.GetMemberFileName(i));
}

BinaryFile* pm;
printf("Object for function ’sin’ is at %p\n",

pm = af.GetMemberByProcName("sin"));
printf("Address of sin is %p; size %d\n", pm-

>GetAddressByName("sin"),
pm->GetSizeByName("sin"));

pm->UnLoad();

af.UnLoad();
}

To compile, (assuming the example code is called example3.cc):

gcc -g -DUNIX -o example3 example3.cc BinaryFile.cc ElfBinaryFile.cc
SymTab.cc ElfDetails.cc ArchiveFile.cc ElfArchiveFile.cc -lelf -

lstdc++

5.7.4 Compiling and Linking

Applications using the BinaryFile class need to compile the filesBinaryFile.cc and ExeBinary-
File.cc (or ElfBinaryFile.cc , PEBinaryFile.cc , etc). They should link the resultant object
files with the application. The final executable must be linked with the standard template library, e.g. ”-
lstdc++” for the GCC compiler. Elf versions also require the elf library, i.e. ”-lelf” for GCC.

In addition, BinaryFile classes implementing symbol tables (at present, this is only the ElfBinaryFile class)
also need to compileSymTab.cc which depends onSymTab.h , and should link withSymTab.o .
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For the ElfBinaryFile class, unlessNODETAILS is defined in the make (with-DNODETAILS), the file
ElfDetails.cc must also be compiled and the resultantElfDetails.o linked.

In those application source files using the BinaryFile class, the appropriate header file (but notBinary-
File.h itself) should be included. For example, if using ElfBinaryFile:

#include "ElfBinaryFile.h" // Definitions for the ElfBinaryFile class

An example makefile fragment:

OBJS = myfile1.o ... BinaryFile.o ElfBinaryFile.o SymTab.o ElfDetails.o

ElfBinaryFile.o: BinaryFile.o ElfBinaryFile.h ElfDetails.h

SymTab.o: SymTab.cc SymTab.h

BinaryFile.o: BinaryFile.h



Chapter 6

Decoding of Machine Instructions –
Syntax Parsing

Design: Cristina; Documentation: Cristina [Feb 00]; Implementation: Cristina, Mike

The New Jersey Machine Code (NJMC) toolkit allows users to write machine descriptions of assembly
instructions and their associated binary representations using the Specification Language for Encoding and
Decoding (SLED). SLED provides for compact specifications of RISC and CISC machines; with 127, 193
and 460 lines of specification for the MIPS, SPARC and Pentium respectively.

The toolkit also provides extra support for encoding of assembly to binary code, and decoding of binary
to assembly code. For decoding purposes, the toolkit provides amatchingstatement which resembles the C
switch statement. The toolkit generates C and Modula-3 code from matching statements, hence automating
part of the disassembly process. The generated code can be integrated as a module of a binary-decoding
application. This chapter briefly describes the SLED language, its usage for decoding of machine instructions,
and the way we have optimised the the code that the toolkit generates.

6.1 SLED and Decoding of Machine Instructions

This section provides a brief description of the SLED language in order to familiarize the reader with the
key concepts of the language. Readers familiar with the toolkit and its usage should skip this section. A full
description of the SLED language is provided in (RF97a). A complete description of the usage of the toolkit
for both encoding and decoding purposes is available in the reference manual (RF94a).

6.1.1 SLED Concepts

SLED introduces the following concepts to describe binary machine instructions:

71
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tokens represent names for a sequence of bits. Tokens are commonly used to represent the bits of one
machine instruction or of immediate operands. A token is given a size, representing the number of bits
in the token.

fields describe the parts of a token in terms of their name and bit range. Fields can use little or big endian
conventions.

patterns describe the possible values in the fields of a token, and names them. Pattern names can also refer
to groups of patterns.

constructors describe the mapping between binary and a symbolic assembly-like representation by associ-
ating a list of operands with a pattern.

equations describe simple mathematical equations which place constraints on the values of fields used in
constructors.

relocatables describe operands in constructors that denote relocatable addresses.

A partial example of the SPARC SLED specification is given in Figure 6.1. Thefields keyword describes
the specification of a token namedinstruction of size 32 bits. The fields of that token include:op , rd ,
andrs1 . Each field denotes a sequence of bits of theinstruction token it refers to. For example, the
op field refers to bits 30 and 31, and thers1 field refers to bits 14 to 18. By default, big-endian convention
is used.

The firstpatterns keyword defines names for 4 patterns:TABLE F2, CALL, TABLE F3, andTABLE F4.
Each of these patterns bind to a value of theop field: TABLE F2 binds to 0,CALL binds to 1,TABLE F3
binds to 2, andTABLE F4 binds to 3. In this way, the 4 main tables described in the SPARC manual (spa92a)
can be identified. The secondpatterns keyword defines names for each of the 64 values that the
combination of theTABLE F3 pattern (i.e.op equal to 2) and the fieldop3 can take. Entries labelled
denote entries without a name; i.e. entries that are not defined in the manual. The thirdpatterns keyword
defines the namearith to be any of the patterns in the right-hand side of theis keyword; namelyADD,
ADDcc, TADDcc, etc.

The firstconstructor keyword defines the constructorreg or imm to be one of two modes: immediate
(imode ) or register-based (rmode ). The former mode binds the value of thei field to 1, and the latter
to 0. The former mode returns the 13-bit valuesimm13 signed-extended (the! denotes sign-extension),
whereas the latter mode returns the value of thers2 field (a register number). The secondconstructor
keyword defines the constructorarith to require the fields and constructorsrs1 , reg or imm, andrd
(which stand for first register operand, second register or immediate operand, and destination register). In
this definition, it is implied that the bit pattern to be matched is that of the patternarith and the fieldsrs1 ,
reg or imm, andrd . In other words, this constructor defines all the arithmetic instructions for the SPARC.
The lastconstructor keyword defines the constructorcall , which takes a relocatable address (denoted
by reloc ). The relocatable address needs to satisfy the equationreloc = L + 4 * disp30! . That
is, the relocatable address is equivalent to the sign-extended (! ) 30-bit displacement (disp30 ) shifted left
by 2 (i.e. a 32-bit address where the least two significant bits are 0) plus the current displacement (L). The
value ofL is obtained at runtime, by checking the address at which theCALL bit pattern is being decoded
from. Thecall constructor is defined as the bit pattern combination of theCALL pattern and thedisp30
field.
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fields of instruction (32)
inst 0:31 op 30:31 disp30 0:29 rd 25:29 op2 22:24 imm22 0:21 a 29:29 cond 25:28
disp22 0:21 op3 19:24 rs1 14:18 i 13:13 asi 5:12 rs2 0:4 simm13 0:12 opf 5:13
fd 25:29 cd 25:29 fs1 14:18 fs2 0:4 rs1i 14:18 rdi 25:29

patterns
[ TABLE_F2 CALL TABLE_F3 TABLE_F4 ] is op = {0 to 3}

patterns
[ ADD ADDcc TADDcc WRxxx

AND ANDcc TSUBcc WRPSR
OR ORcc TADDccTV WRWIM
XOR XORcc TSUBccTV WRTBR
SUB SUBcc MULScc FPop1
ANDN ANDNcc SLL FPop2
ORN ORNcc SRL CPop1
XNOR XNORcc SRA CPop2
ADDX ADDXcc RDxxx JMPL
_ _ RDPSR RETT
UMUL UMULcc RDWIM Ticc
SMUL SMULcc RDTBR FLUSH
SUBX SUBXcc _ SAVE
_ _ _ RESTORE
UDIV UDIVcc _ _
SDIV SDIVcc _ _ ] is TABLE_F3 & op3 = {0 to 63 columns 4}

patterns
arith is ADD | ADDcc | ADDX | ADDXcc | TADDcc | TADDccTV |

SUB | SUBcc | SUBX | SUBXcc | TSUBcc | TSUBccTV |
MULScc | UMUL | SMUL | UMULcc | SMULcc |
UDIV | SDIV | UDIVcc | SDIVcc | SAVE | RESTORE

constructors
imode simm13! : reg_or_imm is i = 1 & simm13
rmode rs2 : reg_or_imm is i = 0 & rs2

constructors
arith rs1, reg_or_imm, rd

relocatable reloc
constructors

call reloc { reloc = L + 4 * disp30! } is L: CALL & disp30

Figure 6.1: Partial SLED specification for the SPARC

6.1.2 Decoding Using the New Jersey Machine Code Toolkit

The NJMC toolkit uses matching statements to drive the decoding of a binary instruction stream. A matching
statement resembles a Cswitch statement, except that only one arm can be matched (the first one to be valid
in the instruction stream). A matching statement is identified by thematch keyword. Arms of the match
are identified by the| symbol, and the left and right-hand sides of the arm are separated by the=> symbol.
Figure 6.2 provides an EBNF-like specification of the matching statement. In that specification,pc stands
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for the address to the instruction stream to be decoded,patternstands for the SLED pattern to be matched
(including parameters),equationstands for any valid SLED equation that needs to be valid in conjunction
with a particular pattern, andcodestands for the C or Modula3 code that the user wants to associate with
the matched pattern. The keyword[name] is used to return the SLED base pattern name for the matched
pattern.

match pc to
f| pattern [fequationsg] [ [name] ] => codeg
[else code]
endmatch

Figure 6.2: Matching Statement EBNF Specification

For example, if the patternsadd andsub are described in a SLED specification for a particular machine,
then the following matching statement displays those names when matched at the binary instruction stream
pointed to by the address inpc :

match pc to
| add (rd, rs1, rs2) => printf ("add\n");
| sub (rd, rs1, rs2) [name] => printf ("%s\n", name);
| else printf ("other instruction\n");
endmatch

The “arguments” to the constructor are names that match the field names defined with each constructor (in
order of specification) and return the numerical value of that field. Hence, in the above example,rd , rs1
andrs2 are integers. An application writer may want to give special semantics to such returned integers;
for example, displaying the name of the register instead of the integer representation of the register. If we
assume we have an array of register names calledreg , the above example can be re-written to also display
the names of the arguments:

match pc to
| add (rd, rs1, rs2) => printf ("add %s, %s, %s\n", reg[rd], reg[rs1], reg[rs2]);
| sub (rd, rs1, rs2) [name] =>

printf ("%s %s, %s, %s\n", name, reg[rd], reg[rs1], reg[rs2]);
| else printf ("other instruction\n");
endmatch

Matching files are processed by the toolkit to generate C or Modula-3 code that implements the decoding of
the instructions in thematch statement.

Version 0.5 of the NJMC toolkit makes available an option to partly automate the generation of a matching
statement for a particular SLED specification. The option-dis generates matching statements for the given
SLED file(s) and stores them in the filename provided:

-dis filename sledfile(s)
In practice, the generated code needs to be modified in order to add relevant procedure names for each main
matching statement, as well as remove duplicated arms from the matching statements. Note that this option
is not currently available in the ML version of the toolkit.
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Decoding of RISC Machine Instructions

Some of the characteristics of RISC machines include the orthogonality of their instruction sets and the
relatively small number of instructions. Further, the size of each instruction is fixed and is equivalent to the
word size of the machine. These characteristics make the writing of a SLED spec and decoder easier than for
a CISC instruction set.

Figure 6.3 contains a snippet of code for the SPARC decoder; this code was written by hand rather than
generated automatically. The main decoding routine isdecode instr , which decodes one instruction
per invocation. Thepc argument points to the address in memory where the instruction stream to be
decoded is located at. TheuNativeAddr argument contains the native address where the Elf Loader would
be expected to load the instruction stream, and thebuf argument is a buffer where the textual assembly
representation of this instruction will be stored. The code in this procedure is straight forward, except for the
target address of branches and calls. Other than the type nameADDRESS, all names in uppercase represent
macros used as a shorthand for invoking functions or accessing arrays of strings.

Constructors for branches and calls are defined in the SLED spec as using relocatable addresses. Therefore,
the toolkit generates code to return the relocated target address rather than the original offset displayed in the
instruction. However, due to the fact that the toolkit is using thepc address as the address to relocate from,
rather than theuNativeAddr which it does not know about, the returned target address is wrong; hence the
use of a simple equation to transform the target address to the right one.

The functionsdis addr anddis roi implement the matching of an effective address, and a register or
immediate operand, respectively. In the former function, an effective address is defined as being one of 4
cases, namely, indirect, indexed, absolute, or displacement. In the latter function, a register or immediate is
either of those two options, which can also be matched against the SLED spec. Both functions return a buffer
with the assembly version of the bits matched.

The toolkit provides support for generating the names of registers based on the names used for patterns in
the SLED spec. In a SLED spec, any name values given for fields with thefieldinfo keyword can be
retrieved automatically by the toolkit in an array of strings. The command line option

-lc-pat-names
generates a header and data declaration file (.h and .c) with the names of all strings found in a SLED spec. In
our previous example, the names forrs1 names andrd names were generated by the toolkit in a separate
file and imported into the decoder (aka matcher) file.

In order for the toolkit to fetch instructions from the bit stream addressed bypc in the previous example, a
fetch routine needs to be provided by the tool writer. In the case of SPARC, all fetches will be 32 bits as all
instructions are 32 bits, hence afetch word function needs to be made available. Suitable code for such a
function is:

static ADDRESS fetch_word(ADDRESS lc) {
return *(ADDRESS *)lc;

}

whereADDRESSis a 32-bit type. Information about the name of this function, the type of the address field,
and address conversions need to be specified in an auxiliary spec. For the SPARC decoder, the interface to
the instruction stream is as follows:
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#define RD (rd_names[rd])
#define RS1 (rs1_names[rs1])
#define ROI (dis_roi(roi))
#define ADDR (dis_addr(addr))

char *dis_addr(ADDRESS lc) {
static char buf[512];
match lc to
| indirectA(rs1) => return RS1;
| indexA(rs1, rs2) => sprintf(buf, "%s+%s", RS1, RS2);
| absoluteA(i) => sprintf(buf, "%d", i);
| dispA(rs1, i) => sprintf(buf, "%s%s%d", RS1, (int)i < 0 ? "" : "+", i);
endmatch
return buf;

}

char *dis_roi(ADDRESS lc) {
static char buf[512];
match lc to
| imode(i) => sprintf(buf, "%d", i); return buf;
| rmode(rs2) => return RS2;
endmatch

}

void decode_instr (ADDRESS pc, ADDRESS uNativeAddr, char *buf)
{

match pc to
| NOP => sprintf(buf, "nop");
| decode_sethi(imm22, rd) =>

sprintf(buf, "sethi %%hi(%s), 0x%x", imm22, RD);
...
| alu (rs1, roi, rd) [name] =>

sprintf(buf, "%s %s, %s, %s", name, RS1, ROI, RD);
| branchˆa (tgt, a) [name] =>

sprintf(buf, "%s 0x%08x (%d) ; a = %d", name,
tgt-pc+uNativeAddr, tgt-pc, a);

| call (tgt) => sprintf(buf, "call 0x%08x", tgt-pc+uNativeAddr);
| JMPL (addr, rd) [name] =>

sprintf(buf, "jmpl %s, %s", ADDR, RD);
...
| inst = n => sprintf(buf, ".word 0x%08x", n);
endmatch

Figure 6.3: Snippet Code for a SPARC Decoder

address type is "unsigned"
address to integer using "%a"
address add using "%a+%o"
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fetch 32 using "fetch_word(%a)"

Norman believes that in order to get the right relocated address out of branches and calls, that theaddress
to integer option needs to be changed to something like this:

address to integer using "%a - uNativeAddr + pc"
In practice, this has not worked yet, and I have not tried it lately.

Decoding of CISC Machine Instructions

Amongst the characteristics of CISC machines are the lack of orthogonality in their instruction sets, the
large numbers of machine instructions, and the variable length size for instructions. Further, assembly names
are often overloaded. These characteristics make the writing of SLED specs for CISC machines harder;
nevertheless, the language is expressive enough.

Figure 6.4 contains part of the SLED code for the x86 instruction set. The complexity of the instruction set
can be seen in terms of the number of differentfield definitions, the complex names used to distinguish
overloaded instruction names, and the variety of values available on the right hand side of constructors.
Further, the addressing modes (Eaddr andMem) account for 10 possible combinations.

The partial decoder in Figure 6.5 illustrates matching statements used to decode the x86 instruction set. The
code was mostly generated automatically by the toolkit, with manual editing performed in order to remove
redundant arms from the matching statements, separation of nesting of matching statements, and creation of
function prototypes. The matching statement fordecode instr makes use of the optional[deltaPC]
notation, the effect of which is to store the number of bytes that were parsed in thedeltaPC variable. This
is needed by a decoder of CISC instructions as the instruction length is variable and a multiple of 1 byte.
In the code provided, the address of the host instruction stream and that of the native address are given in
32-bit quantities, which means that 4 bytes can potentially be fetch, although any one particular instruction
may only be 1 or 2 bytes. We use the returneddeltaPC value to update the host pointer by the necessary
amount.

Characteristics of the generated code include the abstraction of the assembly print and file descriptor
used—asmprint andasmprintfd respectively. These can be defined in any suitable way in the tool
writer’s code; in our case, we defined them asfprintf and stdout respectively. The toolkit also
generates functions to print signed and unsigned integer values, dependeing on their size; for example,
print signed i8 to print an 8-bit signed integer. Functions to print registers may depend on the context
of the instruction; i.e. the register number may be that of a byte, 2-byte or 4-byte register, which equates to
different ascii representation of registers (e.g.AL or AX or EAX). In this case, the toolkit generates code to
print the decimal value of the register (i.e. 1, 2 or 4). I modified this function manually to display 32-bit
registers for disassembly purposes – this code is not correct for all cases and can be corrected by passing an
extra argument to the print function with the size of the register operand.

For CISC machines, the toolkit will need to fetch bits in different byte granularities. For x86, 1, 2 or 4 bytes
may need to be fetched at any point in time. This information, along with address information, is stored in
the instruction stream interface file, as follows:

fetch 8 using "getByte(%a)"
fetch 16 using "get2Bytes(%a)"
fetch 32 using "get4Bytes(%a)"
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fields of opcodet (8) row 4:7 col 0:2 page 3:3
sr4 3:5 sr16 0:2 r16 0:2 r8 0:2

fields of modrm (8) mod 6:7 reg_opcode 3:5 r_m 0:2
fields of I8 (8) i8 0:7

patterns
arith is any of [ ADD OR

ADC SBB
AND SUB
XOR CMP ], which is row = {0 to 3} & page = [0 1]

[ Eb.Gb Ew.Gw Gb.Eb Gw.Ew AL.Ib AX.Iw ] is col = {0 to 5}

patterns
arithI is any of [ ADDi ORi ADCi SBBi ANDi SUBi XORi CMPi ],

which is (Eb.Ib | Ew.Iw | Ew.Ib); reg_opcode = {0 to 7} ...

relocatable d a
constructors

Indir [reg] : Mem { reg != 4, reg != 5 } is mod = 0 & r_m = reg
Disp8 d[reg] : Mem { reg != 4 } is mod = 1 & r_m = reg; i8 = d
Disp32 d[reg] : Mem { reg != 4 } is mod = 2 & r_m = reg; i32 = d
Abs32 a : Eaddr is mod = 0 & r_m = 5; i32 = a
Reg reg : Eaddr is mod = 3 & r_m = reg
Index [base][index * ss] : Mem { index != 4, base != 5 } is

mod = 0 & r_m = 4; index & base & ss
Index8 d[base][index * ss] : Mem { index != 4 } is

mod = 1 & r_m = 4; index & base & ss; i8 = d
Index32 d[base][index * ss] : Mem { index != 4 } is

mod = 2 & r_m = 4; index & base & ss; i32 = d
ShortIndex d[index * ss] : Mem { index != 4 } is

mod = 0 & r_m = 4; index & base = 5 & ss; i32 = d
E Mem : Eaddr is Mem

constructors
arithˆ"iAL" i8 is arith & AL.Ib ; i8
arithˆ"iAX" i16 is arith & AX.Iw; i16
arithˆ"mrb" Eaddr, reg8! is arith & Eb.Gb; Eaddr & reg_opcode = reg8 ...
arithˆ"mrw" Eaddr, reg! is arith & Ew.Gw; Eaddr & reg_opcode = reg ...
arithˆ"rmb" reg8!, Eaddr is arith & Gb.Eb; Eaddr & reg_opcode = reg8 ...
arithˆ"rmw" reg!, Eaddr is arith & Gw.Ew; Eaddr & reg_opcode = reg ...
arithIˆ"wb" Eaddr, i8! is (Ew.Ib; Eaddr) & arithI; i8
arithIˆ"b" Eaddr, i8 is (Eb.Ib; Eaddr) & arithI; i8
arithIˆ"w" Eaddr, i16 is (Ew.Iw; Eaddr) & arithI; i16

Figure 6.4: Partial SLED Spec for the x86 Instruction Set

address type is "unsigned"
address add using "(unsigned)%a + %o"



6.2 Recovery of Jump Table Case Statements from Binary Code 79

address to integer using "%a"

And the user is required to provide the implementation for the functionsgetByte , get2Bytes and
get4Bytes .

6.1.3 Cost of Decoding Machine Instructions

Some experimentation in this area was done in 1998 in order to determine bottlenecks in the generated code
and store it in a different way. The work was never finished and neither Norman nor Cristina had the time to
make changes.

The current NJMC implementation for generating C code from matching files is to use a decision tree for all
options available in amatch statement. In these decision trees, every option is inline expanded. The tree is
then turned into a DAG and only at leaf nodes aregoto statements used. In the generated code,switch
statements are used for the different options in the decision tree.

The main problem for performance of the current generated code seems to be that the code is too large to fit
into the icache. This implies that there is too much inlining being done in the code. Possible optimizations
that can be done to reduce this penalty are:

� recognize common subexpressions and create procedures for them,

� convert some of theswitch statements into table-driven lookup statements, and

� choose an appropriate numbering scheme to eliminate the table lookup (e.g.�x�x or�x�x� 20 j 17)
in order to cheaply compute the equivalent table lookup.

In the case of SPARC, the table-driven implementation may look like a small decision tree (with 4 branches
for the main 4 cases, and one of them with extra branches), and decision tables for then decision trees
removed.

6.2 Recovery of Jump Table Case Statements from Binary Code

One of the fundamental problems with the analysis of binary (executable) code is that of recognizing, in
a machine-independent way, the target addresses of n-conditional branches implemented via a jump table.
Without these addresses, the decoding of the machine instructions for a given procedure is incomplete, leading
to imprecise analysis of the code.

The standard method of decoding machine code involves following all reachable paths from the entry
point (SCK+93, CG95). This method does not give a complete coverage of the text space in the presence of
indirect transfers of control such as indexed jumps and indirect calls. A common technique used to overcome
this problem is the use of patterns. A pattern is generated for a particular compiler to cater for the way in
which the compiler, or family of compilers, generate code for an indexed jump. This technique is extensively
used as most tools deal with a particular set of compilers; for example, TracePoint only processes Windows
binaries generated by the Microsoft C++ compiler (Tra97). In the presence of optimized code, patterns do not
tend to work very effectively, even when the code is generated by a compiler known to the pattern recognizer.
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In this section we discuss our technique for recovering jump tables and their target addresses in a machine
and compiler independent way. The technique is based on slicing and copy propagation. The assembly code
of a procedure that contains an indexed jump is transformed into a normal form which allows us to determine
where the jump table is located and what information it contains (e.g. offsets from the table or absolute
addresses).

The presented technique has been implemented and tested on SPARC and Pentium code generated by C,
C++, Fortran and Pascal compilers. Our tests show that up to 90% more of the code in a text segment can
be found by using this technique, when compared against the standard method of decoding. The technique
was developed as part of our resourceable and retargetable binary translation framework UQBT; however, it
is also suitable for other binary-manipulation and analysis tools such as binary profilers, instrumentors and
decompilers.

6.2.1 Compiler Code Generation for N-Conditional Branches

N-conditional branches were first suggested by Wirth and Hoare in 1966 (WH66, Wra74) as a useful
extension to the Algol language. An n-conditional branch allows a programming language to determine
one ofn branches in the code. This extension was implemented in Algol 68 in a form that allowed its use as a
statement or an expression. In other words, the result of thecase statement could be assigned to a variable.
This high-level statement has evolved to the well knownswitch statement in C and thecase statement in
Pascal, where labels are used for the different arms of the conditional branch, and a default arm is allowed,
as per Figure 6.6. The C code shows the indexed variablenumwhich is tested against the values in the range
2 to 7 for individual actions, and if not successful, defaults to the lastdefault action.

Although not commonly documented in compiler textbooks, compiler writers generate different types of
machine code for n-conditional branches. These ways of generating n-conditional branches are determined
by talking to compiler writers or reverse engineering executable code. Several techniques for generating n-
conditional branches from a compiler were documented in the 1970s and 1980s, when optimization for space
and speed was an important issue. The most common techniques are described here based on (Sal81).

The simplest way of generating code for an n-conditional branch is as alinear sequenceof comparisons
against each arm in the statement. This form is efficient for a small number of arms, typically 4 or less. A
more sophisticated technique is theif-tree, where the selection is accomplished by a nested set of comparisons
organized into a tree. The most common implementation is ajump table, which may hold labels or offsets
from a particular label. This implementation requires a range test to determine the membership of values on
the table. Although jump tables are the fastest method when there are many arms in the n-conditional branch,
jump tables are space-wise inefficient if the case values are sparse. In such cases, a search tree is the most
convenient implementation. When the arms of the n-conditional branch are sparse but yet can be clustered
in ranges, a common technique used is to combine search trees and jump tables to implement each cluster of
values (HM82, FH91). This section deals with the issue of recovering code from generatedjump tables, in
such a way that the target addresses of an indexed jump are determined.

For an n-conditional branch implemented using a jump table, an indexed table is set up with addresses or
offsets for each of the cases of the branch. The table itself is located in a read-only data section, or mixed in
with the text section. In the interest of efficiency, range tests for such jump tables need to be concise. The
most common way of doing both tests is as follows (Ber85):
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k <- case_selector - lower_bound
compare k with (upper_bound - lower_bound)
if unsigned_greater goto out_of_range
assertion: lower_bound <= case_selector <= upper_bound

If the case selector value is within the bounds of the upper and lower bounds, an offset into the jump table is
calculated based on the size of each entry in the table; typically 4 bytes for a 32-bit machine. Based on the
addressing modes available to a machine, either an indirect jump on the address of the table plus the offset,
or an indexed jump on the same values is generated. The machine then continues execution at the target of
the indirect/indexed jump.

Retargetable compilers also use these techniques. A brief description for the code generation of an indirect
jump through a jump table for a retargetable C compiler is given in (FH95) by the following specification:

if t1 < v[l] goto lolab ; l=lower bound
if t1 > v[u] goto hilab ; u=upper bound
goto *table[t1-v[l]]

Overall, compiler writers use a variety of heuristics to determine which code to generate for a given n-
conditional branch based on the addressing modes and instructions available on the target machine. It is also
common for a compiler to have more than one way of emitting code for such a construct, based on the number
of arms in the conditional branch and the sparseness of the values in such arms.

6.2.2 Examples of Existing Indexed Jumps in Binary Code

We present examples of Pentium and SPARC code that make use of jump tables. The examples aim to
familiarize the reader with a variety of ways of encoding an n-conditional branch in assembly code, as well
as to show the degree of complexity of such code. The assembly code for the examples was generated by
the Unix utility dis . This disassembler uses the convention of placing the destination operand on the right
of the instruction. The examples show annotated native Pentium and SPARC assembly code, and where
relevant, the address for the assembly instructions or the indexed table. The annotations were included in
these examples for ease of readability; they are not part of the produced disassembly.

The first two examples in Figures 6.7 and 6.8 were generated by thecc compiler on a Solaris Pentium and
SPARC machine respectively, from the sample program in Figure 6.6. In Figure 6.7, registereax is used
as the index variable; its value is read from a local variable on the stack ([ebp-8] , the case selector). The
lower bound and the range of the table are checked (2 and 5 respectively); the code exits if the value of the
index variable is out of bounds. If within bounds, an indexed scaled jump on (eax*4 ) is performed, offset
from the start of the indexed table at0x8048a0c . The contents of the values of the table are of addresses;
each is displayed in little-endian format.

Figure 6.8 performs the same logical steps as Figure 6.7 using SPARC assembly code, where indexed jumps
do not exist but indirect jumps on registers are allowed. In the example, the indexed variable is initially in
o0 , which gets set from a local variable on the stack ([fp-20] , the case selector). The lower bound is
computed and the indexed variable is set too1 . The range of the table is checked; if out of bounds, the code
exits to address0x10980 . If within bounds, the address of the table is computed too0 (by thesethi and
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or instructions), the indexed register is multiplied by 4 to get the right 4-byte offset into the indexed table,
and the value of the table (o0) indexed ato1 is fetched intoo0 . A jump too0 is then performed.

Figure 6.9 presents a SPARC example that uses a hash function to determine how to index into the table.
The code comes from the Solaris 2.5vi program. The index variable is set aso0 , and it is normalized by
subtracting its lower bound. The range of the table is checked; if the value is out of range, a jump to the
end of the case statement is performed (0x18804 ). If within bounds, the table’s address is set in register
o2 . The indexed register is hashed intoo1 and multiplied by 8 (intoo4) to get the right offset into the table
(as the table contains two 4-byte entries per case). A word is loaded from the table into registero3 and its
value is compared against the hash function key (the normalized index variableo0). If the value matches, the
code jumps to address0x1885c , where a second word is read from the table intoo0 , and a register jump
is performed to that address. In the case where the value fetched from the table does not match the key, an
end-of-hashing comparison is performed against the value-1 . If -1 is found, the code exits (0x18804 ),
otherwise, the indexed register (o4) is set to point to the next value in the table (wrapping the offset into the
table from the end of the table to the start) and the process is repeated at address0x18554 . Note that this
table contains 2 entries per case; the first one is the normalized index value, and the second one is the target
address for the code associated with that case entry.

Our last example, Figure 6.10, is from them88ksim SPEC95 benchmark suite. This example shows 3 groups
of tests on bits of a field within a structure, which get stored in registersedx , ecx andeax . The three partial
results are then or’d together to get the resultant indexed variable in registerecx . The upper bound is checked
(7) and, if within bounds, a branch to address0x8058045 is taken, where an indexed branch is made on the
contents of registerecx , scaled by the right amount (4), and the table address. Note that the branch (jbe ) is
the opposite of that normally found inswitch statements (i.e.ja ). This illustrates the danger of relying on
patterns of instruction to recover indexed branch targets; such a piece of code could not be well specified in
a pattern. For the interested reader, this code was produced from the C macro in Figure 6.11. The appendix
illustrates more examples.

6.2.3 Our Technique

We have developed a technique to recover jump table branches from disassembled code. The technique is
architecture, compiler and language independent, and has been tested on CISC and RISC machines with
a variety of languages and compilers (or unknown compiler, when dealing with precompiled executables).
Development of general techniques is an aim in our work as analysis of executable code should not rely on
particular compiler knowledge; this knowledge prevents the techniques from working with code generated
by other compilers, and in most cases, for other machines.

There are 3 steps to our technique:

1. Slice the code at the indexed/indirect register jump,

2. Perform copy propagation to recover pseudo high-level statements, and

3. Check against indexed branch normal forms to determine the type of jump table.
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Slicing of Binary Code

Our executable code analysis framework allows for the disassembly of the code into an intermediate
representation composed of register transfer lists (RTL) (CS98) and control flow graphs for each decoded
procedure in the program. The RTL describes the effects of machine instructions in terms of register transfers,
and is general enough to support RISC and CISC machine descriptions.

When an indexed or indirect jump is decoded, we create an intraprocedural backward slice of the disassem-
bled binary code (CF97). Slicing occurs by following the transitive closure of registers and condition codes
that are used in a given expression. The stop criterion for a given register along a path is when that register
is loaded from memory (i.e. from a local variable, a procedure argument, or a global variable), it is returned
by another function, or it reaches the start of the procedure without being defined (and hence it is a register
parameter set by the caller).

For the purposes of determining jump tables, we have an extra stop criterion: if the lower bound of the indexed
jump is found, and other relevant information has been found, no more slicing is performed. Of course, this
condition is not always satisfied as indexed tables whose first entry corresponds to the register being zero do
not need to check for the lower bound. In such cases, the slice finishes by means of the other stop conditions.
In the case of slices across calls, we stop if the register is returned by the call (i.e.eax on Pentium oro0 on
SPARC); in other cases we assume registers are preserved across calls and continue slicing. This is a heuristic
that works well in practice and is used rarely. The heuristic works when the machine code conforms to the
operating system’s application binary interface (uni90a).

For example, for Figure 6.7, the following slice is created using RTL notation:

(1) eax = m[ebp-8]
(2) eax = eax - 2
(3) ZF = (eax - 5) = 0 ? 1 : 0
(4) CF = (˜eax@31 & 5@31) | ((eax-5)@31 & (˜eax@31 | 5@31))
(5) PC = (˜CF & ˜ZF) = 1 ? <exit> : <step 6>
(6) PC = m[0x8048a0c + eax * 4]

Registerebp points to the stack, therefore indexed variableeax fetches a value from the local memory
for that procedure. The indexed register is normalized by subtracting the lower bound (2) and its range is
checked against 5 (the difference between the upper and lower bounds). If within bounds, an indexed jump
is performed at statement 6.

In our implementation, when the slice reaches a subtraction, it is assumed that the subtraction is defining the
lower bound of the switch variable’s values.

Copy Propagation

Once a slice has been computed, we perform copy propagation on registers and condition codes. This
is a common technique used in reverse engineering when recovering higher-level statements from more
elementary ones, such as assembly code (Cif96, CSF98a) and COBOL code (HTB+98).

As per (CSF98a), a definition of a registerr at instructioni in terms of a set ofak registers,r = f1(fakg; i),
can be copy propagated at the use of that register on another instructionj, s = f2(fr; : : :g; j), if the definition
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at i is the unique definition ofr that reachesj along all paths in the program, and no registerak has been
redefined along that path. The resulting instruction atj would then look as follows:

s = f2(ff1(fakg; i); : : :g; j)

and the need for the instruction ati would disappear. The previous relationship is partly captured by the
definition-use (du) and use-definition (ud) chains of an instruction: a use of a register is uniquely defined if it
is only reached by one instruction, that is, its ud chain set has only one element. This relationship is known
as ther-cleari!j relationship for registerr. More formally,

s = f2(ff1(fakg; i); : : :g; j) iff jud(r; j)j = 1^
ud(r; j) = i ^
j 2 du(r; i)^
8ak � ak-cleari!j

Note that this definition does not place a restriction on the number of uses of the definition ofr at i. Hence, if
the number of elements ondu(r; i) isn, instructioni can potentially be substituted inton different instructions
jk, provided they satisfy ther-cleari!jk property.

In our example of Figure 6.7, the application of copy propagation to the slice found in Section 6.2.3 gives the
following pseudo high-level statements:

(3) jcond ([ebp-8] > 7) <exit>
(4) jmp [0x8048a0c + ([ebp-8] - 2) * 4]

wherejcond stands for conditional jump andjmp stands for unconditional jump. Statement 3 checks if
the case selector is outside the bounds of the jump, and statement 4 performs a jump to the content (i.e. an
address) of memory location0x8048a0c + ([ebp-8] - 2) * 4 .

Normal Form Comparison

Our previous example can be rewritten in the following way:

jcond (var> numu) X
jmp [T + (var - numl) * w]

where var is a local variable, for example[ebp-8] , numu is the upper bound for the n-conditional branch,
for example7, numl is the lower bound of the n-conditional branch, for example2, T is the indexed table’s
address (and is of type address), for example0x8048a0c , and w is a constant equivalent to the size of the
word of the machine; 4 in this example. Based on this information, we can infer that the number of elements
in the indexed table is numu - numl + 1, for a total of 6 in the example. The example also shows that the
elements of the indexed table are labels (i.e. addresses) as the jump is to the target address loaded from the
address at0x8048a0c + ([ebp-8] - 2) * 4 .

The previous example only shows one of several normal forms that are used to encode n-conditional branches
using a jump table. We call the previous normal form type A. Figure 6.12 shows the 3 different normal forms
that we have identified in executable code that runs on SPARC and Pentium. Normal form A (address) is for
indexed tables that contain labels as their values. Normal form O (offset) is for indexed tables that contain
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offsets from the start of the tableT to the code of each case. Normal form H (hashing) contains labels or
offsets in the indexed table. Form O can also be found in a position independent version as well. Normal
form H contains pairs (<value>,<address>) at each entry into the jump table.

In our 4 examples of Figures 6.7 to 6.10, we find the following normal forms, respectively:

� jcond (r[24] > 5) 0x80489dc
jmp [0x8048a0c + (r[24] * 4)]

) normal form A

� jcond (r[9] > 5) 0x10980
jmp [0x10908 + (r[9] * 4)]

) normal form A

� jcond ((r[8] - 67) > 53) 0x18804
jmp [0x1886c + (((((((r[8] - 67) >> 4) << 1) + (r[8] - 67)) & 15) << 3)]

) normal form H

� jcond (((al < 2 ? 1:0) & 0xff) << 2 | ((al < 4 ? 1:0) & 0xff) << 1 |
((al < 8 ? 1:0) & 0xff) > 7) 0x8057dc5

jmp [0x805f5eb + (((al < 2 ? 1:0) & 0xff) * 4 | ((al < 4 ? 1:0) & 0xff) * 2 |
((al < 8 ? 1:0) & 0xff)) * 4]

) normal form A

Examples of form O are given in the appendix to this chapter.

6.2.4 Experimental Results

We tested the technique for recovery of jump table branches on Pentium and SPARC binaries in a Solaris
environment. The following integer SPEC95 benchmark programs were used for testing:

� go: artificial intelligence; plays the game of Go

� m88ksim: Motorola 88K chip simulator; runs test program

� gcc: GNU C compiler; builds SPARC code

� compress: compresses and decompresses a file in memory

� li: LISP interpreter

� ijpeg: graphic compression and decompression

� perl: manipulates strings (anagrams) and prime numbers in Perl

� vortex: a database program
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All benchmark programs were compiled with the Sun cc compiler version 4.2 on a Solaris 2.6 machine using
standard SPEC optimizations (i.e. -O4 on SPARC and -O on Pentium). We also include results for theawk
script interpreter utility, and thevi text editor (on both Solaris 2.5 and 2.6). These programs are part of the
Unix OS.

Figure 6.13 and 6.14 show the number of indexed jumps found in each benchmark program, the classification
of such indexed jumps into the 3 normal forms (A, O and H), and any unknown types. In the case of SPARC
code, most indexed jump tables are of form O, which means that the indexed table stores offsets from the
start of the table to the destination target address. In the case of Pentium code, almost all indexed jump
tables are of form A, meaning that the table contains the target addresses for each of the entries in thecase
statement. Unknown entries show the number of jump tables that were not recovered by this technique. These
are normally due to highly optimized code that relies on indirect function calls, or on enumerated types which
do not do any bounds checking.

The primary motivation for this work was to increase our coverage of decoded code in an executable program.
We measured the coverage obtained from our technique using the size in bytes of the text segment(s) of the
program, compared to the number of bytes decoded and the number of bytes in jump tables. The figures
do not necessarily add up to 100% due to unreachable code during the decoding phase. Also, in the case of
SPARC, we duplicate some instructions in order to remove delayed branch instructions; this duplication is
counted twice in our model, leading to slightly over 100% coverage in rare cases. Figure 6.15 and 6.16 show
the results of our coverage analysis. The results show that when indexed tables are present in the program,
up to 90% more of the code can be reached by decoding such tables correctly.

The li and ijpeg programs show a small coverage of their code sections. This is due to indirect calls
on registers which are not yet analysed in our framework to determine their target addresses. In the case
of ijpeg , a large percentage of the procedures are reached only via indirect calls, hence they are never
decoded. In the context of our binary translation framework, we rely on an interpreter to process such code
at runtime.

6.2.5 Previous Work

Not much work has been published in the literature on recovery of indexed jump targets. These techniques
tend to be ad hoc and tailored to a specific platform or compiler, and tend to rely on pattern matching.

The qpt binary profiler is a tool to profile and trace code on MIPS and SPARC platforms. Profiling and tracing
is done by instrumenting the executable code. Jump tables are detected by relying on the way in which the
compiler generated code for the jump, mainly by expecting the table to be in the data segment in the case of
MIPS or in the code segment, immediately after the indirect jump, on the SPARC. The end of the table is
found by examining the instructions prior to the indirect jump and determining the table’s size; alternatively,
the text space is scanned until an invalid address is met (LB94).

The dcc decompiler is an experimental tool for decompiling 80286 DOS executables into C code. The method
used in this tool was that of pattern matching against known patterns generated by several compilers on a DOS
machine (CG95).

EEL is an executable editing library for RISC machines. Slicing is used to determine the instructions that
affect the computation of the indirect jump and determine the jump table. No precise method is given.
Measurements on the success of this technique on SPARC using the SPEC92 benchmarks reveal that 100%
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recovery of indexed jumps is achieved for code compiled by the gcc and the Sun Fortran compilers, and
89% for the SunPro compilers. The recovery ratio was measured by counting the number of indirect jumps
expected and recovered (LS95).

IDA Pro, a disassembler for numerous machines, makes use of undocumented techniques to determine which
compiler was used to compile the original source program (ida97). IDA Pro’s recovery of jump tables is good
but their technique has not been documented in the literature.

Our techniques compare favourably with those of other tools. They have been tested extensively with code
generated from different compilers on both CISC and RISC machines, indicating the generality and machine
independence of the technique.

6.2.6 Appendix

Figures 6.17 and 6.18 illustrate two examples of form O from SPARC code. The former contains an indexed
table of offsets from the table to the code that handles each individual switch case. The latter also contains an
indexed table of offsets from the table to the code, however, the way the address of the table is calculated is
position independent code (via the call to.+8 , which produces the side effect of setting theo7 register with
the current program counter).
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#define asmprintf fprintf // printf function
#define asmprintfd stdout // print directly to stdout

static void print_Eaddr (unsigned pc) {
match pc to
| Abs32 (a) =>

asmprintf (asmprintfd, "%d", a);
| E (mem) =>

print_Mem (mem);
| Reg (reg) =>

asmprintf (asmprintfd, "%s", print_unsigned_r32(reg));
endmatch

}

static void print_signed_reg(int reg) {
static char *r32_names[] = {

"EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI",
};
asmprintf(asmprintfd, "%s", r32_names[reg]);

// asmprintf(asmprintfd, "%d", reg);
}

static void print_signed_i8(int /* [-128..127] */ i8) {
asmprintf(asmprintfd, "%d", i8);

}

unsigned decode_instr (unsigned pc, unsigned uNativeAddr)
{ unsigned deltaPC; // # of bytes parsed by decoder

match [deltaPC] pc to
| ADDrmw(reg, Eaddr) =>

asmprintf(asmprintfd, "%s", "ADDrmw ");
print_signed_reg(reg);
asmprintf(asmprintfd, "%s", ", ");
print_Eaddr(Eaddr);

| ADDrmb(reg8, Eaddr) =>
asmprintf(asmprintfd, "%s", "ADDrmb ");
print_signed_reg(reg8);
asmprintf(asmprintfd, "%s", ", ");
print_Eaddr(Eaddr);
asmprintf(asmprintfd, "\n");

| ADDiw(Eaddr, i16) =>
asmprintf(asmprintfd, "%s", "ADDiw ");
print_Eaddr(Eaddr);
asmprintf(asmprintfd, "%s", ", ");
print_signed_i16(i16);

| ADDiAL(i8) =>
asmprintf(asmprintfd, "%s", "ADDiAL ");
print_signed_i8(i8);
asmprintf(asmprintfd, "\n");

...
endmatch
return deltaPC;

}

Figure 6.5: Snippet Code for an x86 Decoder
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#include <stdio.h>
int main()
{ int num;

printf("Input a number, please: ");
scanf("%d", &num);
switch(num) {

case 2:
printf("Two!\n"); break;

case 3:
printf("Three!\n"); break;

...
case 7:

printf("Seven!\n"); break;
default:

printf("Other!\n"); break;
}

return 0;
}

Figure 6.6: Sample switch program written in the C language.

movl -8(%ebp),%eax ! Read index variable
subl $0x2,%eax ! Minus lower bound
cmpl $0x5,%eax ! Check upper bound
ja 0xffffffd9 <80489dc> ! Exit; out of range
jmp *0x8048a0c(,%eax,4) ! Indexed, scaled jump

8048a0c: 64 89 04 08 ! Table of addresses
8048a10: 78 89 04 08 ! to code handling
8048a14: 8c 89 04 08 ! the various switch
8048a18: a0 89 04 08 ! cases
...

Figure 6.7: Pentium assembly code for sample switch program, produced by the Sun cc compiler.
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ld [%fp - 20], %o0 ! Read index variable
add %o0, -2, %o1 ! Minus lower bound
cmp %o1, 5 ! Check upper bound
bgu 0x10980 ! Exit if out of range
sethi %hi(0x10800), %o0 ! Set table address
or %o0, 0x108, %o0 ! (continued)
sll %o1, 2, %o1 ! Multiply by 4
ld [%o0 + %o1], %o0 ! Fetch from table
jmp %o0 ! Jump
nop

10908: 0x1091c ! Table of pointers
1090c: 0x10930
10910: 0x10944
10914: 0x10958
...

Figure 6.8: SPARC assembly code for sample switch program, produced by the Sun cc compiler.
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18524: ld [%fp - 20], %o0 ! Read indexed variable
18528: sub %o0, 67, %o0 ! Subtract lower bound
1852c: cmp %o0, 53 ! Compare with range-1
18530: sethi %hi(0x18800), %o2 ! Set upper table addr
18534: bgu 0x18804 ! Exit if out of range
18538: nop
1853c: or %o2, 108, %o2 ! Set lower table addr
18540: srl %o0, 4, %o1 ! Hash...
18544: sll %o1, 1, %o1 ! ...
18548: add %o1, %o0, %o1 ! ...function
1854c: and %o1, 15, %o1 ! Modulo 16
18550: sll %o1, 3, %o4 ! Multiply by 8
18554: ld [%o4 + %o2], %o3 ! First entry in table
18558: cmp %o3, %o0 ! Compare keys
1855c: be 0x1885c ! Branch if matched
18560: cmp %o3, -1 ! Unused entry?
18564: be 0x18804 ! Yes, exit
18568: nop ! (delay slot)
1856c: add %o4, 8, %o4 ! No, linear probe
18570: and %o4, 120, %o4 ! with wraparound
18574: ba 0x18554 ! Continue lookup
18578: nop

1885c: add %o4, %o2, %o4 ! Point to first entry
18860: ld [%o4 + 4], %o0 ! Load second entry
18864: jmp %o0 ! Jump there
18868: nop

! Each entry is a (key value, code address) pair
1886c: 0x0
18870: 0x187b4 ! Case ’C’+0
18874: 0xffffffff ! Unused entries have -1 (i.e. 0xffffff) as

! the first entry
18878: 0x18804
1887c: 0x10
18880: 0x185b8 ! Case ’C’+0x10 = ’S’
18884: 0x2f
18888: 0x18630 ! Case ’C’+0x2f = ’r’
...

Figure 6.9: SPARC assembly code from the vi program, produced by the Sun cc version 2.0.1 compiler.
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8057d90: movb 38(%eax),%al ! Get struct member
8057d93: testb $0x2,%al ! Test bit
8057d95: setne %edx ! To boolean
8057d98: andl $0xff,%edx ! To byte
8057d9e: testb $0x4,%al ! Test another bit
8057da0: setne %ecx
8057da3: andl $0xff,%ecx ! Save in cl
8057da9: testb $0x8,%al ! Test third bit
8057dab: setne %eax
8057dae: andl $0xff,%eax ! Save in al
8057db3: shll $0x2,%edx ! To bit 2
8057db6: shll %ecx ! To bit 1
8057db8: orl %edx,%ecx ! Combine these two
8057dba: orl %eax,%ecx ! Combine all three
8057dbc: cmpl $0x7,%ecx ! Upper bound compare
8057dbf: jbe 0x280 <8058045> ! Branch if in range
...
8058045: jmp *0805f5e8(,%ecx,4) ! Table jump
...
805f5e8: f8 7d 05 08 ! table of addresses of code to
805f5ec: 01 80 05 08 ! handle switch cases
...

Figure 6.10: Pentium assembly code from the m88ksim program, produced by the Sun cc version 4.2
compiler.

#define FPSIZE(ir) ((((ir->p->flgs.dest_64) ? 1 : 0) << 2) | \
(((ir->p->flgs.sl_64) ? 1 : 0) << 1) | \
((ir->p->flgs.s2_64) ? 1 : 0))

switch (FPSIZE(ir)) {
case SSS: /* other code */
/* other cases */

}

Figure 6.11: C source code for example in Figure 6.10
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Type Normal Form Types of<expr> allowed
A jcond (r[v]> numu) X r[v]

jmp [T + <expr> * w] r[v] - numl

((r[v] - numl) << 24)>> 24)
O jcond (r[v]> numu) X r[v]

jmp [T + <expr> * w] + T or r[v] - numl

jmp PC + [PC + (<expr> * w + k)] ((r[v] - numl) << 24)>> 24)
jmp PC + [PC + (<expr> * w + k)] + k ((r[v] - numl) << 24)>> 24)

H jcond (r[v]> numu) X ((r[v] - numl) >> s) +
(r[v] - numl)

jmp [T + ((<expr> & mask) * 2*w) + w] ((r[v] - numl) >> 2*w) +
((r[v] - numl) >> 2) +
(r[v] - numl)

Figure 6.12: Normal forms for n-conditional code after analysis

Benchmark A O H Unknown
awk 0 2 0 0
vi (2.5) 10 1 9 0
vi 0 13 0 1
go 0 5 0 0
m88ksim 0 10 0 2
gcc 0 153 0 1
compress 0 0 0 0
li 0 3 0 0
ijpeg 0 3 0 1
perl 0 32 0 0
vortex 0 21 0 0
total 10 243 9 5

Figure 6.13: Number of indexed jumps for SPARC benchmark programs

Benchmark A O H Unknown
awk 6 0 0 0
vi 12 0 0 2
go 5 0 0 0
m88ksim 17 0 0 0
gcc 207 0 0 5
compress 0 0 0 0
li 3 0 0 0
ijpeg 7 0 0 0
perl 36 0 0 1
vortex 13 0 0 6
total 306 0 0 14

Figure 6.14: Number of indexed jumps for Pentium benchmark programs
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Program w/o analysis with analysis difference
awk 22% 64% 42%
vi (2.5) 24% 93% 69%
vi 30% 95% 65%
go 91% 100% 9%
m88ksim 37% 69% 32%
gcc 58% 89% 31%
compress 91% 91% 0%
li 33% 36% 3%
ijpeg 20% 22% 2%
perl 10% 99% 89%
vortex 70% 79% 9%

Figure 6.15: Coverage of code for SPARC benchmarks

Program w/o analysis with analysis difference
awk 22% 65% 43%
vi 28% 88% 60%
go 89% 99% 10%
m88ksim 36% 73% 37%
gcc 52% 86% 34%
compress 84% 84% 0%
li 24% 26% 2%
ijpeg 18% 20% 2%
perl 9% 99% 90%
vortex 68% 75% 7%

Figure 6.16: Coverage of code for Pentium benchmarks



6.2 Recovery of Jump Table Case Statements from Binary Code 95

10a58: 0x0009c ! Indexed table
10a5c: 0x000dc ! of offsets
10a60: 0x000fc
10a64: 0x0011c
...

sethi %hi(0x10800), %l1 ! Set table address
add %l1, 0x258, %l1 ! into %l1
...
ld [%fp - 4], %l0 ! Read idx variable
sub %l0, 2, %o0 ! Subtract min val
cmp %o0, 5 ! Cmp with range-1
bgu 0x10b14 ! Exit if out of range
sll %o0, 2, %o0 ! Multiply by 4
ld [%o0 + %l1], %o0 ! Fetch from table
jmp %o0 + %l1 ! Jump to table+offset
nop ! Delay slot instr

Figure 6.17: Form O example for SPARC assembly code.

ldsb [%l6], %o0 ! Get switch var
clr %i3 ! (Not relevant)
sub %o0, 2, %o0 ! Subtract min value
cmp %o0, 54 ! Cmp with range-1
bgu 0x44acc ! Exit if out of range
sll %o0, 2, %o0 ! Multiply by 4

43eb8:
call .+8 ! Set %o7 = pc
sethi %hi(0x0), %g1 ! Set %g1 = 0x0001c
or %g1, 0x1c, %g1 !
add %o0, %g1, %o0 ! %o0 = 0x43eb8 + 0x1c

! = 0x43ed4
ld [%o7 + %o0], %o0 ! Fetch from table
jmp %o7 + %o0 ! Jump to table+offset
nop ! Delay slot instr

43ed4: 0x0021c ! Table of offsets from
43ed8: 0x00af4 ! call instr to case code
43edc: 0x000f8 ! e.g. 0x43eb8 + 0x00f8

! = 0x43fb0
43ee0: 0x008d0
...

Figure 6.18: Form O example for SPARC assembly code (vi 2.5) using position independent code. Offsets
are relative to the address of the call instruction.
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4233c:
call .+8 ! Set %o7 = pc
sethi %hi(0xfffffc00), %o2 ! %o2 = -1024
ldsb [%i5], %o0 ! %o0 = <expr>
add %o2, 736, %o2 ! %o2 = -288
add %o2, %o7, %o2 ! %o2 = pc-288
sub %o0, 2, %o0 ! Subtract min value
mov %o1, %o7 ! (Not relevant)
mov %o2, %o1 ! %o1 = <expr>
cmp %o0, 54 ! Cmp with range-1
add %l1, 1, %l1 ! (Not relevant)
bgu 0x42f58 ! Exit if out of range
sll %o0, 2, %o0 ! Multiply <expr> by 4
ld [%o0 + %o1], %o0 ! Fetch from table
jmp %o0 + %o1 ! Jump to table+off
nop ! Delay slot instr

(288 bytes earlier than the call instruction):
4221c: 0x298 ! Table of offsets from
42220: 0xd3c ! table to case code
42228: 0x15c ! e.g. 0x4221c + 0x15c

! = 0x42378
4222C: 0x8fc
...

Figure 6.19: A different form O example for SPARC assembly code, also using position independent code.
This code is generated from the same source code as the example in Figure 6.18, but with a different version
of the compiler. Offsets are relative to the start of the table.



Chapter 7

Specifying Semantics of Machine
Instructions

Design: Shane and Cristina [97]; Documentation: Cristina and Shane [97], Nathan [Jul 01]; Implementation: Shane
[97], Doug [98], Nathan [Jun 01]

A Semantic Specification Language, SSL, has been developed in collaboration with Shane Sendall (Sen97)
in order to describe the semantics of machine instructions. Shane’s approach was based on an informal
refinement of Object-Z (DR97) specifications he wrote for the SPARC and 80286 architectures. The original
Object-Z specifications are available in his Honours thesis (Sen97); the SSL language has been modified
since then and is described in this chapter.

The informal refinement from Object-Z specifications faced some problems mainly to do with the bridging
of the high-level specification to a concrete form. Further, the addressing modes were not specified as such
but the effective address was used (this address being returned by NJMC’s matching statement).

The instructions that are the harder ones to describe are higher-order instructions, which normally refer to the
nextinstruction in the sequence. Examples of such instructions are SPARC’s delayed branches and 80286’s
string repeat instructions. These will be described in more detail in Section 7.5.1.

7.1 Design Decisions

The SSL language was developed with integration into the SLED language (RF97a, RF95) in mind. However,
due to time constraints, the language has been interfaced to the NJMC toolkit’s matching statement construct
via a library. This interface is called theRTL interfaceand is described in Chapter 8, Section 8.1.

The following requirements were sought out of SSL:

� provide a simple and compact notation,

� model the semantics of machine instructions separately or per groups of instructions,

97
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� model basic transfers of information via registers and memory locations,

� model complex and basic instructions without introduction of recursion or function calls,

� strictly model sizes of operands, registers and memory accesses,

� provide a universal model for flags and their interactions via named registers and macro “functions”,
and

� model broad environment structure and semantics to handle many architectures and their idiosyn-
crasies; in other words expressibility,

Out of these requirements, the architecture environment is not yet fully supported, but will be discussed in
Section 7.4.

7.2 Register Transfer Lists

Register transfer lists (RTL) is an intermediate language that describes transfers of information between
register-based instructions. RTL assumes an infinite number of registers, hence it is not constrained to a
particular machine representation. RTL has been used in the vpo optimiser (BD88) for storing the target
assembly instructions, and was a suitable representation for optimisation purposes.

More recently, RTL has been used as an intermediate representation in different system tools such as the
link-time optimiser OM (SW93a, Dig94), GNU’s compilers (Sta93), and the editing library EEL (LS95). In
all these tools, RTL stands for register transferlanguage, and the representations vary widely. The literature
does not give much information on OM’s RTL, but does document the other two.

GNU’s RTL is a high-level language description of instructions, in a lisp-like form. A simple arithmetic
operation betweenx andy (with size fieldm) is described as follows:

(plus:m x y)

However, high-level instructions are also modelled in the language, such as a multiexit conditional (switch
in C orcase in Pascal):

(cond [test1 value1 test2 value2 ...] default)

These high-level instructions are hard to recover from binary code and are also at a too high-level for analysis
purposes.

EEL uses an RTL format internally to capture the semantics of machine instructions. EEL’s spawn language
extends EEL’s RTL by adding a method to express instruction semantics by the way of a simple attribute
description. Spawn’s RTL defines the syntax of machine instructions in the SLED style, and the semantics
as attributes to each instruction by binding instructions to their semnatic attributes. The following example
describes the syntax inpat constructs, and the semantics insem constructs. The syntax for load, store and
other instructions are listed. The semantics for load instructions is given as well.



7.3 Semantic Specification Language Description 99

pat [ ld ldub lduh ldd st stb sth std
_ ldsb ldsh _ _ ldstub _ swap
lda lduba lduha ldda sta stba stha stda
_ ldsba ldsha _ _ ldstuba _ swapa ]

is op3inst && op3=[0b000000..0b011111]

sem [ ldsb ldsh ldub lduh ld ldf lddf
ldsba ldsha lduba lduha lda ]

is (\r.\m.\sgn. r[rd]:=sgn m[addr])
@ [ R4w’ R4w’ R4w’ R4w’ R4w’ F4w’ F8w’

R4w’ R4w’ R4w’ R4w’ R4w’ ]
$ [ M1r M2r M1r M2r M4r M4r M8r

M1r M2r M1r M2r M4r ]
$ [ # # Id32 Id32 Id32 Id32 Id64

# # Id32 Id32 Id32 ]

It can be seen from this example that this language models the semantics of instructions in a simplistic way
which only covers general semantic content. The language does not cover flag effects or machine-dependent
semantic attributes such as register windows on SPARC.

Given the suitability of RTL as an intermediate representation for storing the semantics of instructions, we
have developed our own RTL that captures enough information of machine instructions for the purposes of
binary translation. We are not interested in a general RTL that would be suitable for emulation purposes, so
certain low-level details have been excluded from our representation.

SSL is the language we use to specify the semantics of machine instructions in terms of RTLs. We do not
give a syntax description of our RTL here, but explain what the SSL language is able to specify and provide
examples. Chapter 8, Section 8.1 gives a full description of our RTL language.

7.3 Semantic Specification Language Description

This section describes the syntax and semantics of the Semantic Specification Language, SSL. The syntax
of SSL is defined in Extended-Backus-Naur-Form (EBNF), and semantics of SSL is described in natural
language integrated with examples from the 80286 and SPARC architectures. This was written in late 1997.

Currently, SSL is limited in its ability to define the environment structure, and therefore such things like
register windows cannot be modelled well.

SSL allows for the description of the semantics of alist of instructionsby means ofstatementsor register
transfers (or effects in Norman’s documentation). Most statements areassignmentstatements, but there is
also support forconditionalandflag statements. The register transfers for a group of instructions can be
grouped via atable. Individual assignment register transfers allow for a variety ofexpression(arithmetic,
bitwise, logical and ternary). The base elements of an expression arevalues, and the base elements of an
instruction arevariables. We explain each of these in detail in the next sections.
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7.3.1 Registers

A register is a named memory space, which has a size and is mapped to a particular location or sets of
locations. Some registers actually overlap with other registers, for example, on x86, the 16-bitax register
overlaps with the lower part of the 32-biteax register. On SPARC, 64-bit floating point registers are used by
functions by overlapping two 32-bit registers. We introduce the concepts of ”shares” and ”covers” to specify
these two types of registers.

Registers are defined within the pre-defined keyword@REGISTERS. Each register has the form
name[number] which is the name of the register and its size in bits. Registers can map to indexed lo-
cations in the register address space in different ways:

� Numeric index: a numeric index basically gives the index into the register space. For example,
%l0[32]->16 states that register name%l0 maps to position 16.

� Covers index: aCOVERSindex gives a numeric index into the register address space and also states
that the register being defined covers the address space of two or more registers (i.e. from the index of
the first register to the index of the last register mentioned). These registers need to be contiguous. For
example,%f0to1[64]-> 64 COVERS %f0..%f1 gives register%f0to1 the indexed location
64 and states that this register overlaps the addressing space of registers%f0 and%f1.

� Shares index: aSHARESindex gives a numeric index into the register address space and also states
that the register being defined shares part of larger register (i.e. some bits are shared). For example,
%ax[16] -> 0 SHARES %eax@[0..15] gives register%ax the index value of 0 and states that
%ax is a 16-bit register composed of the bits 0 to 15 of register%eax.

� -1 index: special registers such asPCare not given positive indexed into the register address space,
instead, they are listed as -1.

registers: numberRegister
| coversRegister
| sharesRegister
| minusOneRegister

7.3.2 Variables and Values

A variablecan be a register, memory, or parameter to an instruction operand. Avalue is the contents of a
variable (denoted with the prefix prime symbol (’)) or a numerical constant (integer or float). A value can be
signed extended by means of the! symbol.

For example,r[5] is register 5, and’m[100000]! is a sign-extended value of the memory location
100000.

var_op: REG_ID
| REG_MEM_IDX_ID exp ’]’
| PARM

value_op: ’\’’ var_op
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| ’\’’ ’(’ var_op oper value_op ’)’
| NAME
| FLOAT
| NUM
| PARM

REG_ID: "%"[A-Za-z][A-Za-z0-9]*

REG_MEM_IDX_ID: "r["
| "m["

ADDR: "a["

PARM: [a-z][a-z0-9_]*

NAME: [A-Z][A-Z0-9_]*[A-Z0-9]

FLOAT: (-)[0-9]+.[0-9]+ // Floats must have decimal pt

NUM: (-)[0-9]+
| Ox[A-F0-9]+
| (-)"2**"[0-9]+

7.3.3 Constants

Constants are names assigned to numerical values that do not change. Constants are commonly used to
describe fixed values of a machine, for example,WORD := 32.

constants: NAME ":=" NUM

or

*80* %st := log2(2.7182818);

7.3.4 Functions

Several functions are provided to allow complex instructions to be described. The main groups are conversion
functions, floating point stack pseudo-functions, and transcendental functions.

The conversion functions all take an expression and two integer sizes, and are used to change the size of
floating point numbers, or to change from an integer of one size to a floating point value of another size, etc:

fsize(exp, size1, size2) // Convert from float size1 to float size2
itof (exp, size1, size2) // Convert from integer size1 to float size2
ftoi (exp, size1, size2) // Convert from float size1 to integer size2
fround(exp,size1, size2) // Convert from float size1 to float size2,
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// but integer value with rounding,
// e.g. 3.75 -> 4.00

To represent the effect of pushing or popping from a stack of registers, there are two pseudo-functions:

FPUSH // Signify a push to a stack of registers
FPOP // Signify a pop from a stack of registers

These are used for example when describing Intel floating point instructions such as FLD. When the Register
Transfer Lists are converted to independent form, these pseudo-functions must be removed with a special
pass. (This pass also adjusts various register numbers, so that an equivalent representation using a ”flat” set
of registers is obtained). Except just after decoding instructions, FPUSH and FPOP will not be seen.

Various transcendental functions are included to describe complex floating point instructions:

sin(exp) // Sinusoid
cos(exp) // Cosine
tan(exp) // Tangent
arctan(exp) // Inverse tangent
log2(exp) // Logarithm to base 2
loge(exp) // Natural logarithm
log10(exp) // Logarithm to base 10
sqrt(exp) // Square root

All these functions take and return a floating point value.

7.3.5 Expressions

Three groups of expressions are supported: unary, binary and ternary, each with an expressions as a member.
Expressions are thought of as trees, with the leaves being the values of the expression and the inner nodes
being the operators of the expressions.

Unary expressions include the negation (NOT) of an expression, and the sign extension (! ) of an expression.

Binary expressions include arithmetic, floating point arithmetic, bitwise and logical expressions, as well as
bitwise expressions (@). The first three types of expressions are commonly found in most languages. The
latter expression, bitwise-extraction, is needed to extract bits of a field, and hence the top and bottom bits
need to be specified (separated by a: and stored as a binary expression). This expression is derived from the
SLED language. Examples of each of these types of expressions follow:

’r[1] + ’r[5] // arithmetic
’r[31] +f ’r[32] // floating point arithmetic
’r[1] | ’m[1000] // bitwise
’r[5] or ’r[1] // conditional
’r[5] @ [0:19] // bitwise-extraction
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The ternary expression?: consist of a logical expression, a true-branch expression, and a false-branch
expression. The semantics is as per the C language: if the logical expression evaluates to true, the true-
branch expression is evaluated, otherwise the false-branch expression. For example,’r[1] = 0 ? 0 :
1.

Expressions can be cast to another size (in number of bits required). Casting can upgrade the size of the value
of an expression or downgrade it. No sign extension happens either way; when casting to a larger size, the
new bits are padded with zeroes, and when casting to a smaller size, the value is chopped at the number of
bits specified. Casting is denoted by postfixing the size infg brackets. For example,’r[rs1] f64g casts
the value of registerrs1 to 64 bits.

Changing the size of floating point values is different, because it’s not just a matter of discarding or padding
bits. These conversion operators are described above in the Functions section (Section 7.3.4).

Expressions can be sign-extended by appending a “!”, and the address of an expression can be taken by using
a[ exp] . When taking the address of an expression, it should be an expression that represents memory, i.e.
it should begin withm[ . Later, when parameters have been instantiated, thea[m[exp]] sequences can be
relaced with justexp .

Finally, there are expressions in the context of tables, which will be explained once the concept of table is
introduced in Section 7.3.8.

The complete EBNF for expressions follows. The list of expression operators and their meaning is defined in
Figure 7.1.

exp: exp ARITH_OP exp // arithmetic
| exp FARITH_OP exp // floating point arithmetic
| exp BIT_OP exp // bitwise
| exp COND_OP exp // logical
| CONV_FUNC ’(’ exp ’,’ NUM ’,’ NUM ’)’ // conversion function
| TRANSCEND ’(’ exp ’)’ // transcendental function
| FPUSH | FPOP // stack pseudo-function
| NOT exp // negation
| CONV exp // conversion
| exp S_E // sign-extension
| ADDR ’(’ exp ’)’ // address-of
| COND_TNAME ’[’ IDX ’]’ // table expression
| exp OP_TNAME ’[’ IDX ’]’ exp // table operand
| ternary // ternary
| value_op // value
| value_op cast // casted value
| value_op AT ’[’ NUM COLON NUM ’]’ // bitwise-extraction
| ’(’ exp ’)’ // parenthesis
| ’(’ exp ’)’ cast // expression cast

ternary: ’[’ exp COND_OP exp ’?’ exp ’:’ exp ’]’
| ’[’ exp COND_OP exp ’?’ exp ’:’ exp ’]’ cast

cast: ’{’ NUM ’}’
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Group Symbol Meaning
ARITH OP + addition

- subtraction
* multiplication
/ division
% modulus

FARITH OP +f addition of 32 bit floats
+fd addition of 64 bit floats
+fq addition of 128 bit floats
-f subtraction of 32 bit floats
-fd subtraction of 64 bit floats
-fq subtraction of 128 bit floats
*f multiplication of 32 bit floats
*fd multiplication of 64 bit floats
*fq multiplication of 128 bit floats
/f division of 32 bit floats
/fd division of 64 bit floats
/fq division of 128 bit floats

BIT OP & (bitwise) and
&˜ (bitwise) and-not
| (bitwise) or
|˜ (bitwise) or-not
ˆ xor
ˆ˜ xor-not
>> right-shift
<< left-shift
>>A right-shift-arithmetic
rl rotate-left
rr rotate-right
rlc rotate-left-through-carry
rrc rotate-right-through-carry

COND OP = equal
˜= not equal
< less than
> greater than
<= less or equal to
>= greater or equal to
and and (of two expressions)
or or

Figure 7.1: Expression Operators in the SSL Language

7.3.6 Statements

Statements describe transfers of information to/from registers. All transfers have to be specified; there are
no side-effects on transfers other than those described by a statement. Most transfers will be assignments,
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however, there is also need for conditional (if-then) statements and support for condition codes as we do not
want to fully specify these transfers, but merely know if a change in a condition code could happen or not.

An assignment statementconsists of the size of the assignment (in bits), the variable of the target of the
assignment, and an expression describing the value of the assignment. For example,*32* r[rd] :=
’imm22 << 10 , assigns 32 bits of the contents of parameterimm22 left-shifted 10 bits to registerrd .

A conditional statementconsists of a membership logical expression, followed by a list of statements. If
the logical expression is true, the list of statements is valid. Membership is denoted by the operator|= . A
membership logical expression tests if an value is a member of a set of numbers (or ranges of numbers). For
example,’r[rd] |= 2,3 tests if the value of registerrd is either 2 or 3.

The empty statementis denoted by . This statement is useful when describing the semantics of theNOP
instruction.

Support for Condition Codes

Condition codes are treated as named registers of size 1 bit. These can be defined in the environment section
of the specification, which is described in Section 7.4. Although only 0 or 1 can be assigned to a condition
code, assignment statements to condition codes can be quite complex if fully described. For example, the
SPARC V8 manual describes the overflow of an add instruction which sets the condition codes as:

V <- (r[rs1]<31> and operand2<31> and (not result<31>)) or
((not r[rs1]<31>) and not operand2<31> and result<31>);

Although this expression could be specified in SSL, we do not want to know how the condition code was set
other than it may be set—this removes overhead during translation time as an overflow condition code will
have a similar meaning in all architectures. (Note though that we need to define the meaning somewhere and
if different in another architecture, the effect will need to be specified; at present we don’t worry too much
about this).

Since we are interested in knowing if the value of a condition codemayhave been changed, we provide the
following two macros:

� updateflags: specifies the named condition codes that may be changed by the instruction.
For example, the 80286 multiply instruction modifies all 6 condition codes; this is specified as:
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF) .

This macro should be changed to a more general one: for a set list of condition codes, the arguments
to this macro specify the new value for the condition codes: 0, 1, or - (if hard to compute).
For example, the SPARC add instruction will be specified as:updateflags(-,’r[rd],-,-) for
the negative, zero, overflow and carry flags. In contrast, the logical and instruction will be specified
as: updateflags(-,’r[rd],0,0) .

� undefineflags: this macro specifies that the value of all current named condition codes is undefined
or unknown. Few machine instructions produce this effect, for example the 80286 divide instruction:
undefineflags() .
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The EBNF for statements follows. Notice that the membership expression of the ifthen (conditional)
statement is restricted at present to use the nameidx instead of any other name. This restriction can be
lifted in the future.

stmt: assign_stmt
| if_then
| FLAGMACRO ’(’ flag_list ’)’
| no_statement

assign_stmt: ASSIGNSIZE var_op ASSIGN exp

if_then: ’(’ IDX MEM_OF ’{’ list_for_if ’}’ ’)’ THEN ’(’ ifstmt_list ’)’

list_for_if: list_for_if ’,’ range
| range

range: NUM TO NUM
| NUM

ifstmt_list: ifstmt_list stmt
| stmt

FLAGMACRO: "updateflags"
| "undefflags"

flag_list: flag_list ’,’ REG_ID
| REG_ID

no_statement: ’_’

7.3.7 Operands

Explicit operand definitions are a late, and still evolving, addition to the SSL language. Essentially what the
operand section does is allow the specification of complex, variant operands in such a way that the SLED
and SSL files can be linked directly without the need of the intermediate code that was previously needed to
handle these cases.

The EBNF follows:

operands: ’OPERANDS’ operand { ’,’ operand }

operand: param ’:=’ ’{’ list_parameter ’}’
| param list_parameter ASSIGNSIZE exp
| param list_parameter ’[’ list_parameter ’]’ ASSIGNSIZE exp

list_parameter: [ param { ’,’ param } ]

As seen above, there are three basic forms, although the second two are really variants of the same form. The
first specifies a list of operand variants, such as commonly occurs with effective addresses in most common
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processor architectures. In other words, it states that the given param will be one of the alternatives given.
(For automatic use with the SLED file, the names on the right hand side must appear in the SLED file as
constructors) As an example from SPARC, we have

OPERAND eaddr := { absoluteA, dispA, indirectA, indexA };

˝

The second form specifies semantics for a single, specific operand, and normally gives details for a variant previously
mentioned in the above mentioned variant list. The expression given is substituted into an instruction in place of the
simple value that would otherwise be used. Again from SPARC:

OPERAND
dispA rs1, simm13 *32* r[rs1] + sgnex(13,32,simm13),
absoluteA simm13 *32* sgnex(13,32,simm13),
indexA rs1, rs2 *32* r[rs1] + r[rs2],
indirectA rs1 *32* r[rs1],

˝

Finally, the third form is also known as the functional, or lambda form, although in actuallity it is not quite a true first-
class lambda. It acts identically to the previous form, except that it takes a second set of function arguments, enclosed in
the square brackets. This allows an operand to effectively pass in a small snippet of code, with the variables to be decided
later by the instruction (hence the lambda-ness) By way of illustration:

OPERAND
example := { ex1, ex2 },
ex1 a [r] *32* r[r] + a,
ex2 a [r] *32* r[r] * a

EXINST example rs1 rd
r[rd] := example(rs1);

˝

For the sake of sanity, if a functional operand occurs in a variant operand, all variants must have the same number of
functional arguments (although they may differ in other respects).

7.3.8 Tables

Tables are used for grouping names of instructions alone or pairs of instructions and operators or expressions. These are
useful when describing the semantics of a group of instructions that behave in a similar way; the group can be declared in
a table and given a name (the name of the table), which is then used in the specification, as described in the next section
(Section 7.3.9).

Tables of instructions are handy when grouping instructions that come from the same family, such as the store instructions.
On SPARC, there are store double-word, word, half-word, and byte instructions, both in alternate or non-alternate storage,
for a total of 8 instructions. The semantics of the store family of instructions is the same, the only difference is in the size
of the operand. Hence these instructions can be grouped in theSTOREtable:
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STORE := { STD, STDA, ST, STA, STH, STHA, STB, STBA }

Instructions that perform an arithmetic or bitwise operation can be grouped in a table which pairs the instruction name
with its operator. In the following example, we have grouped the add, subtract, add and set condition codes, and subtract
and set condition codes, in theARITH, OP3 table. The nameARITH is used to identify the instruction names, and the
OP3name is used to identify the operator name. The table is viewed as a 2-dimensional array for usage purposes:

[ARITH, OP3] := { (ADD_, "+"), (SUB_, "-"), (ADDCC_, "+"), (SUBCC_, "-") }

Finally, the third type of table pairs instructions and expressions. This is useful when grouping conditional instructions
for example, as the condition of the instruction is dependent on a condition code or a set of condition codes; i.e. they are
based on an expression of condition codes. In the following example, the tableJUMPS,CONDis created. TheJUMPS
name indexes instruction names, and theCONDname indexes expressions associated to the instructions:

[JUMPS,COND] := { (BA_, 1), (BN_,0), (BNE_, ˜’%Z), (BE_, ’%Z),
(BG_, ˜(’%Z |(’%N ˆ ’%V))), (BLE_, ’%Z |(’%N ˆ ’%V)),
(BGE_, ˜(’%N ˆ ’%V)), (BL_, ’%N ˆ ’%V),
(BGU_, ˜(’%C | ’%Z)), (BLEU_, ’%C | ’%Z), (BCC_, ˜’%C),
(BCS_, ’%C), (BPOS_, ˜’%N), (BNEG_, ’%N), (BVC_, ˜’%V),
(BVS_, ’%V) }

The EBNF for tables follows:

tables: NAME ASSIGN ’{’ name_list ’}’
// table declaration with single names

| ’[’ NAME ’,’ OP_TNAME ’]’ ASSIGN ’{’ name_op_list ’}’
// table declaration with names and their operations

| ’[’ NAME ’,’ COND_TNAME ’]’ ASSIGN ’{’ name_exp_list ’}’
// table declaration with names and their expressions

name_list: name_list ’,’ INSTR_NAME
| INSTR_NAME

name_op_list: name_op_list ’,’ ’(’ INSTR_NAME ’,’ ’"’ oper ’"’ ’)’
| ’(’ INSTR_NAME ’,’ ’"’ oper ’"’ ’)’

name_exp_list: name_exp_list ’,’ ’(’ INSTR_NAME ’,’ exp ’)’
| ’(’ INSTR_NAME ’,’ exp ’)’

oper: BIT_OP
| ARITH_OP

Tables and Expressions

In Section 7.3.5 we mentioned that there were two types of expressions that dealt with tables: the table expression and
the table operand. The former allows users to index the second element of tables that pair instructions and expressions,
by indexing on the expression (i.e. the condition in the previous example). The latter allows users to index the second
element of tables that pair instructions and operators, by indexing on their operator (i.e. theOP3field in the second to
last example above). We replicate the relevant part of the expression EBNF for convenience:
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exp: ...
| COND_TNAME ’[’ IDX ’]’ // table expression
| exp OP_TNAME ’[’ IDX ’]’ exp // table operand
...

The expressions that relate to tables can be used as part of assignment statements which facilitate the description of the
semantics of an instruction. For example, our earlier addition expression’r[1] + ’r[5] would be more general
if taken in context of the arguments parsed for an addition instruction: a registerrs1 , a register or an immediate
reg or imm, and the destination registerrd , and specified as an assignment statement:

*32* r[rd] := ’r[rs1] + ’reg_or_imm

When being part of theARITH,OP3 table, the whole set of instructions can be specified as follows:

*32* r[rd] := ’r[rs1] OP3[idx] ’reg_or_imm

whereidx is an indexed variable into the table (based on the instruction parsed), it would be 1 if theADDinstruction
were parsed.

In a similar way, we can index in theJUMPS,CONDtable to determine the condition of a branch instruction. In this case,
if the condition is true, the named register%nPCis set to a displacement from the current PC, otherwise it is set to the
next physical instruction. Note that this is a simplification of the complete semantics for illustration purposes only.

*32* %nPC := ((COND[idx] = 1) ? ’%PC + (4 * disp22) : ’%PC + 4)

7.3.9 Instructions

An SSL instruction is the way we describe the semantics for one particular machine/assembly instruction. An instruction
takes the name of the assembly instruction or a table name as its left-hand-side (LHS) and a list of statements (as per
Section 7.3.6) on its right-hand-side (RHS). The RHS and LHS are separated by indentation for readability purposes.

The assemblyORcc instruction takes three arguments on SPARC; a register and another register or an immediate value,
and the destination register. The input arguments are bitwise-or’d and the result is placed on the destination register. The
4 condition codes are updated also, by setting the negation flag to the most significant bit of the result, the zero bit based
on whether the result was 0 or not, and the overflow and carry bits to 0. This instruction can be specified as follows:

ORCC rs1, reg_or_imm, rd *32* r[rd] := ’r[rs1] or ’reg_or_imm
defineflags (%N, %Z, %V, %C)

The following example illustrates how to specify the semantics for a group of arithmetic and bitwise instructions that
have been grouped in theINSTR TABLEtable. The LHS specifies the name of the instruction (i.e. one of the ones in the
table) and the number and names of the parameters. The RHS specifies the semantic operation to be performed based on
the index of the instruction in the table.

[INSTR_TABLE, OP1] := { (ADD_,"+"), (AND_,"&"), (OR_,"|"), (SUB_,"-
"), (XOR_,"ˆ") }
INSTR_TABLE[idx] parameter1 *8* r[1] := ’r[1] OP1[idx] ’parameter1

The EBNF for instructions follows. The decorated name argument refers to mainly x86 names that have been decorated
in SLED for ease of distinction of similar instruction; for example, attachingmrb at the end of aADDinstruction or a
table of arithmetic and logical assembly instruction namesARITLOG[idx]ˆ"mrb" .
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instr: lhs_def stmt_list

lhs_def: INSTR_NAME list_parm // single instruction LHS
| NAME ’[’ IDX ’]’ list_parm // table instruction LHS
| NAME ’[’ IDX ’]’ DECOR list_parm // table inst. with deco-

rated name
| INSTR_NAME DECOR list_parm // single instruc-

tion with decorated name

list_parm: list_parm ’,’ PARM
| PARM

7.3.10 Parts of a Specification

A complete SSL specification consists of up to four different parts: definitions of constants, definitions of registers,
definitions of flag functions, definitions of operands, definitions of tables, and a list of SSL instructions. The EBNF for
the parts of a specification follows:

specification: specification parts
| parts

parts: constants
| registers
| flag_fnc
| operands
| tables
| instr

7.4 Modelling Computer Architecture Features – The Architecture
Environment

The architecture environment is the first part of an SSL specification file and defines names and constants that are needed
in order to describe hardware-related issues that deal with machine instructions. For example, the register window
pointer (CWP) on SPARC. This environment is not fully supported at present and hence it’s mainly commented out in the
specifications provided below.

The following architectural issues are defined for SPARC; constant names that start with a# are not supported at present.

NWINDOWS := 3 # Number of windows (register windows)- implementa-
tion dependent
MAX_BYTE := 2**8 # a byte of all 1’s
MAX32BIT := 2**32 # a word of all i’s
MAXSIGN32 := 2**31 # all bits except sign bit are set
SIGN_32_NEG := -2**31
WORD := 32 # size of word in bits

#ENDIANNESS := BIG



7.4 Modelling Computer Architecture Features – The Architecture Environment 111

#REGISTER %N, %Z, %V, %C, %psr, %wim, %tbr, %Y, %asr[1..31], w[0..((NWINDOWS-
1)*16)]

#CWP := {0..(NWINDOWS-1)} # current window ptr

#INVARIANT ::= r[{0..31}] := w[({0..31} + 16*CWP) mod NWINDOWS*16]

#[ %g0, %g1, %g2, %g3, %g4, %g5, %g6, %g7,
# %o0, %o1, %o2, %o3, %o4, %o5, %o6, %o7,
# %l0, %l1, %l2, %l3, %l4, %l5, %l6, %l7,
# %i0, %i1, %i2, %i3, %i4, %i5, %i6, %i7 ] is r[0..31] # register win-
dow wrapping
#[ %sp, %fp ] is [ %o6 %i6 ]

The first 7 lines declare constant names; only the numeric ones are supported at present. TheREGISTERdirectdive
declares named registers. BothCWPand INVARIANT declare aspects of register windows; the index into the window
and the current window invariant. The last two tables bind names to registers.

For the 80286, the following architectural issues are defined:

# Constants defined in hexadecimal (modelling the manual)
MAX8BITS = 0xFF
MAX16BITS = 0xFFFF
MAX8NEG = 0xFFFFFFFF80 # (-128)
MAX16NEG = 0xFFFFFF8000 # (-32,768)
SIGN16 = 0x8000

# General registers, flags, and Global variable defined as registers
#REGISTER %AX, %BX, %CX, %DX, %SP, %BP, %FP, %SI, %DI, %AL, %CL, %DL, %BL, %AH, %CH, %DH, %BH,
# %ES, %CS, %SS, %DS, %PC, %OF, %DF, %IF, %TF, %SF, %ZF, %AF, %PF, %CF, %Rpt, %Skip

#%AL := %AX@(0:7)
#%AH := %AX@(8:15)
#%BL := %BX@(0:7)
#%BH := %BX@(8:15)
#%CL := %CX@(0:7)
#%CH := %CX@(8:15)
#%DL := %DX@(0:7)
#%DH := %DX@(8:15)

#ENDIANNESS = LITTLE

As per SPARC, these define constants for maximum signed and unsigned constants, and binds names to registers.

At present, in each spec, there is also reference to what effective address means, but this will be removed as the decoder
of machine instructions should decode the effective address and pass the relevant argument to the semantic spec, hence
we do not need to expand all cases in the spec and we just use the nameeaddr instead.

The binding of names to registers is already part of SLED as it is needed in order to specify the syntax of machine
instructions. These bindings are not really required if the spec is to be used in that context. The constant definitions are
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useful and are macro-expanded when an instruction is instanciated, hence they do not create an overhead. The constants
dealing with register windows need to be better specified and possibly removed from the specification. We are considering
different options at present—watch this space.

It is also desirable to provide the user with a means of specifying their own macros or overriding the ones provided by
the SSL description. Again, this has not been implemented at present.

7.4.1 Fetch-Execute Cycle

Underlying any semantic specification is the fetch-execute cycle that the processor follows when executing machine
instructions. The standard cycle is the following:

1. Fetch the instruction from memory at the location pointed to by the PC (program counter) register,

2. Increment PC by the size of the instruction fetched,

3. Decode the fetched instruction, and

4. Execute the instruction.

The cycle is repeated until the running process terminates.

Architectures such as SPARC have slightly modified the fetch-execute cycle by introducing another register to keep track
of targets of delayed instructions. In their case, the PC points to the next instruction to be executed, and the nPC points
to the next PC value; i.e. the instruction after the next one. Once an instruction is fetched, the PC takes the value of the
nPC, and the nPC is incremented by the size of the instruction fetched.

The fetch-execute cycle of the processor is given explicitly as a special instruction FETCHEXEC, which gives a list of RTs
to be executed on each cycle. The special function execute(n) is defined only within the context of FETCHEXEC, to mean
the execution of an instruction at address n, which returns the address of the following instruction. If no FETCHEXEC
block is given, the following default applies:

FETCHEXEC *1* %CTI := 0
*32* r[tmp] := execute( %pc )
*32* %pc := [%CTI = 0 ? r[tmp] : %pc ];

˝

%CTI is a pseudo-register which should be set to 1 by any instruction that causes a control transfer (if and only if the
transfer actually takes place). This serves the dual purpose of marking such control transfer instructions for later analysis,
as well as permitting its uses here.

It should be noted that the current implementation does not use the contents of FETCHEXEC for static translation - while
it may theoretically be possible to use the information contained within to eg eliminate branch delay slots, the analysis
required for doing so is currently beyond the scope of this project. At present only the emulator uses this section.

7.5 Modelling the Semantics of 80286 and SPARC Instruction Sets

SSL has been used to model the semantics of machine instructions for a CISC (80286) and a RISC (SPARC) machine. In
this section we show extracts of the complete specifications for these machines; the complete specs are available in the
UQBT source distribution.
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The arithmetic and logical instruction table is shown in Figure 7.2 as an example of an 80286 group of instructions
specified in SSL.(ARITHLOG,OP1) is a table containing pairs of arithmetic and logical instruction, and their operators.
Due to the large number of addressing modes in x86, each instruction in this group takes 9 different forms depending
on the arguments to the instruction, and these forms are differenciated by decorating the name of the table in each case.
Each instruction consists of an assignment, which is either of 8 or 16 bits in size, and assigns the result of the expression
onto the destination register (which in several instances is an implicit register as described in the architecture manual).
The second statement for each instruction is adefineflags macro statement which describes transfers of information
to condition codes.

[ARITLOG,OP1] := { (ADD_, "+"), (AND_, "&"), (OR_, "|"), (SUB_, "-"), (XOR_, "ˆ") }

ARITLOG[idx]ˆ"iAL" i8 *8* %AL := ’%AL OP1[idx] i8
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]ˆ"iAX" i16 *16* %AX := ’%AX OP1[idx] i16
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]ˆ"mrb" eaddr, reg8 *8* eaddr := ’eaddr OP1[idx] ’reg8
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]ˆ"mrw" eaddr, reg *16* eaddr := ’eaddr OP1[idx] ’reg
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]ˆ"rmb" reg8, eaddr *8* reg8 := ’reg8 OP1[idx] ’eaddr
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]ˆ"rmw" reg, eaddr *16* reg := ’reg OP1[idx] ’eaddr
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]ˆ"wb" eaddr, i8 *8* eaddr := ’eaddr OP1[idx] i8
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]ˆ"b" eaddr, i8 *8* eaddr := ’eaddr OP1[idx] i8
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]ˆ"w" eaddr, i16 *16* eaddr := ’eaddr OP1[idx] i16
defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

Figure 7.2: SSL definition of the arithmetic and logical instruction from the 80286 architecture

The use of tables for instructions, operators, and expressions greatly decrease the size of the specification, at a small
expense on readability of the specification. The use of flag macros enhances the specification by increasing its readability,
and abstracting from the nitty-gritty details of flag transfers.

The SPARC load double word instructions are shown in Figure 7.3. The load double word instruction takes two
parameters: an effective address (i.e. a register or an immediate) and a destination register. The instruction assigns a
64-bit value into a pair of registers; the first 32-bits go into an even register and the last 32-bits go into an odd register.
The 64-bit value comes from memory, indexed by a register or an immediate (i.e. eaddr).

ODDMASK := 1
EVENMASK := 30

# Load double instruction- the 1st reg. of double load must be even
# the 2nd reg. of double load must be the next reg. after 1st, hence odd.
LDD_ eaddr, rd *32* r[’rd & EVENMASK] := ’m[’eaddr]

*32* r[’rd | ODDMASK] := ’m[’eaddr + 4]

Figure 7.3: SSL definition of the load double word instructions from the SPARC architecture

An example of tables and membership expressions is shown in Figure 7.4. The table(LOG,OP1) contains logical
assembly instructions and their operators. The first 6 instruction assign a value to a register. The last 6 instruction do that
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and also affect the condition codes. When specifying the semantics of the instructions in this table, the extra functionality
attached to the last 6 instructions can be specified by means of a membership expression (|= ): if the assembly instruction
index in the table is between 6 and 11 (recall that tables are indexed from 0), the instruction affects the condition codes
as per specified. The|= operator acts as a condition and the=> acts as an if-then statement.

# logical table
[LOG,OP1] := { (AND,"&"), (ANDN,"&˜"), (OR,"|"), (ORN,"|˜"), (XOR,"ˆ"), (XNOR,"ˆ˜"),

(ANDCC,"&"), (ANDNCC,"&˜"), (ORCC,"|"), (ORNCC,"|˜"), (XORCC,"ˆ"), (XNORCC,"ˆ˜"),

LOG[idx] rs1, reg_or_imm, rd *32* r[rd] := ’r[rs1] OP1[idx] ’reg_or_imm
(idx |= {6..11}) =>

defineflags(%N, %Z, %V, %C)

Figure 7.4: SSL Specification for Rotates in the 80286

7.5.1 Modelling Higher Order Instructions

The semantic description of most assembly instructions is straight forward as most instructions are self-contained; that is,
they refer to only arguments that come within the instruction itself. However, there are a few instructions which related to
other instructions, typically thenextinstruction in the instruction stream. These instructions are refere to as higher order
instructions and deserve further explanation as to their semantic specification.

The higher order instructions available in the SPARC architecture are all the delayed transfers of control (branches, calls
and returns). The ones available in the 80286 architecture are the repeat string instructions. We are also aware the the
Pentium has prefix instructions that may also be considered higher order, however, we are not sure if this should be
included as part of the decoder of machine instructions or not—the prefixes commonly override a 16-bit register in the
next instruction for a 32-bit register name.

Delayed Instructions

On SPARC, delayed instructions take the form of a pair of instructions; the first one is a control transfer instruction and
the second one (commonly referred to as the delay slot instruction) can be any type of instruction (although normally it
is not another control transfer instruction). These instructions are used whenever transfering control to another memory
location in the program, as the next instruction in the stream can actually be executed prior to the transfer of control by
the first instruction. This is possible due to the architecture’s pipeline.

The architecture manual (spa92a) models this instruction with the help of a special hardware register available in SPARC;
the nPC register (for next program counter); and a variation on the standard fetch-execute cycle: register PC points to
the next instruction to be executed, nPC points to the next instruction after PC has been executed, and the value of PC is
always updated with the value of nPC at the end of each iteration, and nPC is updated by 4 bytes (i.e. one word). For
non-delayed instructions, nPC points 4 bytes ahead of PC (i.e. PC+4).

Branch instructions have a further constraint—the delay slot instruction can be annulled or not depending on the value of
the ’a’ field in the instruction. A machine-dependent specification of the branches on SPARC would be as follows (as per
current sparc.ssl spec):

# Jump table
[JUMPS,COND] := { (BA_, 1), (BN_,0), (BNE_, ˜’%Z), (BE_, ’%Z),

(BG_, ˜(’%Z |(’%N ˆ ’%V))), (BLE_, ’%Z |(’%N ˆ ’%V)),
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(BGE_, ˜(’%N ˆ ’%V)), (BL_, ’%N ˆ ’%V),
(BGU_, ˜(’%C | ’%Z)), (BLEU_, ’%C | ’%Z), (BCC_, ˜’%C),
(BCS_, ’%C), (BPOS_, ˜’%N), (BNEG_, ’%N), (BVC_, ˜’%V),
(BVS_, ’%V) }

JUMPS[idx] disp22, a *32* %nPC := ((COND[idx] = 1) ? ’%PC + (4 * disp22) :
((a = 1) ? ’%PC + 4 : ’%nPC))

*32* %PC := ((COND[idx] = 0 and (’a = 1)) ? ’%PC + 4 : ’%PC)

However, although the previous specification is correct, it is not useful for binary translation purposes as the target
machine may not have a special nPC register or the modified fetch-execute cycle which sets the PC register to nPC. Even
if nPC is modelled with any particular register, one would need to force the PC to be equal to nPC at the end of each
cycle; on x86 this can be done by pushing the value of nPC and returning (i.e. pops the value on the top of the stack onto
PC and transfers control there)—this is nasty code we shouldn’t need to use.

We ended up developing a transformational analysis to remove the nPC from source RTL instructions, this is explained
in Chapter 10.

Repeat String Instructions

On x86, the repeat instructions allow the next instruction in the stream to be repeated the number of times specified in
thecx register based on an implicit condition in the repeat instruction itself. The next instruction in the stream must be a
string instruction (i.e. one ofcmps, lods , movs, scas , or stos , in either byte or word mode).

TheREP, REPNEandREPNZinstructions execute the next instruction in the stream while the value of thecx register
is not zero; each iteration decreases the value of the register by one. This instruction could have been modelled with a
loop construct in the language, however, we felt that SSL should not include loops as this will most likely be misused by
writers of semantic specifications. Hence it was modelled with the equivalent of two global flags:Skip andRpt (for
skip and repeat). TheRpt flag is set to 1 while the value ofcx is greater than 0, and it is reset to 0 when the register
becomes 0. This flag is used by the string instructions to update the value of thePC register prior to termination of the
instruction, namely, by “going back” one instruction (to the repeat instruction) if the value of the flag was on. TheSkip
flag is then needed to “skip over” the string instruction in the last iteration (as the loop is not to be performed any more).
The relevant extract from SSL follows:

# REPT table for repeat instructions with condition ’cx > 0’
REPT := { REP_, REPNE_, REPNZ_ }

# REP uses Skip and Rpt registers to enable iteration
REPT[idx] *1* %Skip := [(’%CX = 0) ? 1 : ’%Skip]

*1* %Rpt := [(’%CX = 0) ? 0 : 1]
*16* %CX := [(’%CX > 0) ? ’%CX - 1 : ’%CX]

# STRS table for string instructions
STRS = { CMPS_, LODS_, MOVS_, SCAS_, STOS_ }
STRS[idx].b ... // other stuff here

*16* %PC := ’%PC + [’%Rpt ? -1 : 0]

As with the SPARC example, this does specify the semantics of the repeat string instructions but at a great overhead –
we wouldn’t want to model them on a different architecture as we would have to force the PC to change (and on SPARC
that is harder to do than on x86), but we would also have to dedicate two registers for the special flags. The design of
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this instruction was based on the Object-Z specification as it was thought nicer than enumerating all possible pairs of
repeat-string instruction and specifying each one (too “brute force” one would say).

7.6 SSL Simplifications

Some changes were made to the language in late November/early December to allow for the full implementation of a tool
that parses this language and stores the information in a suitable form. We document here such issues, maybe they will
be supported in the future, maybe not:

� The size field of an assignment statement: the size field, denoted by * surrounding the number of bits of the
assignment, used to be specified by allowing also variables to hold this value (rather than fixed constants). This
simplified the specification of the store instructions for example. The previous spec used to read:

# STORE table
STORE = { ST, STA, STH, STHA, STB, STBA }

STORE[idx] Eaddr, rd *32* size := (idx > 1 ? (idx > 3 ?
8 : 16) : 32)

*size* m[’Eaddr] := ’r[rd]

Whereas the new one uses fixed sizes and therefore requires three tables instead of one:

STORE := { ST_, STA_}
STORE[idx] Eaddr, rd *32* m[’Eaddr] := ’r[rd]

STORE := { STH_, STHA_ }
STORE[idx] Eaddr, rd *16* m[’Eaddr] := ’r[rd]

STORE := { STB_, STBA_ }
STORE[idx] Eaddr, rd *8* m[’Eaddr] := ’r[rd]

� Only numerical constants are allowed at present; extending it to alpahnumerical constants would help when trying
to define characteristics of architectures, such as little and big endianness; e.g.

ENDIANNESS := BIG

7.7 Implementation – Semantic Representation Decoder

SRD, a Semantic Representation Decoder, is a tool that parses SSL files and stores them in a file in a template form, ready
for instanciation by an RTL interface (see Section 8.1, Chapter 8 for our RTL interface).

SRD makes use of lex and yacc to parse an SSL file and store it in memory; this memory representation is then stored in
a template file.

SRD at this stage takes a SSL specification of an architectures and parses it (assuming that it is a valid specification) into
an expression tree structure. This structure is then “expanded” (not really, because it is done in-situ) to cover all table en
tries and the if statements are resolved it is then put into an ascii file that is in a simplified form (but still readable?). At
the moment this ascii file (the second, ie. not the specification) is parsed to get it into memory using yacc.

� Constants cannot be expressions ie. they must be number values.
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� No constants are allowed in casts eg. r[rs1]16 not r[rs1]SIZE16

� if statements can only be used to select table offsets and cannot contain an expression that depends on “real”
variables.

� Instruction names must be uppercase and suffixed with an underscore (eg. ADD); tables names must be uppercase
and cannot be suffixed with an under score (ADDTABLE). The lexer does not differenciate between a table and a
constant and therefore the c onstants are of the same form as a table.

� The bit-extraction operator is a binary operation that has a LHS of a value expression and a RHS that is itself a
binary expression that has a LHS value (lower bound) an operator colon (eg. :) and a RHS value (upper bound).

� sign extension is classed as a unary operator.

� all the rotates from 80286 (rrc rlc rr rl) have been included as native operators.

� 80286 ENTER instruction is not complete due to the problem of macro-expanding a while loop.

� In fact, no macro expansion is implemented

� Flag procedures referred to as flag macro (do not macro expand) define the flags that are effected or in the case of
“undefineflags” show the flags that are set to 0.

� Particular naming conventions are required to differientiate between instruction that have different addressing
modes but have the same parameter inputs. An example of this can be seen in 80286 CALL instruction with the
far and near segment options; they have the same parameters (and the same instruction name of course) but they
are different. They can be differientiated in the specification because of the decoration suffixed. However, the
decoration is not included into the later structure where th e matching takes place.

First Expression tree structureThe first expression tree is used to store the raw parsed ssl specification (raw because
it does no expansion and substituting). This file also contains directives to for the next phase which manipulates this
structure. The next phase uses the original st ructures; where it instantiates table requirements, substitutes constants and
collapses if statements. This phase stores the structure to a ascii representation.

Second Expression tree structureThe ascii file produced from above is then parsed and stored in memory by the second
expression tree structure. This structure is then used as the template file that can be used as a guide to instantiate real
instructions. Currently the parser has a minor problem, but the structure and outline are there.

Note: More specific implementation details can be found in the implementation files.
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Chapter 8

Intermediate Representation

Design: Cristina and Mike[c.96-98]; Documentation: Cristina [c.1998, May 00], Mike [May 00], Brian [Oct 01]

The intermediate representation is a combination of various data structures to manipulate machine instructions in an
abstract way, and to allow analyses to be performed on those instructions.

The intermediate representation used inUQBT is composed of:

� Register transfer lists (RTLs) that represent the assembly instructions of the machine.RTLs are converted into a
higher-level representation calledHRTLby means of transformations (explained in Part III). TheRTL language is
described in Section 8.1, and theHRTLlanguage is described in Section 8.5.

� Control flow graph of basic blocks for each procedure1 in the program. The construction of control flow graphs is
described in Section 8.2.

The main data structures used to represent a program are illustrated in Figure 8.1 and follow this hierarchy:

� A program is represented by aPROGstructure which holds general information about the input binary executable.
This information is setup by the loader while decoding the binary-file (e.g. entry point, pointers to .text and .data
segments, dynamic information, etc).

A program is a collection of procedures; these procedures are stored in a list.

� A procedure is represented by aPROCstructure which holds general information about a procedure (e.g. entry
point, size (in bytes) of the procedure, name (if known), etc).

A procedure is represented by a control flow graph and its register transfer list instructions.

� A control flow graph (CFG) of basic blocks (BBs) is represented by aBBstructure which holds information about
the one basic block (e.g. entry point, pointers to first and last instructions in the BB, type of BB, successors (i.e.
out-edges), predecessors (i.e. in-edges), number of out-edges, number of in-edges, etc).

A BB has links to the first and last RTL instructions that belong to the BB, rather than including the RTL
instructions itself.

� A register transfer language (RTL) instruction is represented by anRTL structure which holds precise information
about the machine instruction (e.g. type of instruction, condition codes set, condition codes used, registers set,
registers used, etc).
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Figure 8.1: Data Structures to Represent a Binary Program

We describe each of these parts of the intermediate representation in reverse order, that is, starting from atomic data
structures and ending up with the program structure.

8.1 Register Transfer Lists

Design: Cristina, Mike; Documentation: Cristina, Doug, Mike; Implementation: Doug, David, Mike

UQBT uses a simple, low-level register-transfer representation for the effects of machine instructions. A single instruction
corresponds to a register-transfer list or RTL, which in UQBT is a sequential composition of effects. Each effect assigns
an expression to a location. All side effects are explicit at the top level; expressions are evaluated without side effects,
using purely functionalRTL operators. For example, the effects of the SPARCcall instruction are represented by the
following RTL:

r[15] := %pc
%pc := %npc
%npc := r[15] + (4 * disp30)

This sequence of effect puts the program counter%pc in register 15, copies the “next program counter”%npc into the
program counter, and puts the target address into%npc. Because the target address is computed relative to theoriginal
program counter, the target-address computation uses register 15, which holds the original value of%pc. Because the
SPARC uses delayed branches, the target address is placed into%npc, not directly into%pc.

Register transfer lists (RTLs) capture the semantic information of machine instructions by means of a series ofeffects
on a location. One register transfer is an assignment of an expression (i.e. an effect) to a location (i.e. a register or
memory). There are no side effects, all effects are explicitly mentioned in the RTL. The RTL environment assumes an

1Throughout this document, the wordprocedurerefers to a subroutine; that is, a subroutine that returns a value (i.e. function) or a
subroutine that does not return a value (i.e. procedure).
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infinite number of registers and infinite memory space. Memory is a sequence of bytes.We will need specialized types
of memory, such as memory for local variables, once the analysis has been formalized. We will do that then, so for now,
there is only one type of memory.

An ‘RTL language’ is defined by a collection of locations and operators. UQBT uses an RTL language defined by taking
the union of locations on machines MS and MT and the union of the operators used in the descriptions of machine MS

and MT . The ‘machineX invariant’ defines a sub-language of RTLs called theX-RTLs; an RTL is anX-RTL if and
only if it can be represented as a single instruction on machineX.

UQBT’s RTL implements the semantic information expressed in SSL notation (SSL is described in Chapter 7).

8.1.1 Types

We define the following types to work with RTLs. (NOTE that these names should be in uppercase and perhaps shorter.
I’ve listed them as they appear in the rtl.h interface so that we don’t get confused – when those are updated, these should
be updated).

RTlist a list of register transfers. Various analysis functions work on RTlists, such as GetControlTransfer().

RTLInstDict a dictionary of expanded instructions from the SSL file.

RT a register transfer is an assignment statement which has a variable (i.e. location) as the left-hand side and an
expression (i.e. value) on the right-hand side.
We have considered introducing in the future a specialized RT which is a call, but at present that has not been
decided upon. We think it will be useful for analysis purposes.

RTAssgn a subclass of class RT, representing an RT assignment (i.e. location := expression). One instruction may have
zero (for NOP only) or more of these.

RTFlagDef a subclass of class RT, representing the definition of a flag function.

RTFlagCall a subclass of class RT, representing the call to a flag function.

SemStr a Semantic String, which is a prefix linearisation of an expression tree (see below). A SemStr can be used to
represent a location, value, or subexpression.

Expression operators are reproduced in Figure 8.2.

8.1.2 Interface Functions to Create and Use RTLs

All objects have constructor and destructor functions, as well as functions to access elements of an object. Specialized
analysis-related functions are explained in the last subsection of this section—Functions for Analysis Purposes.
This style file doesn’t number subsub sections, how annoying!

Semantic String Class

A semantic string object (SemStr) is a prefix linearisation of a tree of RT components, such as constants, registers,
memory, and various expressions involving these. It is inplemented as a list of integers (called items); many of these
integers are indices into a special table called the Semantic Table. Entries in this table represent various things, such as
operators, special registers, parameters, and so on.

Here are a few examples: index 0 (the first entry) is calledidPlus , and represents binary addition. Approximately
index 75 is calledidIntConst , representing an integer (the actual integer is the next integer in the string, following the
idIntConst ). So the expression2+2 is represented by the string “0 75 2 75 2 ” (read this as “plus int 2 int 2”).
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All the operators listed in Figure 8.2 are automatically included in the table, and they are machine independent. Special
registers (e.g. the Next Program Counter register (%npc) and parameters (e.g.rs1 for the first source register) are added
by the parser of the SSL file (see Chapter 7). Let’s consider a complete RTAssgn, conventionally written as

r[4] = m[1000] + 5

This will be implemented as two semantic strings, one for the location (left hand side) and one for the value (right hand
side). Each will be a list of integers, which might be

34 75 4 and 0 38 75 1000 75 5

and might print as

r[4] and m[1000] + 5 normally (the ”int” is dropped for brevity), or

r[ int 4] and + m[ int 1000 ] int 5

if you choose to use the printPrefix() member function. This latter representation is better for debugging problems with
semantic strings, though obviously it is less readable.

The first SemStr could be read as “RegOf int 4”. The first integer, 34, is an index into the semantic table, where among
other information there is the string “r[” (for the SemStr print routine). The enumerated constant “idRegOf” can be
used in programs to represent this index (see Figure 8.2 for a complete list of these enumerated constants). The second
integer, 75, is also an index into the semantic table, and says that the integer following this index is to be taken as a
literal integer. The third integer, 4, represents itself. The second semantic string is a little more complex. Its first index,
0, represents addition. The two arguments to be added come next, but they are variable length. Immediately after the 0
is 38, representing ”memory of”. The thing following the MemOf could be any kind of expression; in this case it’s “int
1000”, but it could have been say “+ 500 500 ”, or “ - r[ int 16 int 8 ”.

Note that special registers (such as%pc or %CF) are represented differently from general purpose registers. General
purpose registers are numbered, whereas special registers have their own index into the semantic table (see Section 8.1.2).

A word on nomenclature: the wordparameteris used to describe a part of an instruction that will beinstantiatedwith the
RTL function. For example, “regorimm” could be a parameter representing a part of an instruction; actual values could
be “r[4]” or “4”. The word argumentis used here to mean those parts of a semantic string that represent arguments (or
operands) to the first index. For example, if the first index isidMinus , then there are two variable length arguments to
it, representing the minuend and the subtrahend respectively. If the first index is idSize, there is one integer argument (the
number of bits in the size being cast to), and one variable length argument (the expression being size cast).

Every semantic string has a type (e.g. unsigned integer 32 bits); the type is represented by class Type (see Section 8.1.2).
If not explicitly specified, the semantic string is assigned the default type (which is signed integer 32 bits). This type is
preserved when semantic strings are copied, subexpressions are made, and so on.

� SemStr:; ! SemStr. Default constructor.

� SemStr: Kind! SemStr. Constructor that takes an expression kind. The kinds are only these: uORDINARY,
eOPTABLE, and eCONDTABLE. Not for users.

� SemStr: SemStr! SemStr. Copy constructor.

� operator=: SemStr! SemStr. Assignment operator.

� SemStr: (Iterator1 x Iterator2)! SemStr. Constructor that takes a pair of iterators. Makes a copy of part of some
other SemStr starting with the item referenced by iterator1 up to but not including iterator2.

� SemStr: (int* x int* x Kind)! SemStr. Constructor that takes two pointers to an array of integers (pointer to first
and pointer to last). Also takes kind, as above.

� getKind: SemStr! Kind. Gets the kind as above. Not for users.

� getType: SemStr! Type. Gets the type (as class Type) for the semantic string.
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� isFloat: SemStr! BOOL. Note: deprecated. Returns true if the expression this semantic string represents is a
floating point type.

� setType: (SemStr x Type)! ;. Set the type for the expression that this semantic string represents.

� setTypes: (SemStr x SemStr)! ;. Set the type for this semantic string to be the same as the type of the given
semantic string.

� operator==: (SemStr x SemStr)! BOOL. Returns true if this SemStr is equal to the given SemStr. Type is taken
into account in the comparison.

� operator%=: (SemStr x SemStr)! BOOL. Same as above, except that type isnot taken into account.

� operator-=: (SemStr x SemStr)! BOOL. Same as the two above, except that only the sign element of the type is
disregarded. Therefore, to return true, the expressions must match, and the size and broad type must match, but
the “signedness” need not match.

� operator<: (SemStr x SemStr)! BOOL. Returns true if this SemStr is “less than” the given SemStr. Comparison
is arbitrary, but establises a unique ordering of semantic strings. This function is often used implictly where there
are maps of semantic strings. Type is included in the comparison.

� operator<<: (SemStr x SemStr)! BOOL Same as the above, except that “signedness” is not considered in the
comparison.

� push: (SemStr x int)! ;. Push the given integer to the end of the semantic string. It is up to the user to make sure
that the semantic string is valid.

� prep: (SemStr x int)! ;. Prepend the given integer to the front of the semantic string. It is up to the user to make
sure that the semantic string is valid.

� pushSS: (SemStr x SemStr)! ;. Push a copy of the given semantic string to the end of this string

� pushArr: (SemStr x int x int*)! ;. Push the given number of integers from the given array of integers to the end
of the string.

� pop: ; ! int. Remove the last integer from the list, and return it.

� popFirst:; ! int. Remove the first integer from the list, and return it.

� clear:; ! ;. Set this semantic string to be empty (no elements in the list).

� isSpRegEqual: (SemStr x int)! BOOL. Returns true if this semantic string matches the special register whose
index is given. Not for most users.

� isSpRegCont: (SemStr x int)! BOOL. Returns true if this semantic string contains the special register whose
index is given. Not for most users.

� isNumRegEqual: (SemStr x int)! BOOL. Returns true if this semantic string matches the register whose number
is given. Not for most users.

� isNumRegCont: (SemStr x int)! BOOL. Returns true if this semantic string contains the register whose number
is given. Not for most users.

� isArrayEqual: (SemStr x Array of int)! BOOL. Returns true if the elements of this semantic string match the
elements of the given array of integers. Can be used to test for specific semantic strings, e.g. “%pc = %npc”.

� getFirstIdx: SemStr! int. Returns the first item of this semantic string. Note that this really should be called
getFirstItem, since the integer returned may not actually be an index (it could be an integer constant, or even half
of a floating point constant).

� getSecondIdx: SemStr! int. Returns the second item of this semantic string. Usually used where the first index
is known to contain one integer or fixed argument (e.g. the first index is idIntConst or idSize).

� getThirdIdx: SemStr! int. Returns the third item of this semantic string.
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� getSubExpr: (SemStr x int)! SemStr*. Returns a pointer to a new semantic string, which is composed of the
given subexpression. Passing zero returns the first argument to this expression, one returns the second, and so on.
Note: This member function only works with variable arguments. Use GetSecondIdx to access an integer or fixed
argument.

� getSubExpr: (SemStr x int x SemStr)! SemStr. As above, but also stores the result in the reference (last)
parameter. This ensures that the caller will automatically delete the semantic string when it goes out of scope.

� getIndex: (SemStr x int)! int. Get theith item (wherei is given).

� getLastIndex: SemStr! int. Get the last item of the list of integers in this semantic string.

The next group of member functions concern searching for a subexpression withing this semantic string. An item
of -1 in a semantic string is treated as a “wildcard”. Formally, a search expression (S) will match a subexpression
(E) if:

length(S)<= length(E) and for each position, p, in S the following holds:

S[p] == -1 jj S[p] == E[p]

Example: if this is f0,f3,78g,f43,6,14gg, it can be searched with the following subexpressions, and will return
true:

Search Result
ff3,78gg ff3,78gg
ff0,*,*,f43ggg ff0, f3,78 g, f43,6,14 ggg

� search: (SemStr x SemStr x SemStr x BOOL)! BOOL. Searches this semantic string for the given subexpression
(first parameter afterthis). If found, the matching string is copied to the reference (last SemStr) parameter. The
return value is whether a match was found. If the optional boolean is set, the search is type sensitive (i.e. the
types have to match, as well as the expressions). This boolean defaults to false (i.e. the search defaults to case
insensitive).

� searchAll: (SemStr x SemStr x listfSemStr*g x BOOL) ! BOOL. Searches this semantic string forall
occurrences of the given subexpression (first parameter afterthis). For each match, the matching string is appended
to the list of pointers to semantic strings. The return value is whether any match was found. If the optional boolean
is set, the search is type sensitive (i.e. the types have to match, as well as the expressions). This boolean defaults
to false (i.e. the search defaults to case insensitive).

� searchReplace: (SemStr x SemStr x SemStr x BOOL)! BOOL. Searches this semantic string for the given
subexpression (first parameter afterthis). If found, the matching string is replaced by the reference (last SemStr)
parameter. The return value is whether a match was found. If the optional boolean is set, the search is type sensitive
(i.e. the types have to match, as well as the expressions). This boolean defaults to false (i.e. the search defaults to
case insensitive).

� searchReplaceAll: (SemStr x SemStr x SemStr x BOOL)! BOOL. Searches this semantic string forall
occurrences of the given subexpression (first parameter afterthis). For each match, the matching string is replaced
by the given string (last SemStr parameter). The return value is whether any replacement was made. If the optional
boolean is set, the search is type sensitive (i.e. the types have to match, as well as the expressions). This boolean
defaults to false (i.e. the search defaults to case insensitive).

� substReg: (SemStr x int x SemStr)! BOOL. Substitute all occurrences of the given numbered register with the
given semantic string. Returns true if any match found.

� substSpcl: (SemStr x int x SemStr)! BOOL. Substitute all occurrences of the given special register (index is
given) with the given semantic string.

� substIndex: (SemStr x int x int)! ; Replace the item at the given index with the given integer. For example,
substIndex(0, 77) will replace the first item in the list with 77.

� smartCompare: (SemStr x SemStr x BOOL x listfintg) ! BOOL. This function is not complete. Do not use.
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� findEndSubExpr(SemStr x iterator)! iterator. Given an iterator into this semantic string, step forward towards
the end of this string until the end of the subexpression headed by the given iterator is found. Returns an iterator
that is just past the end of that subexpression. For example, if given (3+4)*(5+6) (internally * + int 3 int 4 +
int 5 int 6), with an iterator pointing to the first plus, returns an iterator to the second plus (just past the (3+4)
subexpression). There are actually two functions with the same name; one takes and returns a const iterator, and
one takes and returns a non-const iterator.

� simplify: SemStr! ; Simplify this expression using constant folding and the like, and also cannonicalising the
expression by placing integer constants on the right if possible (so 2+a is replaced by a+2). a + -2 is replaced by
a-2. a<< k is changed to a * K where K=2**k.

� findSubExpr: (SemStr x int x int* x int)! BOOL. Search this semantic string for the expression (given by the
given number of integers in the given array of integers). Returns true if found. If found and there were wildcards
in the array, the item matched by the last wildcard is written to the reference (last) parameter.

� sprint: SemStr! string. Prints a representation of this semantic string to a string, which is returned. This is a
conventional (infix) representation, and so it somewhat removed from the actual (prefix) implementation. Some
effort is made to pretty the result, e.g. r[ int 4] is displayed as r[4]. When exact knowledge of the format of the
string is required, use sprintPrefix below.

� print: (SemStr x ostream)!;. Prints a representation of the semantic string to the given stream, or to cout if none
is given. It is equivalent to printing the string returned by sprint to the given stream.

� sprintPrefix: SemStr! string. Prints a representation of this semantic string to a string, which is returned. The
format is strongly tied to the internal (prefix) representation of the semantic string, so it is harder to read than the
result from sprint, but may be more useful for debugging.

� printPrefix: (SemStr x ostream)! ;. Prints a representation of the semantic string to the given stream, or to cout
if none is given. It is equivalent to printing the string returned by sprintPrefix to the given stream.

� len: SemStr! int. Returns the number of items in this semantic string.

� instantiate: (SemStr x listfintg x vectorfchar*g x RMAP)! BOOL. Replace all occurrences of formal instruction
parameters (e.g. rs1) with actual expressions (e.g. r[12]). The last parameter is an object representing the register
map. Not for users.

Semantic Table Class

Semantic Strings (class SemStr) are mainly indices into a special object of class SemTable, the semantic table. This is a
global object, accessable astheSemTable as long as you#include "ss.h" . Most of the time, the user need not
be concerned with the semantic table, but there are a few important exceptions.

One of these is when dealing with special registers. These registers are not accessed like general purpose registers (so
callednumberedregisters), but have their own entries in the semantic table. When special registers are referenced in the
SSL file (see Chapter 7), they are placed into the semantic table by the parser. The index of a particular special register
is not fixed (most of them are machine specific), so there is no enumerated constant likeidPlus that can be used for a
special register. At present, the way to find an appropriate index is to use the FindRegIndex member function.

� findRegIndex: (SemTable x string)! int. Given the semantic table and a string representing the name of the
special register (including the%), returns an integer index for the appropriate semantic table item. This single
index represents the special register in semantic strings (compared with three integers for a numbered register).

� findOpIndex: (SemTable x char*)! int. Given a C string representing the operator (e.g."&˜" ), returns the
index representing the operator. This operator can be used to build expressions, etc. Note that this function is not
efficient (at present, it uses a linear search), so it should not be used where the operator is known (in this case,
idBitAndNot ); use it where the operator could be one of a number of values, and only the string representation
is known. (For example, the SSL parser uses this function when parsing SSL expressions).



126 Intermediate Representation

Type Class

Types inside Semantic Strings and elsewhere are represented by class Type. A Type has three components: the broad
type, sign, and size. The broad type is given in terms of this enumerated type:

enum LOC_TYPE {
VOID = 0, // void (for return type only)
INTEGER, // integer (any size and signedness)
FLOAT, // a floating point (any size)
DATA_ADDRESS, // a pointer to some data (e.g. char*, struct*,

// float* etc)
FUNC_ADDRESS, // a pointer to a function
VARARGS, // variable arguments from here on, i.e. "..."
UNKNOWN

};

A particular type is given by either a tuple (e.g. (INTEGER, unsigned, 32 bits)) or a couple (e.g. (FLOAT, 64 bits); the
sign is irrelevant for a float, but defaults to signed).

� Type: ; ! Type. Default constructor. Returns the default type, which is 32 bit signed integer.

� Type: (LOCTYPE x int x BOOL)! Type. Constructor, with type given as a LOCTYPE (see abvove), size in
bits, and if the LOCTYPE is integer, a BOOL for sign (TRUE = signed).

� operator==: (Type x Type)! BOOL. Equality operator. Sign is considered in the comparison, so the types must
match in all respects for this function to return TRUE.

� operator-=: (Type x Type)! BOOL. Equality operator. Sign isnot considered, so for this function to return true,
the broad types and size must match, but the sign need not.

� operator<: (Type x Type)! BOOL. Less than operator. Sign is considered in the comparison. This function
establishes an arbitrary ordering among all types.

� operator<<: (Type x Type)! BOOL. Less than operator. Sign isnotconsidered in the comparison. This function
establishes an arbitrary ordering among all types.

� getSize: Type! int. Returns the size (in bits) component of the Type.

� getType: Type! LOC TYPE. Returns the Type component of the Type, as a LOCTYPE.

� getSize: Type! BOOL. Returns the sign component of the Type; TRUE if signed.

� setSize: (Type x int)! ;. Sets the size (in bits) component of this Type.

� setType: (Type x LOCTYPE)! ;. Sets the Type component of this Type, given a LOCTYPE.

� setSize: (Type x BOOL)! ;. Sets the sign component of this Type; TRUE if signed.

� getCtype: Type! CHAR*. Returns a C-style null terminated string representing the C language equivalent of the
type. For example, if the type is (integer, unsigned, 16) the returned string would be “unsigned short”.

Register Transfer Assignment Class

A register transfer assignment (RTAssgn) object is an assignment of an expression to a location. A register transfer object
also has size information to determine the number of bits of information transferred from the expression to the location.
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� updateLHS: (RTAssgn x Location)!RT. Given an RT object and a location, the location information gets updated
in the object.

� updateRHS: (RTAssgn x Expr)! RT. Given an RT object and an expression, the expression information gets
updated in the object.

� updateSize: (RTAssgn x BYTE)! RT. Given an RT object and a size in bits, the size of the transfer information
gets updated in the object.

� getLHS: RTAssgn! SemStr*. Given an RTAssgn object, returns a pointer to the semantic string representing the
location of the assignment.

� getRHS: RTAssgn! SemStr*. Given an RTAssgn object, returns a pointer to the semantic string representing the
expression of the assignment.

� getSize: RTAssgn! BYTE. Given an RT object, returns the size in bits of the transfer of information.

Register Transfer List Object

A register transfer list (RTlist) is a list of register transfer objects. However, greater functionality is provided for this
object for analysis purposes; those functions are described in the next section. For traversal purposes, an RTlist keeps
track of the ‘current’ register transfer being traversed (by default, the first one in the list).

� RTlist: ; ! RTlist. Constructor function which returns an empty object of type RTlist.

� RTlist: (RTlist x RTlist)! RTlist. Copy constructor: given a source and destination RTlist objects, copies the first
one onto the second one.

� insertRT: (RTlist x RT)! RTlist. Given an RTlist object and a register transfer, inserts the register transfer at the
end of the list.

� updateRT: (RTlist x RT x int)! RTlist. Given an RTlist object, a register transfer and an index position into a
list, updates the indexed register transfer in the list with the new one (if possible), otherwise it does not modify the
RTlist object.

Functions for Analysis Purposes

The following functions are required for analysis purposes and are described per relevant object. More functions will be
added as we see fit.

Register Transfer Assignment Class Functions that allow users to know which registers are defined and used in
the register transfer. Note that this information is implicitly stored in the LHS and RHS fields of an RTAssgn object.

� isSpRegDefined: (RTAssgn x int)! BOOL. Given a register transfer assignment object and an index representing
a special register, returns whether the register is defined in the assignment or not.

� isNumRegDefined: (RTAssgn x int)! BOOL. Given a register transfer assignment object and the number of a
numbered register, returns whether that register was defined in the register transfer or not.

� isSpRegUsed: (RTAssgn x int)! BOOL. Given a register transfer assignment object and an index representing a
special register, returns whether that register was used by the object or not.

� isNumRegUsed: (RTAssgn x int)! BOOL. Similar to IsRegUsed() but for a numbered register.

� numRegUse: RTAssgn! int. Given a register transfer object, returns the number of registers used by that transfer.
Not implemented at present. A similar function that returns a list of registers used may be useful.
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� numRegDef: RTAssgn! int. Given a register transfer object, returns the number of registers that were defined by
that transfer.
Not implemented at present. A similar function that returns a list of registers defined may be useful.

Register Transfer List Object The RTlist objectwill provide in thefuturefunctions that allow us to quickly decide
what type of instructions we are dealing with. The following are two such functions which are not currently implemented:

� RTL: (STRING x ADDRESS x ...)! RTlist. This function returns an instance of a register transfer list for a
particular machine instruction. The name of the instruction is a named used in the SSL specification, these names
are normally the same names used in SLED specifications. The given native address is the program counter’s
address and is stored for usage when building a control flow graph of the procedure (see Section 8.2).
The function returns an instance of an RTlist by reading the template file generated by SRD (refer to Section 7.7,
Chapter 7).

� getBBSuccAddr: (RTlist x int)! ADDRESS. Given an RTlist object and an index position, returns the address
associated with that out-edge (if any) or Nil otherwise.
This function is useful to construct a control flow graph, see example in Section 8.2.7.

� getBBProcAddr: RTlist! ADDRESS. Given a call register transfer list, returns the target procedure call address
(if any) or Nil otherwise.
This function is useful to construct a control flow graph, see example in Section 8.2.7.

� getNumRT: RTlist! int. Given an RTlist, returns the number of elements (RTs) in the list.

� getRT: (RTlist x int)! RT. Given an RTlist object and an index into the list, returns the corresponding register
transfer (if it exists) or Nil. Elements in a list are indexed from one.

� nextRT: RTlist! RT. Given an RTlist object, returns the next RT in the list (if any) or Nil (if at the end of the list).
The ‘current’ index is updated to point to the next element in the list.

� isControlTransfer: RTlist! CTTYPE. Given an RTlist object, checks if the set of register transfers are equivalent
to a control transfer instruction, if so, returns the type of control transfer instruction (one of ONEWAY, TWOWAY,
NWAY, CALL, or FALL), otherwise returns NONE. A control transfer instruction is one that explicitly modifies
the value of the program counter register.

8.1.3 Usage of this Interface

A user can integrate RTL into a NJMC matching statement in the following way: once an instruction has been decoded
by matching one of the arms of thematch statement, an instance of the matched instruction can be obtained in RTL
form by passing the (unique) name of the instruction to the RTL dictionary, along with the values of the other parts of the
instruction. The RTL system will return an instance of an entry in the dictionary. At present, the RTL instance function
expects to receive the native address of the instruction being decoded, its name (i.e. key), and its arguments in string
form. The native address is required later on, for the purposes of constructing a control flow graph of the program (see
Section 8.2).

The following sample code illustrates the usage of this interface with a SPARC matching statement. The function
decode instr implements a matching statement which decodes the machine instruction pointed to by thepc variable.
If the alu arm is matched, thename variable will hold the name of the arithmetic-logical instruction matched. The
RTLDisc.RTL function is called with the string values for the other parts of the arithmetic-logical instruction: the first
register operand (rs1 ), the second register or immediate operand (matched in thedis roi function), and the destination
registerrd ). Macros are used (RS1, ROI andRD) to make the translation from integer to strings depending on the context.
In the case of branch and call instructions, the target address passed to the RTL dictionary is theraw offset address given in
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the instruction, rather than the relocated one; hence the need for the equation provided to restore this value. Alternatively,
the core SLED spec for SPARC could be modified so that it does not relocate addresses automatically—this has not been
done at present for consistency with disassemblers.

#define RD (rd_names[rd])
#define RS1 (rs1_names[rs1])
#define RS2 (rs2_names[rs2])
#define ROI (dis_roi(roi))

char *dis_roi(ADDRESS lc) {
static char buf[512];
match lc to
| imode(i) => sprintf(buf, "%d", i); return buf;
| rmode(rs2) => return RS2;
endmatch

}

void decode_instr (ADDRESS pc, ADDRESS uNativeAddr, RTLInstDict RTL-
Dict, RTlist &rtl)
{

match pc to
| ...
| alu (rs1, roi, rd) [name] =>

rtl = RTLDict.RTL (uNativeAddr, name, RS1, ROI, RD);
| branchˆa (tgt, a) [name] =>

sprintf(anulled, "%d", a); // 1 if anulled
rtl = RTLDict.RTL (uNativeAddr, name, numToStr((tgt-

pc)>>2), anulled);
| call_ (tgt) [name] =>

rtl = RTLDict.RTL (uNativeAddr, name, numToStr((tgt-pc)>>2));
| ...
endmatch

This type of code (the whole matching statement file) can obviously be mostly generated automatically, but at this stage
we either generate a decoder usingthe NJMC toolkit and modify that code, or write it manually.

8.2 Control Flow Graphs

Design: Cristina; Documentation: Cristina; Implementation: Mike, Cristina

A control flow graph (CFG) is a directed graph that represents the flow of control of a program, thus, it only represents
the flow of instructions (code) of the program and excludes data information. The nodes of a CFG represent basic blocks
of the program, and the edges represent the flow of control between nodes. More formally,

Definition 1 (ASU86a) Abasic block is a sequence of consecutive statements in which flow of control enters at the
beginning and leaves at the end without halt or possibility of branching except at the end.
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Definition 2 A control flow graph G = (N;E; h) for a programP is a connected, directed graph, that satisfies the
following conditions:

� h is the unique entry node to the graph,

� 8n 2 N;n represents a basic blocks ofP , and

� 8 e = (ni; nj) 2 E; e represents flow of control from basic blockni to basic blocknj , andni; nj 2 N .

8.2.1 Types of Basic Blocks

For the purposes of CFG construction, basic blocks are classified into different types, according to thelast instruction in
the basic block. Given that the instructions in the basic block represent a sequential list of instructions (that would be
executed in that order), machine dependencies on the flow of control such as SPARC’s delayed instructions cannot appear
in the graph; they need to be abstracted away into a machine-independent form.

Ideally, only 6 types of basic blocks are available. However, during static decoding of a binary executable, it is not always
possible to determine the target branches of indirect and indexed transfers of control. In these cases, we make use of a
node callednowhereas the node does not lead to anywhere. This node will be analysed at runtime. The basic block types
are:

one-way the last instruction in the basic block is an unconditional jump to a known target location, hence, the block has
one out-edge.

two-way the last instruction is a conditional jump to a known target location, thus, the block has two out-edges.

n-way the last instruction is an indexed/indirect jump to known target locations. Then branches located in the index
table become then out-edges of this node.

call the last instruction is a call to a procedure. There are two out-edges from this block: one to the instruction following
the procedure call, and the other to the procedure that is called. Throughout analyses, the called procedure is
normally not followed, unless interprocedural analysis is required.

return the last instruction is a procedure return instruction. There are no out-edges from this basic block.

fall the next instruction is the target address of a branch instruction (i.e. the next instruction has a label). This node is
seen as a node thatfalls throughthe next one, thus, there is only one out-edge.

nowhere the last instruction is an indexed or indirect jump or call to an unknown target location. This node has no
out-edges.

8.2.2 Abstractions

Based on definitions 1 and 2, we define two abstractions to work with control flow graphs.

BB is a basic block. A BB holds information about the RTL instructions that form part of that basic block, as well as
successors of the basic block.

CFG is a control flow graph. A CFG is a reference to the header of the graph, i.e. a BB, and stores extra information
like the state of the graph (see next section). Extra functionality is provided for a CFG which is not provided for a
BB, as seen in Section 8.2.5.
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8.2.3 Steps in Constructing a CFG

Machine instructions that modify the flow of control of a program have two types of references to the target address: via
a machine-dependent (physical) address, or via an offset into the stream of machine instructions for the program. Offsets
resolve to physical addresses too. There are three main steps in the construction of the CFG:

1. Create a machine-dependent CFG by building BBs of instructions that contain native addressess for transfers of
control.

2. Transform the machine-dependent CFG into a machine-independent CFG by transforming address references into
edges (references to basic blocks).

3. Optimize the machine-independent CFG to remove extraneous basic blocks introduced by limitations in the
machine instruction set (e.g. a jump to a jump), hence reducing the number of nodes and edges of the graph.

We will refer to the machine-independent CFG as awell-formedCFG orwfCFG. This graph is the one used for analysis
purposes.

8.2.4 Interface Functions to Construct Basic Blocks

Basic blocks have limited functionality: they can be constructed, and machine-dependent (i.e. host address) out-edges
can be added to them.

� BasicBlock:; ! BB. Constructor for a basic block.

� addOutEdge: (BB x ADDRESS)!BOOL. Adds the address as an out-edge in the given basic block. The mapping
between addresses and basic blocks is done when the graph is well-formed. Returns true if successful.

� addInterProcOutEdge (BB x ADDRESS)! BOOL. Adds an interprocedural out-edge to the basic block pBB that
represents this address. The mapping between addresses and basic blocks is done when the graph is well-formed.
Returns true if successful.

� addProcOutEdge: (BB x ADDRESS)! BOOL. Given a CALL basic block and an address of a procedure (i.e. the
target address of a call instruction), stores the information in the basic block.This function is not yet implemented.

8.2.5 Interface Functions to Construct a CFG

Control flow graphs are composed of machine-dependent basic block nodes initially, and can then be transformed to
machine-independent nodes which are used for analysis purposes. This latter graph is referred to as a well-formed graph.
A doubly-linked graph (i.e one that has in- and out-edges) can only be built once the graph is well-formed. Further, a well-
formed graph can be optimized to remove redundant edges and nodes (e.g. jumps to jumps). The following functionality
is provided by the interface:

� Cfg: ; ! Cfg. Constructor function for a CFG. The CFG is constructed empty, and has BBs added as required.

� newBB: (CFG x RTL x RTL x BBTYPE x int x ADDRESS)! BB. Allocates memory for a new basic block
node, initializes it to references to the first and last rtl’s, its type, and allocates enough space to hold the out-edges
(the number of which is given as a parameter). The native address associated with the start of the BB is given; this
address must be the same one used with AddOutEdge(). A reference to the newly created basic block is returned.
If there is not enough memory, an exception will be raised.Mike: what did we decide in the end for these cases?

� label: (CFG x ADDRESS)! BOOL. Checks whether the given native address is a label (explicit or non-explicit)
or not. Explicit labels are addresses that have already been tagged as being labels due to transfers of control to
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that address. Non explicit labels are those that belong to basic blocks that have already been constructed (i.e. have
previously been parsed) and now need to be made explicit labels. In the case of non explicit labels, the basic
block is split into two and types and edges are adjusted accordingly. Returns true if the native address is that of an
explicit or a non explicit label, false otherwise.

� isLabel: (CFG x ADDRESS)! BOOL. Checks if the native address is a label or not in the current control flow
graph. If not, the address is not added to the map of Lables to BBs.Mike: what does the last sentence mean? i.e.
every time an IsLabel() command is emmited, new labels are created??

� wellFormCFG: CFG! BOOL. Transforms a machine-dependent CFG into a well-formed CFG (wfCFG) (i.e.
a machine-independent one), by converting address references of out-edges into references to basic blocks,
and procedure address references into references to procedure structures (the procedure structure is defined in
Section 8.3). Returns TRUE if successful.

� isWellFormed: CFG! BOOL. Returns whether the graph is well-formed or not.

� addInEdges: CFG! BOOL. Given awfCFG, annotates each basic block with its in-edges information. Returns
TRUE if successful.

� compressCFG: CFG! BOOL. Given awfCFG, optimizations are performed on the graph to reduce the number
of basic blocks and edges (if possible). Returns TRUE if successful (whether or not the graph was compressed).
The optimizations performed are: removal of branch chains (i.e. jumps to jump), removal of redundant jumps (i.e.
jump to the next instruction), merge basic blocks where possible, and remove redundant basic blocks created by
the previous optimizations.

8.2.6 Interface Functions for Analysis Purposes

Analysis functions are available to graphs of any kind; well-formed or not. In order to traverse a graph, a numbering
scheme needs to be used to uniquely identify the nodes in the graph in some fashion. For display purposes, the graph
itself needs to be stored in a notation amenable for display, such as that provided by the Dotty interface.

� numberCFG: CFG! BOOL. Given awfCFG, each node in the graph is annotated with a unique integer identifier.
The method used at present is depth-first traversal, numbering nodes during the first visit to the node. We may
change this numbering method later on. Returns TRUE if successful.

� writeDotFile: (CFG x STRING x int)! BOOL. Given awfCFG and the name of an opened dotty (.dot) file,
writes the information relating the control flow graph with node IDs offset by an integer value. This property is
used to give unique ID numbers to all nodes in a dotty file (a requirement of the dotty interface). Returns TRUE if
successful.

8.2.7 Usage of this Interface

A user may construct a control flow graph after having decoded the machine instructions and obtained their semantical
RTL representation (see Section 8.1.3). Higher order instructions prevent us from creation of the graph at decoding
time, due to the dependency of such instructions on an undecoded instruction.However, note though that our current
implementation creates basic blocks while decoding machine instructions; this gives us an approximation of the final
graph but not a correct graph necessarily. Analysis to remove higher order instructions is missing at present, but is
underway (in paper at least) – cc, 27 May 98.

The process of creating awfCFG is divided into two steps: creating the basic blocks and creating the machine-
independent graph. The former step can be done during the decoding of machine instructions, as per the following
code illustrates. The functionfollowControl drives the decoding of machine instructions by traversing paths in the
program. While the code along one path has not been traversed, the function decodes one instructions (decode instr )
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and checks if it is a control transfer instruction. If so, based on the type of the instruction, the type of the new basic block
is determined. For example, if the parsed instruction was an unconditional branch, then a one-way node is created, with
references to the first (hdr ) and the last (end ) rtls, and the target address of the jump. Once a node has been created,
the target address is traversed recursively if it has not been traversed yet. This is easily checked by determining if the
target address is a label in the current graph or in another graph (as it may be an interprocedural branch). The address for
the next instruction to decode is determined, as well as the end of the section is checked. The new target address is also
checked for having been traversed—if it has, this means that a fall-through node needs to be created rather than decoding
the same instructions twice.

// followControl()
// Precondition: the passed uNativeAddr is within the boundaries of
// the code section being decoded (i.e. uNativeAddr < upperNativeAddr).
// Precondition 2: the passed uNativeAddr is not an explicit label.
//
void followControl (ADDRESS uHostAddr, ADDRESS uNativeAddr,

ADDRESS upperNativeAddr, RTLInstDict RTLDict, LRTL &rtls,
Cfg &cfg)

{ BOOL done;
INSTYPE type;
RTL_CIT hdr, end;
PBB pBB;

while (! done)
{

// decode the inst at uNativeAddr (pointed to by uHostAddr)
decode_instr (uHostAddr, uNativeAddr, buffer, RTLDict, rtl);

// traverse paths based on flow of control
if (rtl.getControlTransfer (type))

switch (type) {
case I_UNCOND:

end = --rtls.end();
pBB = cfg.newBB (hdr, end, ONEWAY, 1, (*hdr).getAddress());

// calculate new addresses and add to BB edge
newNativeAddr = rtl.GetOutAddr (0);
newHostAddr = uHostAddr + (newNativeAddr - uNativeAddr);
pBB->addOutEdge (newNativeAddr);

// follow target address if it hasn’t been parsed yet
if ((cfg.Label (newNativeAddr) == false) &&

(prog.isProcLabel (newNativeAddr) == false) &&
(newNativeAddr < upperNativeAddr))
followControl (newHostAddr, newNativeAddr, upperNativeAddr,

RTLDict, rtls, cfg);
done = true; // no more paths along this branch
break;

// ...
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case I_RET:
end = --rtls.end();
pBB = cfg.newBB (hdr, end, RET, 0, (*hdr).getAddress());
done = true; // path ends here, flag so
break;

} // switch

// calculate address of next instruction
// check if the end of the section is reached (i.e. out of bounds)

// check if next address to decode has already been parsed,
// if so, add a fall-through node when needed.
if (cfg.IsLabel(uNativeAddr))

done = true;
else if (prog.isProcLabel(uNativeAddr))
{

done = true;
pBB = cfg.newBB (hdr, end, FALL, 1, (*hdr).getAddress());
pBB->addInterProcOutEdge (uNativeAddr);

}
}

}

Once a machine-dependent graph has been constructed, it can easily be converted into awfCFG by using thewfCFG
interface function.

8.3 Procedure

Design: Cristina; Documentation: Cristina; Implementation: Mike

A procedure is a collection of the following information: a set of instructions, its control flow graph, a signature (i.e.
arguments and return value types), local variables, and useful interprocedural summary information. For the purposes
of recoverying the procedure signature, a low-level type is needed in order to be able to match it against existing native
libraries (for dynamically linked-in calls).

8.3.1 Abstractions

A procedure abstraction, PROC, is simply the collection of RTLs (instructions) that belong to that procedure, its CFG
representing all transfers of control, and its signature (SIGN) representing its formal parameters and possibly a return
value. The RTL and CFG abstractions are defined in previous sections (seex8.1 andx8.2). We define the SIGN abstraction
next.

The signature of a procedure, SIGN, is an abstract type that allows for zero or more formal arguments to be passed to
a procedure, as well as, zero or one return value from the procedure (i.e. a function). Although we normally talk of a
return value, in fact, what is returned in machine code is a register (i.e. a Location (x8.1.1)). Further, formal arguments
are also Locations that contain values. The number of formal arguments may not necessarily be fixed, as languages like
C implement variable arguments using the... notation. We can represent the set of formal arguments and return value
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by a list of Locations, where the first element of the list represents the return value, and the other elements represent
arguments. Further, each of these Locations holds a type, which in the absense of high-level language information will
be called alow-level typeor LLTYPE.

An LLTYPE is defined based on the property of it representing a number or an address. In the context of passing
arguments to procedures at the machine code level, it is important to distinguish a given integer number from an address,
as an address implies a pointer into memory. One important property of addresses is that they are the size of the word of
the machine (4 bytes in the case of SPARC machines). On the other hand, integers may be of a variety of sizes, including
1, 2, 4 and 8 bytes, depending on the machine. There are also floating-point numbers which are distinguished from
integers. At present, we do not use floating points in our test programs (do not even decode this type of instructions). To
summarize, the following LLTYPEs and sizes are available:

� LL-INT: an integer number; with sizes 1, 2, 4 and 8 bytes,

� LL-PTR: an integer representing an address; with size 4 bytes or the word size of the machine, and

� LL-FLOAT: a floating point number; with size ?? bytes.

8.3.2 Interface Functions to Construct and Use Procedures

The following functions describe interface functions to construct and use procedures and procedure signatures.

Proc

The procedure object Proc provides constructors and access functions to the elements of the procedure. The instructions
in a procedure are found by traversing all paths from the entry point of the procedure recursively, until returns are met
along a path.

� Proc: (STRING x ADDRESS x BOOL)! PROC. Constructor function for PROC. Creates a procedure object
and stores the given name and its native address. The optional boolean argument represents whether the procedure
is known to be a dynamically-linked in procedure; by default, this value is set to false. This information is useful
as we do not decode the machine code for such procedures.

� getName: PROC! STRING. Returns the name of the procedure.

� setNativeAddress: (PROC x ADDRESS)!Nil. Changes the native address associated with the current procedure
to the given one. This function is useful when the address of a procedure may initially be unknown (e.g. it was the
target of an indirect call), but which is revealed later on during analysis of the code.

� getNativeAddress: PROC! ADDRESS. Get the native address for the procedure.

� isLibrary: PROC! BOOL. Returns whether the procedure is from a dynamically linked in library or not.

� getCFG: PROC! CFG. Returns a reference to the initially empty control flow graph of the procedure. The graph
can be fully constructed using this reference.

� addArgument: (PROC x Location x LL-TYPE x int)! Nil. Stores an entry into the list of locations that represent
formal arguments. The given Location, its low-level type and size are stored in the next available entry. The
function modifies the current procedure object.Note: Location shouldn’t be passed, it should be created internally
I think, based on the LL-TYPE.

� getNumArgs: PROC! int. Returns the number of formal arguments of the given procedure.Note: there is still
the issue of how do we represent variable length args as formal args – is it just one or none?

� getArgInfo: (PROC x int)! (LL-TYPE x int). Given a procedure object and an index into the list of formal
arguments to the procedure, returns the low-level type of the argument and its size, if any. Alternatively, it returns
size 0.
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� setReturnValue: (PROC x Location x LL-TYPE x int)! Nil. Stores information about the return value of the
procedure, including its location, low-level type and size.This is assuming that there is only one return value in a
register; it could be that there are two (although very uncommon).
Should I be using SIGN instead of making the distinction between formal args and return values?

8.3.3 Interface Functions for Analysis Purposes

The following functions are provided for the PROC object in relation to analysis:

� addLiveIn: (PROC x int)! Nil. Adds the number of a register to the set of liveIn registers of the PROC object.
Note that just the number is added, not a class.

� getNumLiveIn: PROC! int. Returns the number of liveIn registers for the PROC object.

� getLiveIn: (PROC x int)! int. Given a PROC object and an index into a list of register numbers, returns the
number of the liveIn register at that position (if any) or -1 otherwise.

� addLiveOut: (PROC x int)!Nil. Adds the number of a register to the set of liveOut registers of the PROC object.

� getNumLiveOut: PROC! int. Returns the number of liveOut registers for the PROC object.

� getLiveOut: (PROC x int)! int. Given a PROC object and an index into a list of register numbers, returns the
number of the liveOut register at that position (if any) or -1 otherwise.

8.3.4 Usage of this Interface

The procedure interface can be used once you have a native address for a procedure (i.e. after a procedure call instruction
has been decoded). Following on from the example on constructing a control flow graph (x8.2.7), the following example
implements a routine to process a decoded call instruction.

Whenever a new procedure is reached (via acall instruction), a procedure object is created by passing the name of the
procedure (if available in the binary file; else give a unique identifying name for the procedure), its native address, and
whether it is a dynamically linked-in library or not. Ifproc is an object variable, a call toproc.Proc() initializes
that object variable with its identifying information. In order to access the graph of the procedure, a reference to it can be
obtained from theproc.GetCFG() call. Adding nodes to this graph is possible by using the reference returned by this
function.

The following piece of code illustrates how to get the name of the procedure and whether the procedure is dynamically
linked-in or not from the loader object (pLoader ), in order to construct a new procedure object. The procedure’s graph
information is then passed as argument to thefollowControl() process.

void processCall (ADDRESS uHostAddr, ADDRESS uNativeAddr,
ADDRESS upperNativeAddr, RTLInstDict RTLDict, LRTL &rtls)

{ Proc proc; // new Proc object
char *pName = ""; // name of procedure
static unsigned short int cUnnamedProc = 1; // count for unnamed procedures

// associate name with the given address
pName = pLoader->SymbolByAddress(uNativeAddr);
if (! pName)
{

pName = new char[10];
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sprintf (pName, "proc%05d", cUnnamedProc);
cUnnamedProc++;

}

// create new Proc object
proc.Proc (pName, uNativeAddr, pLoader->IsDynamicLinkedProc (uNativeAddr));

// if it’s a library, do not decode its machine code
if (! pLoader->IsDynamicLinkedProc (uNativeAddr))

if (uNativeAddr < upperNativeAddr)
followControl (uHostAddr, uNativeAddr, upperNativeAddr,

RTLDict, rtls, proc.GetCFG());
}

8.4 Program

Design: Cristina; Documentation: Cristina; Implementation: Mike

A program contains references to a list of procedures. At present, no information stored by the Loader object is stored
within the program object; we may want to change this in the future or just leave it like that.

We had also thought that a map between addresses (of jumps and procedures) to basic blocks may be useful. That hasn’t
been included at present.

8.4.1 Abstractions

A simple program abstraction, PROG, is used to deal with programs. A program object contains the following
information:

Prog the program object. It stores information about the name of the program (i.e. executable name) and a list of
procedure references.

8.4.2 Interface Functions to Construct and Use Programs

A few functions are made available by the program interface:

� Prog: STRING! PROG. Constructor function for a program; stores the name of the executable program.

� getName: PROG! STRING. Returns the name of the program.

� newProc: (PROG x STRING x ADDRESS x BOOL)! PROG’. Creates a new procedure object which holds
the following information: name of the procedure, its native address, and whether the procedure is a dynamically
linked-in procedure or not. The new procedure object is placed in the program’s procedure list.Mike: do we
actually check for repeated entries? We should.

� getNumProcs: PROG! INT. Returns the number of procedures stored in the program object.

� getProc: (PROG x INT)! PROC. Given a program object and an index into a list of procedures, returns a
reference to the indexed one (if any) or Nil otherwise. Note that indexes start at 1.Mike: code in driver.cc line 220
uses index 0.
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� isProcLabel: (PROG x ADDRESS)! BOOL. Determines if the given adress is a label or not in the program.

� createDotFile: (PROG x STRING)! FILE. Outputs all the graphs in the procedures of the program into a new
file with the given name. The file is stored in dotty format, suitable for previewing with a dotty previewer.

8.4.3 Usage of this Interface

The integration of the program object with decoding code is as follows: a program object is created once the name
of the program is known, this object keeps on collecting procedure objects during the parsing or decoding of machine
instructions (by using theNewProc() function). Once a procedure object has been created, a reference to its control
flow graph is obtained in order to construct the graph while decoding the instructions on a traverse all paths mode. When
decoding is completed, the program object holds all the procedure information about the decoded program.

8.5 High-Level Register Transfer Lists

Design: Cristina, Mike, Brian; Documentation: Cristina, Doug, Mike, Brian; Implementation: Doug, David, Mike, Brian

HRTLis a higher-level language that abstracts away from the machine-dependent details of procedure calls, intraproce-
dural control flow, and relational expressions. A high-level register transfer list, or HRTL, is either:

� a higher-level register transfer list that represents information about a control transfer instruction (CTI) or relational
expression in the source program, or

� a low-level RTL that is the result of decoding a non-CTI source machine instruction.

That is, theHRTL language includes theRTL language, but also includes higher-level register transfer lists that
abstract away from machine-dependent details of control-transfer instructions (e.g., condition codes, delayed branches),
from machine-dependent calling conventions, from machine-dependent accesses to local variables, and from machine-
dependent relational expressions. HRTLs result from analysis on the machine-dependent RTLs of a source program.

In addition to the RTL assignments and expressions used to represent effects and expressions,HRTL supports the
following higher-level RTLs:

� jmp : Unconditional jump to a location. The location can be fixed or computed.

� jcond : Conditional jump to a location.

� nway jmp : Computed jump to one of N possible branch targets. These represent the initial control flow within
switch statements.

� call : Call to a procedure, optionally passing parameters and returning results.

� ret : Return from a procedure with an optional result expression.

� scond : Assignment of a condition code expression to a location. These represent, in a machine-independent
fashion, the “setCC” instructions of the x86 and 68K architectures.

The different kinds of HRTLs are declared in the hrtl.h interface.

HRTLsupports the following locations:

� An infinite number of registers r[x],

� An infinite number of variables vx, and
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� Memory m[x].

HRTLsupports variables as locations in addition to the register and memory locations used by RTL.

Figure 8.4 describes the EBNF for HRTLs. In this description,locationsare denoted byL andvaluesby V.

For example, the SPARC-RTL for acall example of Section 8.1, is translated to theHRTL instructionCall addr ,
where addr is %pc + (4 * disp30) and %pc has been instantiated with the source machine address of the
instruction.
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Type of Operator Id Arguments Symbol Meaning
Int Fix Var

unary idNot 0 0 1 ˜ logical not
idNeg 0 0 1 0- unary minus

binary idPlus 0 0 2 + addition
idMinus 0 0 2 - subtraction
idMult 0 0 2 * multiplication (unsigned)
idMults 0 0 2 *! multiplication (unsigned)
idDiv 0 0 2 / division (signed)
idDivs 0 0 2 /! division (signed)
idMod 0 0 2 % modulus (unsigned)
idMods 0 0 2 %! modulus (signed)
idBitAnd 0 0 2 & (bitwise) and
idBitOr 0 0 2 j (bitwise) or
idBitXor 0 0 2 ˆ xor
idShiftR 0 0 2 >> right-shift
idShiftL 0 0 2 << left-shift
idShiftRA 0 0 2 >>A right-shift-arithmetic
idRotateL 0 0 2 rl rotate-left
idRotateR 0 0 2 rr rotate-right
idRotateLC 0 0 2 rlc rotate-left-through-carry
idRotateRC 0 0 2 rrc rotate-right-through-carry

ternary idTern 0 0 3 ?: c-style ternary
idAt 0 0 3 @ bit extraction

logical idEquals 0 0 2 = equal
idNotEqual 0 0 2 ˜= not equal
idLess 0 0 2 < less than, signed
idGreater 0 0 2 > greater than, signed
idLessEq 0 0 2 <= less or equal to, signed
idGreaterEq 0 0 2 >= greater or equal to, signed
idLessUns 0 0 2 <u less than, unsigned
idGtrUns 0 0 2 >u greater than, unsigned
idLessEqUns 0 0 2 <=u less or equal to, unsigned
idGtrEqUns 0 0 2 >=u greater or equals, unsigned
idAnd 0 0 2 and and (of two expressions)
idOr 0 0 2 or or

operations idMemOf 0 0 1 m[...] memory of
idRegOf 0 0 1 r[...] register of
idAddrOf 0 0 1 a[...] address of (cancels m[])
idVar 1 0 0 vn variable; replaces reg or mem
idParam 0 1 0 param‘...’ parameter
idRparam 0 1 0 rparam‘...’ register parameter
idExpand 0 1 0 expand‘...’ expand (not for user)
idTemp 0 1 0 temp‘...’ temporary register
idSize 1 0 1 sizen size cast
idDef 0 1 0 def ‘...’ definition; special for UQDBT
idIndex 0 0 2 [...] special for UQDBT

constants idIntConst 1 0 0 int n integer constant
idFloatConst 2 0 0 float f floating point constant

Figure 8.2: Expression Operators for RTL (cont over page)
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Type of Operator Id Arguments Symbol Meaning
Int Fix Var

type conversions idSignExt 0 0 1 ! sign-extend (no sizes)
idTrunc 2 0 1 trunc(exp, s1, s2) truncate from s1 to s2 bits
idZfill 2 0 1 zfill(exp, s1, s2) zero fill from s1 to s2 bits
idSgnEx 2 0 1 sgnex(exp, s1, s2) sign extend from s1 to s2 bits

float conversions idFsize 2 0 1 fsize(exp, s1, s2) float size convert from s1 to s2
idItof 2 0 1 itof(exp, s1, s2) integer to float, s1 to s2 bits
idFtoi 2 0 1 ftoi(exp, s1, s2) float to integer, s1 to s2 bits
idFround 2 0 1 fround(exp, s1, s2) float round, s1 to s2 bits

Figure 8.3: Expression Operators for RTL (cont from prev page)

Exp := Exp BinOP Exp (BinOP: arith, farith, bitwise, logical)
| UnaryOP Exp (UnaryOP: not, conversion)
| Exp UnaryOP’ (UnaryOP’: sign-extension)
| ADDR Exp (ADDR is the address-of opera-

tor; a[] at present)
| FFunction (float function that returns a float, eg sin())
| IFunction (float function that returns an int, eg ftoi())
| Exp BinOP Exp ? Exp : Exp
| V
| V @ [i:j] (bitslice)
| (Exp) {i} (cast to size i bits)

V := L
| FloatNum
| Num

L := r[i]
| m[i]

Call L

Jcond L

Jump L

Ret

Flags()

Figure 8.4: HRTLs
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Chapter 9

Matching Condition Code Uses and
Definitions

Design: Cristina and Mike [c.99]; Documentation: Mike [17 May 00]; Implementation: Mike

This chapter covers the removal of condition codes (CCs) via matching of condition code uses with a suitable definition,
thereby converting this pair into a high level expression that no longer involves a condition code.

The types of instructions that use condition codes are:

� Conditional branches, e.g. branch on minus.

� Conditional set instructions, e.g.sgt dest (setdest to one if signed greater than; else set to zero).

� Arithmetic instructions, e.g. add with carry. There are two main subtypes of these:

– Certain idioms, e.g. this one means “if (a != 0) goto dest”:

cmp 0,a
addx 0,0,dest

[The SPARC addx (add with extend) means add with carry.]

– Multiword arithmetic, e.g. adding b:d to a:d (where : means concatenation)

add a,b
addx c,d

The types of instuctions that set condition codes are:

� Compare instructions, e.g.cmp a,b . These are often (but not always) paired with conditional branches.

� Arithmetic instructions, e.g.add a,b and the Pentiumbt reg,#7 (test bit 7 in registerreg ; copies that bit to
the carry flag).
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Once a use of a condition code has been matched with its definition, the resultantHRTLtransformations depend on the
kinds of instruction using and defining the condition code. This is covered in detail in section 9.1, but the most common
case is that of a compare instruction (setting the condition code), and a conditional branch (using the condition code).
In this case, the transformations involve setting one or two variables (depending on the branch) to the operands of the
compare, and setting the high level condition (an expression in the form of a semantic string) in the high level branch
(HLJcond object). For example:

Original instructions:

10aac: 80 a4 00 08 cmp %l0, %o0
10ab0: 12 80 00 06 bne 0x10ac8

Low level RTLs (before analysis):

00010aac *32* r[0] := r[16] - r[8]
SUBFLAGS( r[16], r[8], r[0] )

00010ab0 JCOND 10ac8, condition not equals

High level RTLs (after analysis):

00010aac *32* r[0] := r[16] - v2
*32* v10 := r[0]
SUBFLAGS( r[16], v2, r[0] )

00010ab0 *32* v2 := 70656 # Delay slot instruction
00010ab0 JCOND 10ac8, condition not equals
High level: v10 ˜= 0

The most difficult aspect of eliminating condition codes is the successful matching of uses with definitions, especially
where a use has multiple definitions, or where a basic block between the use and definition has more than one in-edge.
The basic process used is to scan backwards through the control flow graph of the procedure from each use of a condition
code; see Figure 9.1. In the figure, “Use” is a basic block using a condition code, and the goal is to find BBs like
“Def” that define that condition code along a unique path. If a definition is found, the combining process can begin (see
section 9.1). Where there is only one in-edge to a basic block, that block is followed in the search for a CC definition
(e.g. from “Use” to “Curr” in Figure 9.1(a)). When a basic block along the path from a use to a definition has more than
one in-edge (e.g. the “Curr” BB of Figure 9.1(a) has two parents, “Par1” and “Par2”), the current basic block is copied
to the end of one of the parent BBs (“Curr2” in Figure 9.1(b)). This causes the current BB to have only one in-edge, but
the successor BB to have multiple in-edges. The algorithm is repeated until each use has only one definition (“Use” is
copied to new BB “Use2” in Figure 9.1(c)).

Duplicating a Basic Block

When the parent of a basic block that needs to be duplicated is a fall-through or a one-way jump BB, there is only one
in-edge, so the RTLs for the current BB are merely copied to the end of the list of RTLs in the parent BB. The parent
BB then becomes the same type as the copied BB, and has the same number of outedges. (The outedges are copied
explicitly). Copying of BBs is done with the clone() member function, to ensure “deep” copying. Otherwise, only the
pointers to expressions are copied, not the expressions themselves, and there will be problems when the expressions are
deleted (since the same expression will be deleted twice).

When the parent of a basic block that needs to be duplicated is a two-way BB, the above method is not suitable. Instead,
a new BB is created that is a clone of the current BB, and the out-edge from the parent to the current BB is changed to
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Use2

Curr2

Def

Par1 Par2

Curr

Use

Def

Par1 Par2

Curr

Use

Curr2

Def

Par1 Par2

Curr

Use

Figure 9.1: Duplicating BBs to ensure that each use of a BasicBlock has a unique definition

point to the new BB. (Note: this could be the first or “true” outedge, or it could be the second or “false” outedge). The
back end must not pay attention to the destination of the branch (which remains a faithful decoding of the original source
machine instruction), but rather to where the BB that the out-edge points to.

In Figure 9.2(a), BB “Curr” has a parent BB (“Par1”) which is a 2-way BB. In this case, a copy of “Curr” called “Curr2” is
made (Figure 9.2(b)), and the out-edge that used to point to “Curr” is changed to point to “Curr2”. As before, this causes
“Curr2” to have only one parent, but the successor of both “Curr” and “Curr2” (the BB “Use”) now has two parents.
When the process is applied to that BB, we end up with the situation in Figure 9.2(c) where both “Use” and “Use2” have
single paths to the defining BB (not shown).

9.1 Combining Uses and Definitions of Condition Codes

Once unique pairs of CC uses and definitions are found, they must be converted to a high level equivalent form.

9.1.1 Conditional branches and set instructions

Instructions defining the condition codes are divided into two classes: “add-like” and “subtract-like”. The last RT of the
RTL defining the condition codes (which is expected to be an RTFlagCall1 object) is examined. If the strings “SUB”
or “FFLAG”2 are found in the name of the flag call function, the instruction defining the condition codes is classified
as “subtract-like”. Examples include compare instructions, and actual subtract instructions. Otherwise, the instruction
is classified as “add-like”; examples include logical instructions such as AND, multiply instructions, and actual ADD
instructions. It is therefore important that the flag call functions are named appropriately in the SSL file (see section 7.7
for details).

1An object of class RTFlagCall represents a call to a function that nominally sets the condition codes for a family of instructions. For
example, LOGICALFLAGS sets the flags for the logical family of instructions.

2Floating point compares are considered to be always “subtract like”, and SETFFLAGS is a typical flag call function name for setting
the floating point condition codes.
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Use2

Curr2Other

Par1 Par2

Curr

Use

Par1 Par2

Curr

Use

Other

Curr2

Par1 Par2

Curr

Use

Other

(a) (b)

(c)

Succ Succ

Succ

Figure 9.2: Duplicating a BB with a 2-way parent BB

Subtract-like definitions are handled by constructing a high level comparison expression based on the operands of the
comparison or subtraction, and the type of branch or set instruction. For example,

sub a, b, c # Subtract b from a, result to c
...
sge dest # Set dest to 1 if "greater than or equals"

has the following high level expression associated with it: “a>= b”. The expression is stored in the HLJcond or HLScond
object associated with the RTL that uses the condition code. (ThesetCondExpr method is used.)

It is not possible to use the operands directly, since in the final program, a and b could be modified before the instruction
that uses the condition codes. A mechanism is needed to “transport” the condition code information from the defining
instruction to the using instruction. Variables (e.g. “v12”), unique to this definition-use pair, are used for this purpose.
Subtract-like definitions of the condition codes require two such variables; one is needed for each operand.

The variables are copied from expressions passed to the HLFlagCall RT. This ensures that the correct arguments are
copied.
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It is important to realise that the result of the subtract isnot sufficient to store the result of an unsigned comparison; e.g.
v12 = b>u c and then branch if v12>u 0. For example, 4>u 3 and 4-3=1>u 0. But (using 8 bit operands) 204>u 3,
but 204-3 = 201 == -55, which is a negative result. (Besides, everything is unsigned greater than 0, other than 0 itself).
The result of the unsigned comparison is in the carry flag, which is a sort of 9th bit of the result. Therefore, it is not
possible in general to save on variables where unsigned comparisons are involved.

Example pairing:

10b84: d0 07 bf e8 ld [%fp - 24], %o0
10b88: 80 a4 00 08 cmp %l0, %o0
10b8c: 1a 80 00 04 bgeu 0x10b9c

translates to:

v2=*(...); # %o0 is mapped to variable v2
v30=v2; # Copy operand 1
v29=r16; # Copy operand 2
r0=(r16)-(v2); # The compare, expressed as a subtract

# (result is not used)
v2=70656; # Delay slot instruction
if (v29 >= v30) goto L11; # Unsigned comparison

By contrast, add-like definitions need only the result of the operation that sets the condition codes. It is an error to find
unsigned branches or set instructions using the condition codes from an add-like definition. For example

add a, b, c # Add a and b, result to c
...
jge dest # Jump if "greater or equal" to dest

becomes

c = a + b;
v12 = c;

...
if (v12 >= 0) goto dest;

The exception to the above rules are theHLJCONDJMI andJLJCONDJPOSbranches. These can be used after add-like
or after subtract-like operations (usually a genuine subtract), but since they depend on the result of the operation, they
must be used in an add-like manner. For example, from

10bec: 90 a2 20 01 subcc %o0, 1, %o0
10bf0: 3c bf ff fa bpos,a 0x10bd8

we generate

r8=(r8)-(1);
v8=r8;
if ((v8)>=(0)) goto L3;
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The analysis code makes the assumptions that the last RT of the RTL defining the condition codes is a flag call, and (for
the above cases) that the second last RT is an assignment to the result of the operation defining the flags. Note that if
there is a second branch that depends on the above operation, the second last assignment will be to v8, but it still has the
result of the operation, so it will work correctly.

For other subtract-like operations and branches, it is assumed that the first two operands (in order) of the flag call are the
two operands being compared (or subtracted). In other words, after

x := y - z
SUBFLAGS(a, b, ...)

it is assumed that a is y and b is z.

As a result of these assumptions, the user is not free to use unusual semantics in the SSL file. It is hard to imagine the
above assumption not being valid, but it should be kept in mind. In extreme cases, the result of the operaton may have to
be assigned to a temporary variable, then to either the true destination or another temporary in the second last RT.

9.1.2 Assignments that use Condition Codes

When the instruction using a condition code is an assignment, it is usually part of an idiomatic sequence. Two idioms have
so far been found and implemented. The other class of instruction using the carry flag is as part of multiword arithmetic
(e.g. addcc, addx). It may be practical to implement the multiword arithmetic pairs when the type analysis is able to cope
with variables in two registers; for now, these sequences generate an error message. This example is from the Solaris 7
/usr/bin/awk:

142e8: d2 07 20 00 ld [%i4], %o1 # Load high half
142ec: d6 07 20 04 ld [%i4 + 4], %o3 # Load low half
...

# addcc sets flags according to result; add does not
14330: b4 82 e0 01 addcc %o3, 1, %i2 # Add 1 to low half
14334: b2 42 60 00 addx %o1, 0, %i1 # Add carry to top half
...
142d0: f2 27 20 00 st %i1, [%i4]
142d8: f4 27 20 04 st %i2, [%i4 + 4]

Here, there are 64 bit integer quantities in the register pairs %o1:%o3, and also %i1:%i2 (the colon represents
concatenation).

The first idiomatic sequence is: “compare 0 to a; use carry flag”. Arithmetic assignment statements using the carry flag
need no extra transformation; they decode to RTLs which use the %CF register (machine independent carry flag). For
example,addx %g0, 0, %o3 decodes to “r[10] := r[0] + 0 + %CF”. (In the final C output of the translator, %CF
is represented by the integer variable CF). Therefore, the only transformation required is to ensure that each use has a
unique definition, and to make an appropriate assignment to %CF.

Since subtracting any value from zero will generate a carry, unless that value is zero, comparing 0 to X is equivalent to
setting the carry flag only if X is non-zero. In other words, compare 0 to X is transformed to “%CF = (X != 0)”. An
appropriate assignment RT (i.e. an object of class RTAssgn) is created, and appended to the list of RTs for the RTL
defining the flags. For example:

10aec: 80 a0 00 0b cmp %g0, %o3 # %g0 is always 0
10af0: 94 60 3f ff subx %g0, -1, %o2 # Make use of %CF
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10af8: 96 40 20 00 addx %g0, 0, %o3 # Another use of %CF

transforms to

# Variable v5 represents register %o3 for this procedure
00010aec *32* r[0] := -v5 # The compare, expressed as a subtract

*32* %CF := v5 ˜= 0 # Generated assignment
SUBFLAGS( r[0], v5, r[0] )

00010af0 *32* v4 := -%CF + 1 # Register %o2 is held in variable v4
00010af4 *32* v5 := %CF # Register %o3 is held in variable v5

In C, this becomes

r0=-(v5);
CF=(v5)!=(0);
v4=(-(CF))+(1);
v5=CF;

The second idiomatic sequence is similar: “compare X to Y; use carry flag”. This is transformed to “%CF = X<u Y”
(where<u represents “unsigned less than”). After subtracting Y from X, a carry will be generated if and only if Y is
greater than x (with both X and Y considered as unsigned quantities). In other words, after cmp X, Y the carry flag
represents the logical expression X<u Y.

9.2 Complex example

Despite the apparent simplicity of the above, real code can be surprisingly complex. The following SPARC code is from
the 126.gcc Spec benchmark, generated from the last 4 lines of C here:

int unsignedp = TREE_UNSIGNED (index_type);
typedef rtx rtx_function ();
rtx_function *gen_bgt_pat = unsignedp ? gen_bgtu : gen_bgt;
rtx_function *gen_bge_pat = unsignedp ? gen_bgeu : gen_bge;
rtx_function *gen_blt_pat = unsignedp ? gen_bltu : gen_blt;
rtx_function *gen_ble_pat = unsignedp ? gen_bleu : gen_ble;

The addresses of the eight functions (e.g.gen bgtu ) are set up in registers like%i2 and stack memory like[%sp +
144] in earlier code that is not relevant to the analysis.

7834c: 80 90 00 1b orcc %g0, %i3, %g0
78350: 02 80 00 04 be 0x78360
78354: a8 10 00 1a mov %i2, %l4
78358: 10 80 00 02 ba 0x78360
7835c: a8 10 00 19 mov %i1, %l4
78360: 22 80 00 04 be,a 0x78370
78364: e4 03 a0 90 ld [%sp + 144], %l2
78368: 10 80 00 02 ba 0x78370
7836c: e4 03 a0 94 ld [%sp + 148], %l2
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78370: 22 80 00 04 be,a 0x78380
78374: e2 03 a0 98 ld [%sp + 152], %l1
78378: 10 80 00 02 ba 0x78380
7837c: e2 03 a0 9c ld [%sp + 156], %l1
78380: 02 80 00 04 be 0x78390
78384: 90 10 00 1c mov %i4, %o0
78388: 10 80 00 03 ba 0x78394
7838c: a0 10 00 1d mov %i5, %l0
78390: e0 03 a0 a0 ld [%sp + 160], %l0
78394: 92 10 00 15 mov %l5, %o1

The orcc instruction at the top is the definition for the following conditional branch, and also three more branches.
Because of the two-way BBs between the definition and the conditional branches, there are a lot of BB duplications
required to translate this code.

There are also several “orphan” basic blocks generated as a result of untangling the delay slots in the above. The code
above generates some 23 basic blocks, as shown in Figure 9.3.
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78380: if

78388: jump 78390: fall

78370: if

7837C: fall

orphan

78340: if

78358: jump

orphan

7835C: fall

78360: if

orphan

orphan

7836C: fall

78370: if

7836C: if

orphan

orphan 7837C: if orphan7837C: if7837C: if 78380: if

78394: call node_is_bounded 

Figure 9.3: BBs generated for the complex example
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Chapter 10

Transformations of Delayed Transfers of
Control

Design: Norman and Cristina [c.98]; Implementation: Mike [c.98-99]; Documentation: Norman, Cristina [Sep 99]

This chapter is an updated version of Technical Report 440, Department of Computer Science and Electrical Engineering,
The University of Queensland, December 1998. A more up to date version, including application of this algorithm to the
removal of PA-RISC delayed branches will be part of a Sun Microsytems Laboratories Technical Report series (expected,
early 2002).

The fundamental steps in binary translation are distinguishing code from data, mapping data from source to target,
and translating instructions. Translating instructions presents few problems, except when the source instruction set has
features not present in typical compiler intermediate codes. The most common such feature is the delayed branch.

Standard code-generation technology can handle delayed branches in the target language, but not in the source.
Translating delayed branches can involve tricky case analyses to figure out what happens if there is a branch instruction
in a delay slot. This chapter presents a disciplined method for deriving such case analyses. The method identifies
problematic cases, shows the translations for the non-problematic cases, and gives confidence that all cases are considered.
The method also applies to other tools that analyze machine instructions.

We begin by writing a very simple interpreter for the source machine. It specifies, at the register-transfer level, how the
source machine executes instructions, including delayed branches. We then transform the interpreter into an interpreter
for a target machine without delayed branches. To maintain the semantics of the program being interpreted, we
simultaneously transform the sequence of source-machine instructions into a sequence of target-machine instructions.
The transformation of the instructions becomes our algorithm for binary translation.

We show the translation is correct by using a correspondence between source and target states, and showing if the source
and target machines begin execution in corresponding states, they reach new corresponding states in a few instructions.

A quick reading of this chapter might suggest that the problem we solve is trivial. To build a flow graph representing a
binary program, why not simply convert the delayed branch to a non-delayed branch and push the instruction in the delay
slot along zero, one, or both sucessor edges? (The set of successors that should get copies of the instruction in the delay
slot depends on whether the delayed branch “annuls” that instruction.) This simple approach is in fact correct,except
when the instruction in the delay slot is itself a delayed branch. In that case, the “pushing” approach fails to execute
the instruction that is the target of the first branch. The methods in this paper translate this case correctly. In practice,
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such cases occur rarely in user code, but they are recommended in kernel code as a way of returning from interrupts or
otherwise switching contexts (SPA92b,xB.26).

10.1 Semantic framework

Rather than translate source-machine instructions directly into target-machine instructions, we translate source instruc-
tions into register transfer lists (RTLs), transform the RTLs, optimize the RTLs, and translate the RTLs into target-machine
instructions. RTLs provide a uniform framework that can express source instructions, target instructions, and their inter-
pretations by the source and target processors.

10.1.1 Register transfer lists

Our RTL formalism is designed for use in tools and component generators, and it makes machine-dependent computation
explicit (RD98). For this paper, we use a simplified version specified using an imperative syntax:

rtl )
�
effect

��� effect
	�

Multiple assignment

effect)
�
exp!

�
location:= exp Guarded assignment

exp) constant Constant
j location Fetch from a location
j exp binop exp Binary RTL operator
j operator( explist) RTL operator

A register transfer list is a list of guarded effects. Each effect represents the transfer of a value into a storage location,1

i.e., a store operation. The transfer takes place only if the guard (an expression) evaluates totrue. Effects in a list take
place simultaneously, as in Dijkstra’s multiple-assignment statement; an RTL represents a single change of state.

Values are computed by expressions without side effects. Eliminating side effects simplifies analysis and transformation.
Expressions may be integer constants, fetches from locations, or applications ofRTL operatorsto lists of expressions.
RTL operators are pure functions on values.

For purposes of this paper, we assume that locations are single cells in a mutable store, although the RTL formalism
supports a more general view that makes byte order explicit.

As an example of a typical RTL, consider a SPARC load instruction using the displacement addressing mode, written in
the SPARC assembly language as

ld [%sp-12], %i0

The effect of this load instruction might be written

hRTL for sample instructioni�
$r[24] := $m[$r[14] + sx (�12)]

1Storage locations represent not only memory but also registers and other processor state.
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because the stack pointer is register 14 and register%i0 is register 24. The notation$space[ address] specifies a cell in
a mutable store. Thesx operator sign-extends the 13-bit immediate constant�12 so it can be added to the 32-bit value
fetched from register 14.

The load instruction not only loads a value into register 24; it also advances the program counter to point to the next
instruction. Changing the program counter is intimately connected with branching; we separate the effect on the program
counter in order to give it special treatment.

10.1.2 Processor state for delayed branches

A processor executing straight-line code executes one instruction after another, in sequence. A delayed-branch instruction
causes the processor to depart from that sequence, but not immediately. When the processor executes an instructionI

that causes a delayed branch to a locationtarget , the processor first executesI ’s successor, then executes the instruction
located attarget . The location holdingI ’s successor is calledI ’s “delay slot.” On some machines, like the SPARC, the
instructionI can “annul” its successor, in which case the successor isnot executed, but instead the processor stalls for a
cycle before transferring control totarget .

To model delayed branches with annuls, we use three pieces of processor state:

PC is the program counter, which identifies the instruction about to be executed.

nPC is the “next program counter,” which identifies the instruction to be executed after the current instruction.

annul is the “annul status,” which determines whether the processor executes the instruction atPC or ignores it.2

In this model, a delayed control transfer is represented by an assignment tonPC . For example, a SPARC call instruction
simultaneously assigns the target address tonPC and the currentPC to register 15:

hRTL for calli�
nPC := target j $r[15] := PC

Thetarget address in the semantics is distinct from thetarget field in the binary representation of the call instruction.
In the case of the SPARC, we abstract away from the rule that says the target address is computed by extending the
target field on the right with zeroes.

A call transfers control unconditionally; we represent a conditional branch by a guarded assignment tonPC . TheBNE
(branch not equal) instruction tests theZ (zero) bit in the condition codes:

hrtl for conditional branchBNEi�
:Z! nPC := target

Again we abstract the computation of the target address relative to the location of the instruction.

2It is crucial to distinguish theannul status, which is part of the processor state, from thea bit found in the binary representations
of some branch instructions. The interpretation of theannul status is trivial: it tells directly whether to execute an instruction. The
interpretation of thea bit (when present) is more involved, because there are special rules for some instructions. We abstract away from
these special rules by associating with each instructionI a predicateaI (not necessarily a single bit) that tells the processor whether to
annul the instruction’s successor.
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10.1.3 A canonical form of RTLs

To isolate the part of instruction semantics that is relevant to control flow, we put RTLs into the following canonical form:

hRTL for generic instruction Ii�
bI ! nPC := targetI j annul := aI j Ic

We interpret this form as follows:

bI is a predicate that tells whetherI branches. It is anexpression, not a constant or a field of the instruction. For
non-branching instructions,bI is false. For calls and unconditional branches,bI is true. For conditional branches,
bI is some other expression, the value of which depends on the state of the machine (e.g., on the values of the
condition codes).

target I is an expression that identifies the target address to whichI may branch. (IfbI is false, target I is arbitrary.)
For calls and PC-relative branches,target I is a constant that statically identifies a target address. For indirect
branches,target I may be a more complex expression, e.g., one that fetches an address stored in a register.

aI is a predicate that tells whetherI annuls its successor. It is an expression, not the value of thea bit in an
instruction’s representation. For most instructions,aI is false. For conditional branches,aI may be more
complicated. For example, the SPARCBNEinstruction annuls its successor if thea bit is set and if the branch is
not taken, soaI is a 6= 0 ^ Z.

Ic is an RTL that representsI ’s “computational effect.”Ic may be empty, or it may contain guarded assignments
that do not changeannul , nPC , orPC . Typical RISC instructions change control flow or perform computation,
but not both, soIc tends to be non-empty only whenbI andaI are false. On CISC architectures, however, an
instruction like “decrement and skip if zero” might have both non-emptyIc (the decrement) and a nontrivialbI
(the test for zero).

An instruction can be expressed in this canonical form if, when executed, it branches to at most onetarget .3 This is true
of all instructions on all architectures with which we are familiar, including indirect-branch instructions (although the
value oftarget may be different on different executions of an indirect branch).

Here are a few example RTLs in canonical form; SPARC assembly language appears on the left, RTLs on the right.skip
is the empty RTL.

add rs1, rs2, rd
false! nPC := any j annul := false j $r[rd] := $r[rs1] + $r[rs2]

ba,a addr true ! nPC := addr j annul := true j skip
call addr true ! nPC := addr j annul := false j $r[15] := PC

3And of course if the machine uses delayed branches.
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10.1.4 Instruction decoding and execution on two platforms

Given this canonical form for instructions, we represent instruction decoding using alet-binding notation:

hinstruction decodingi�
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC ]
in : : :

end

The let construct bindsbI , target I , aI , andIc, which together determine the semantics of the instructionI found in the
source memorysrc. This let-binding represents not only the process of using the binary representation to identify the
instruction and its operands, but also the abstraction from that representation into the RTL semantics. This abstraction
from binary representation to semantics can be done statically, at binary-translation time; it can even be automated based
on a combination of machine descriptions (RF97b, RD98).

The source-machine execution loop decodes an instruction and executes it as follows:

hsparc execution loopi�
fun loop() �
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC ]
in if annul then

PC := nPC j nPC := succs(nPC ) j annul := false
else if [[bI ]] then
PC := nPC j nPC := [[targetI ]] j [[Ic]] j annul := [[aI ]]

else
PC := nPC j nPC := succs(nPC ) j [[Ic]] j annul := [[aI ]]

fi
; loop()

end

We specify the repeated execution of the processor loop as a tail call, rather than as a loop, because that simplifies the
program transformations to follow.

The notation[[�]] represents execution; for example,[[bI ]] is the value of the branch condition, given the current state of
the machine. Executing the computational effect[[Ic]] changes the state of the machine.

The functionsuccs abstracts over the details of identifying the successor instruction on the source machine;succt finds
the successor on the target machine. In both cases,succ is computed as part of instruction decoding.

Our example target, the Pentium, has neither delayed branches nor annulling, so it has a simpler canonical form and a
simpler execution loop:

hPentium execution loopi�
fun simple() �
let (bI ! PC := targetI j Ic) � tgt [PC ]
in if [[bI ]] then

PC := [[targetI ]] j [[Ic]]
else
PC := succt(PC ) j [[Ic]]

fi
; simple()

end
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10.1.5 Strategy for translating delayed branches

Both our formalism and the SPARC architecture manual give a clear semantics of delayed branches in terms ofPC ,
nPC , andannul . To get an efficient target program, however, we wishnot to represent the sourcePC , nPC , andannul
explicitly, but to make all threeimplicit in the value of the targetPC . How to do this based on the information in the
architecture manual is not immediately obvious, but our semantic framework enables a new technique. We transform
loop, eliminatingnPC andannul wherever possible, so that (almost all of)loop can be expressed using only thePC .

10.2 Transforming the execution loop

We wish to develop a translation function that we can point at a locationsrc[pcs] and that will produce suitable
instructions at a corresponding target locationtgt [pct]. We cannot simply havepct = pcs; source program counters
cannot be identical to target program counters, because source and target instruction sequences may be different
sizes. During translation, we buildcodemap, a map that relates program counters on the two machines, sopct =
codemap(pcs).

We assume that when the source processor starts executing code atsrc[pcs], it is not in the middle of a delayed or annulled
branch, or formally,

annul = false^ nPC = succs(PC ).

Software conventions guarantee that the processor will be in such a state at a program’s start location and at procedure
entry points.

We begin our transformation by defining a functionstable that can be substituted forloop wheneverannul =
false^ nPC = succs(PC ).

hstable execution loopi�
fun stable() �
annul := false j nPC := succs(PC );
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC ]
in if annul then

PC := nPC j nPC := succs(nPC ) j annul := false
else if[[bI ]] then
PC := nPC j nPC := [[targetI ]] j [[Ic]] j annul := [[aI ]]

else
PC := nPC j nPC := succs(nPC ) j [[Ic]] j annul := [[aI ]]

fi
; loop()

end
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We do not show every step in the transformation ofstable . The first transformations move the initial assignments inside
the let, propagate (by forward substitution) the assignments toannul andnPC , moveloop inside theif , replaceloop
with stable where possible, and drop the (now dead) assignments. The result is:

hstable execution loopi+�
fun stable() �
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC ]
in if [[bI ]] then

PC := succs(PC ) j nPC := [[targetI ]] j [[Ic]] j annul := [[aI ]]
; loop()

else if [[aI ]] then
PC := succs(PC ) j nPC := succs(succs(PC )) j [[Ic]] j annul := true
; loop()

else
PC := succs(PC ) j [[Ic]]
; stable()

fi
end

The last arm of theif shows the execution of an instruction that never branches or annuls. It corresponds to the execution
of a similar instruction on thesimple target.

The next step is to unfoldloop in the first and second arms of theif statement. In the second arm,annul is true, so the
call to loop() can be replaced byPC := nPC ; nPC := succs(nPC ); stable(). The definition ofstable reduces to

hstable execution loopi+�
fun stable() �
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC ]
in if [[bI ]] then

hcase where I branchesi
else if [[aI ]] then
PC := succs(succs(PC )) j [[Ic]]
; stable()

else
PC := succs(PC ) j [[Ic]]
; stable()

fi
end

where the interesting case is

hcase where I branchesi�
PC := succs(PC ) j nPC := [[targetI ]] j [[Ic]] j annul := [[aI ]];
let (bI0 ! nPC := targetI0 j annul := aI0 j I 0c) � src[PC ]
in if annul then

PC := nPC j nPC := succs(nPC ) j annul := false
else if[[bI0 ]] then
PC := nPC j nPC := [[targetI0 ]] j [[I 0c]] j annul := [[aI0 ]]

else
PC := nPC j nPC := succs(nPC ) j [[I 0c]] j annul := [[aI0 ]]
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fi
; loop()

end

Transformation proceeds by combining these two fragments, moving thelets together, and flattening the nestedif
statements. We then use “The Trick” from partial evaluation (DMP96): whenever[[aI ]] is free in a statementS, we
replaceS with if [[aI ]] then S elseS fi. The Trick enables us to replace several calls toloop with calls tostable . The
result is

hstable execution loopi+�
fun stable() �
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC ]

(bI0 ! nPC := targetI0 j annul := aI0 j I 0c) � src[succs(PC )]
in if [[bI ]] ^ [[aI ]] then

[[Ic]];
PC := [[targetI ]]
; stable()

else if[[bI ]] ^ :[[aI ]] ^ [[bI0 ]] ^ [[aI0 ]] then
[[Ic]];
[[I 0c]];
PC := [[targetI0 ]]
; stable()

else if[[bI ]] ^ :[[aI ]] ^ [[bI0 ]] ^ :[[aI0 ]] then
[[Ic]];
PC := [[targetI ]] j nPC := [[targetI0 ]] j [[I 0c]] j annul := false
; loop()

else if[[bI ]] ^ :[[aI ]] ^ :[[bI0 ]] ^ [[aI0 ]] then
[[Ic]];
[[I 0c]];
PC := succs([[targetI ]])
; stable()

else if[[bI ]] ^ :[[aI ]] ^ :[[bI0 ]] ^ :[[aI0 ]] then
[[Ic]];
PC := [[targetI ]] j [[I

0

c]]
; stable()

else if:[[bI ]] ^ [[aI ]] then
PC := succs(succs(PC )) j [[Ic]]
; stable()

else if:[[bI ]] ^ :[[aI ]] then
PC := succs(PC ) j [[Ic]]
; stable()

fi
end
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This version ofstable suffices to guide the construction of a translator. Considering the cases in order,

� A branch that annuls the instruction in its delay slot acts just like an ordinary branch on a machine without delayed
branches.

� A branch that does not annul, but that has an annuling branch in its delay slot, acts as if the first branch never
happened, and the second is a non-delaying branch.

� A non-annuling branch with another non-annuling branch in its delay slot is not trivial to translate; this is the
one case in which we cannot substitutestable for loop. Interestingly, the MIPS architecture manual specifies that
the machine’s behavior in this case is undefined (Kan88, Appendix A). This case requires potentially unbounded
unfolding ofloop, which is discussed in Section 10.5.

� A non-annuling branch with an annuling non-branch in its delay slot acts as a branch to the successor of the target
instruction. (Note that the SPARC has an annulling non-branch, viz,BN,A.)

� A non-annuling branch with a non-annuling non-branch in its delay slot has the effect of delaying the branch by
one cycle. This is the common case.

� An annuling non-branch skips over its successor.

� A non-annuling non-branch (i.e., an ordinary computational instruction) simply executes and advances the program
counter to its successor.

We now apply this analysis to the SPARC.

10.3 Application to the SPARC instruction set

10.3.1 Classification of SPARC instructions

The three properties of instructions that govern the translation of control flow arebI (must branch, may branch, may not
branch),aI (must annul, may annul, may not annul), andtarget I (static target, dynamic target, no target). There are
15 reasonable combinations of these three properties. On the SPARC, only 9 are used:

Instruction bI aI target I Ic Class
BA true false static skip SD
BN false false N/A skip NCT
Bcc test cc(icc) false static skip SCD
BA,A true true static skip SU
BN,A false true N/A skip SKIP
Bcc,A test cc(icc) :testcc(icc) static skip SCDA
CALL true false static $r[15] := PC SD
JMPL true false dynamic $r[rd ] := PC DD
RETT true false dynamic hrestore statei DD
TN false false N/A skip NCT
Ticc test cc(icc) testcc(icc) dynamic hsave statei TRAP
TA true true dynamic hsave statei TRAP 0

NCT false false N/A varies NCT

We name 8 of the 9 classes as follows:
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NCT Non-control-transfer instructions (arithmetic, etc.)
DD Dynamic delayed (unconditional)
SD Static delayed (unconditional)
SCD Static conditional delayed
SCDA Static conditional delayed, annulling
SU Static unconditional (not delayed)
SKIP Skip successor (implement as static unconditional)
TRAP Trap

Our treatment of trap instructions may be surprising, since the architecture manual presents them as instructions that set
bothPC andnPC . BecausenPC is always set toPC + 4 (SPA92b,xC.8), we can model this behavior as settingnPC

to the address of the trap handler and settingannul to true. Our model introduces a stall before the trap is taken, but no
interesting state changes during a stall, so there is no problem. For simplicity, we put the unconditional trap (TRAP 0)
in the same class as the conditional traps (TRAP ). We can’t do this with the branch instructions because ofBA,A ’s
anomalous treatment of thea bit.

The table exposes a useful property of the SPARC instruction set;aI is not arbitrary, but is always given by one of these
four possibilities:

aI � false Never annul.
aI � true Always annul.
aI � bI Annul if branch taken.
aI � :bI Annul if branch not taken.

Whenever processor designers use this scheme,aI can be eliminated at binary-translation time. A more generalaI would
require a second test in the translated code.

10.3.2 Derivation of a translator

Correctness

To say what it means to have a correct translation, we reason about states, about values of expressions in states, and about
state transitions. For notation, if a machine is in a state�, we writeE [[e]]� for the value of expressione in state�; if
executing instructionI causes a machine to make a transition from a state� to a new state�0, we write�0 = C[[I]]�, so
C[[I]] stands for the state-changing effect ofI.

A translation is correct if execution on the target machine simulates execution on the source machine. The translator
builds a map� from source-machine states to target-machine states.4 In a way made precise below, this map respects the
operation of the machine. In our design,� is partial—it is not defined when the source machine is “about to” execute a
delayed branch or annulled instruction. To be precise,� is defined ifE [[:annul ^ nPC = succs(PC )]]�.

The target machine is said tosimulatethe source machine if the following condition holds: if we start the source machine
in a states�1, and theloop function takes it through a sequence of statess�1;

s�2; : : :, then there is a subsequence of such
statess�k1 ;

s�k2 ; : : : such thats�k1 ; s�k2 ; : : : is a subsequence of the states that the target machine goes through when
started in statet�1 = s�1. Informally, although the target machine may go through some intermediate states that don’t
correspond to any execution of the source, and though the source machine may go through some intermediate states that

4Technically, the translator establishes not a map but a relation, because more than one target-machine state can be used to simulate a
particular source-machine state. We nevertheless use the� notation because it seems more intuitive. When we writes�, we really mean
“any statet� such thatt� ands� stand in a weak bisimulation relation.”
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don’t correspond to any execution of the target, when we remove those intermediate states, what’s left of the executions
correspond one to one.5 We sketch a proof in Section 10.4.

Translations of expressions and computational effects

In the RTL framework, the state of the machine is the contents of all the storage locations. In a na¨ıve translator,� can
mostly map locations to locations, without changing values. The exception is the program counter; its translation must
usecodemap, soE [[PC ]]� = codemap(E [[PC ]]�). Given a map� on locations, we can easily extend it to expressions
like aI , bI , andtarget I . If e is an expression, thenE [[e]]� = E [[e]]�.

We assume that translations can be found for the computational effectsIc, which do not affectPC , nPC , or annul .
We require only thatC[[Ic]]� = C[[Ic]]�. In general,Ic will be a sequence of instructions, not exactly one instruction.
We also assume that, given any conditionb and addresstarget , we can construct an instruction sequence implementing
b! PC := target on the target machine.

Under these assumptions, we analyze source branch conditionsbI , annulment conditionsaI , and target addressestarget I ,
and we show how to construct branch conditions and target addresses for the target machine. In the process, we build the
codemap function that takes source program counters to target program counters.

Structure of the translator

Our translator works with one basic block at a time.codemap must be built incrementally, by the translator itself, because
the only way to know the size of the target basic blocks is to translate the source basic blocks. The translator maintains
a work queue of untranslated blocks, each of which is represented by a(pcs; pct) pair. pcs is the address of some code
on the source machine.pct may be the corresponding target-machine address, or more likely a placeholder for a target-
machine address, to be filled in later. (For example,pct might be a pointer to a basic block in a control-flow graph.)
codemap contains pairs that have already been translated. We use the following auxiliary procedures:

queueForTranslation (pcs; pct) Add a pair to the work queue.
codemap(pcs) If a pair (pcs; pct) is in codemap, returnpct. Otherwise, letpct be a fresh placeholder, add

(pcs; pct) to codemap, and returnpct. (We usecodemap both as a function and as a
collection of ordered pairs, but these usages are equivalent.)

emit(pct; I) Emit target-machine instructionsI atpct, returning a pointer to the location following the
instructions. IfI is a sequence ofn instructions,emit(pct; I) returns the result of applying
succt to pct, n times.

newBlock() Return a pointer to a fresh placeholder.

Placeholders created withcodemap correspond to basic blocks in the source program. Placeholders created with
newBlock are artifacts of translation.

5In the terminology of Mil90, the transitions to these intermediate states are “silent.”
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The translator loops, removing pairs from the work queue, and callingtrans if those pairs have not already been
translated.trans translates individual basic blocks. If an instruction branches,trans callsqueueForTranslation with
the target addresses (from source and target machines). If an instruction flows through to its successor,trans calls itself
tail-recursively.6 The outline oftrans is

htranslatori�
fun trans(pcs; pct) �
hput (pcs; pct) in codemap if they are not there alreadyi
let I as(bI ! nPC := targetI j annul := aI j Ic) � src[pcs]
in caseclass(I) of
hcases for translation of Ii

end

Translations of SPARC instructions

Deriving a translation function is tedious but straightforward. For each class of instructions, we useaI andbI to simplify
stable. If necessary, we also consideraI0 and bI0 , whereI 0 is the instruction in the delay slot. We transform the
simplified stable as needed until it suggests an obvious translation, and finally we emit target-machine instructions.
Space limitations allow us to show only a few representative cases. Table 10.1 shows example SPARC and Pentium
assembly language for each.

The easiest cases are ones in whicha’s andb’s are known statically. For non-control-transfer instructions,bI � falseand
aI � false, which corresponds to the last arm ofstable, and the translation is

hcases for translation of Ii�
j NCT =) pct := emit(pct; Ic); trans(succs(pcs); pct)

The static unconditional branch with annul is just like an ordinary branch.bI � true andaI � true, which corresponds
to the first arm ofstable , and the translation is

hcases for translation of Ii+�
j SU =) pct := emit(pct;PC := codemap(targetI));

queueForTranslation(targetI ; codemap(targetI));

The next simplest cases are the static delayed (SD) class, withbI � true andaI � false. These instructions include
unconditional branches and calls, and the translation depends on what sort of instructionI 0 is found in the delay slot.

hcases for translation of Ii+�
j SD =)
let (bI0 ! nPC := targetI0 j annul := aI0 j I 0c) � src[succs(pcs)]
in caseclass(I 0) of
htranslation cases forclass(I 0), where class(I) = SDi

end

6Recursive calls totrans could be replaced by calls toqueueForTranslation . The converse is not true, becausetrans would
recurse forever on loops.
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class(I) class(I 0) SPARC instructions Pentium instructions

NCT any add %i1, %i2, %i3 mov eax, SPARCI1
add eax, SPARCI2
mov SPARCI3, eax

SU any ba,a L jmp L

SD NCT ba L
add %i1, %i2, %i3

nop
mov eax, SPARCI1
add eax, SPARCI2
mov SPARCI3, eax
jmp L

SCD NCT be L
mov %o1, %o2

...

nop
je BB
mov eax, SPARCO1
mov SPARCO2, eax

...

BB: mov eax, SPARCO1
mov SPARCO2, eax
jmp L

SCDA NCT be,a L
mov %o1, %o2

...

nop
je BB

...

BB: mov eax, SPARCO1
mov SPARCO2, eax
jmp L

SPARC assembly language puts the destination on the right, but Intel assembly language puts
the destination on the left. The SPARC has more registers than the Pentium, so we map onto
them memory locationsSPARCI1 = %i1, SPARCI2 = %i2, etc. The last two examples show the
samebe instruction with and without the,a suffix (annul when branch not taken).

Table 10.1: Example translations from SPARC to Pentium

In the common case, we have a non-control-transfer instruction in the delay slot, withbI0 � falseandaI0 � false. This
corresponds to the fifth arm ofstable , which executes[[Ic]];PC := target I j [[I

0

c]]. Sincetarget I is a constant, we can
rewrite this as[[Ic]]; [[I 0

c]];PC := target I . The translation is then

htranslation cases forclass(I 0), where class(I) = SDi�
j NCT =)
pct := emit(pct; Ic);
pct := emit(pct; I

0
c);

pct := emit(pct;PC := codemap(targetI));
queueForTranslation(targetI ; codemap(targetI));
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This translation is not sufficient for call instructions, because a called procedure may use the program counter captured
by Ic, and its use of that program counter is determined by software convention, not by the semantics of the hardware.
On the SPARC, ifI is a call instruction, translation should resume withtrans(succs(succs(pcs)); pct), or if the call
returns a structure, withtrans(succs(succs(succs(pcs))); pct).

The treatment of classDD (dynamic delayed) branches is similar to that of classSD , except that the target addresses are
computed dynamically. This means that it is not possible to usecodemap at translation time; the translated code might
usecodemap at run time, or it might call an interpreter or a dynamic translator.

The most common class involving dynamic conditions is theSCD (static conditional delayed) class, in whichbI is
dynamic andaI is false. Again, the translation depends on what is in the delay slot.

hcases for translation of Ii+�
j SCD =)
let (bI0 ! nPC := targetI0 j annul := aI0 j I 0c) � src[succs(pcs)]
in caseclass(I 0) of
htranslation cases forclass(I 0), where class(I) = SCDi

end

The most common delay instruction is a non-control-transfer instruction (classNCT ), wherebI0 = falseandaI0 = false.
In this case,stable reduces to

hspecialization of stable for SCD with NCT in the delay sloti�
if [[bI ]] then
[[Ic]];PC := [[targetI ]] j [[I

0

c]]; stable()
else
[[Ic]] j PC := succs(PC ); stable()

fi

BecauseIc does not affectPC , we transformstable as follows:7

htransformed specialization of stable for SCD with NCT in the delay sloti�
[[Ic]];
if [[bI ]] then
PC := [[targetI ]] j [[I

0

c]]
else
PC := succs(PC );

fi
; stable()

7We have the alternative of unfolding the call tostable in the elsebranch and moving bothIc and I
0
c ahead of theif . This

transformation leads to a translation in whichI0
c moves ahead of the branch, andI

0
c’s successor follows the branch. Epoxie and Noxie

use this translation (Wal92). The problem is that, if the branch conditionbI tests condition codes, andI0
c sets condition codes, it will

be necessary to save and restore the condition codes in order to get the correct branch instruction. It is much simpler to moveI0
c into a

new block, which the optimizer can sometimes eliminate.
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In general, no single target instruction implementsPC := [[target I ]] j [[I
0

c]], so we rewrite it into the sequence
[[I 0

c]];PC := [[target I ]], and we put this sequence into a new “trampoline” basic blockbb. stable becomes

hfinal specialization of stable for SCD with NCT in the delay sloti�
[[Ic]];
if [[bI ]] then
PC := bb;

else
PC := succs(PC );

fi
; stable()

which we translate using an ordinary branch instruction:

htranslation cases forclass(I 0), where class(I) = SCDi�
j NCT =)

local bb := newBlock ();
pct := emit(pct; Ic);
pct := emit(pct; bI ! PC := bb);
bb := emit(bb; I 0c);
bb := emit(bb;PC := codemap(targetI));
queueForTranslation(targetI ; codemap(targetI));
trans(succs(pcs)); pct);

The cases for classSCDA(static delayed branches that annul when not taken) are similar to those of classSCD. For
example, whenSCDA is followed byNCT , bI is dynamic,aI � :bI , andbI0 � aI0 � false. stable reduces to:

hspecialization of stable for SCDA with NCT in the delay sloti�
[[Ic]];
if [[bI ]] then
[[I 0c]];
PC := [[targetI ]]

else
PC := succs(succs(PC ));

fi
; stable()

The translation is like that of classSCD , creating a new basic block, but the recursive call is
trans(succs(succs(pcs)); pct), so translation resumesafter the delay slot instead ofat the delay slot.
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Simplified translation of many branch instructions

When translating a branch with a non-branch in the delay slot, our method can be reduced to a simple strategy: rewrite
the branch as a non-delayed branch, and push the delay instruction to the destination address, the fall-through address,
neither, or both, according to the table below.

aI � bI Push the delay instruction to the fall-through address.
aI � :bI Push the delay instruction to the destination address.
aI � false Push the delay instruction to both addresses.
aI � true Discard the delay instruction.

To push the delay instruction to the destination address, we create a new “trampoline” basic block, which avoids problems
in case other branches also flow to the same address.

The last three entries in Table 10.1 show how this strategy is applied to the unconditional (SD), conditional (SCD), and
conditional annuled (SCDA) branches on the SPARC. On the MIPS, programmers may not put branches in delay slots
(Kan88, Appendix A), andaI � false always, so a single instance of this strategy applies to every branch instruction
(SW93b).

10.4 Proving Correctness

We prove correctness of translation by reasoning about transitions from states to states. As noted in Section 10.3.2,
we want to show that running the translated code results in an execution on the target machine that simulates the
original execution on the soure machine. Formally, if we start the source machine in a states�1, and theloop function
takes it through a sequence of statess�1;

s�2; : : :, then there is a subsequence of such statess�k1 ;
s�k2 ; : : : such that

s�k1 ;
s�k2 ; : : : is a subsequence of the states that the target machine goes through when started in statet�1 = s�1.

The result desired follows directly from thistransition theorem: If s�m is a source-machine state such that

1. E [[annul = false^ nPC = succs(PC )]]s�m,

2. there is a corresponding target-machine statet�n = s�m, and

3. trans has been called with arguments(E [[PC]]s�m; E [[PC]]t�n),

then there is ani such that ini steps, the source machine reaches a states�m+i that also satisfiesE [[annul = false^
nPC = succs(PC )]]s�m+i. Also, there is aj such that inj steps, the target machine reaches a statet�n+j = s�m+i,
and furthermore (a)i > 0 or j > 0 and (b)trans has been called with arguments(E [[PC]]s�m+i; E [[PC]]t�n+j).

We prove the transition theorem by case analysis on the classes of the instructions located atsrc[PC ]. We use the standard
rule for sequential composition (C[[R1;R2]] = C[[R2]] Æ C[[R1]]) as well as the identities for the translation of expressions
and computational effects:

E [[e]]� = E [[e]]�

C[[Ic]]� = C[[Ic]]�

Because of condition 1, we can substitutestable for loop, so we can apply our transformed version ofstable , which
assigns directly toPC . We assume that all mappings� usecodemapto map the source program counter to the target
program counter. To translate a branch, we therefore write
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C[[PC := target ]]� = substtargetPC �

= subst
codemap(target)

PC
�

= subst
codemap(target)
PC �

= C[[PC := codemap(target)]]� (�)

The simplest case in the proof of the transition theorem is a non-control-transfer instruction (NCT). The canonical form
of such an instruction is

false! nPC := any j annul := false j Ic.

The action ofstable on this form isC[[PC := succs(PC ) j Ic]]. Ic leaves the program counter unchanged, so we
rewrite this asC[[Ic;PC := succs(PC )]]. The binary translation has the formIc, which may be a sequence of
j instructions. Thereforej applications ofsimple, or equivalently,j state transitions on the target machine, have the
effect ofC[[Ic;PC := succ

(j)
t (PC )]]. Givens�m andt�n satisfying the hypotheses of the transition theorem, after one

step, the source machine reaches the state

s
�m+1 = C[[PC := succs(PC )]](C[[Ic]]

s
�m):

After j steps, the target machine reaches a state

t
�n+j = C[[PC := succ

(j)
t (PC )]](C[[Ic]]

t
�n)

= C[[PC := succ
(j)
t (PC )]](C[[Ic]]s�m)

= C[[PC := succ
(j)
t (PC )]](C[[Ic]]s�m)

¿Fromtrans , codemap(succs(pcs)) = succ
(j)
t (pct), so by(�)

t
�n+j = C[[PC := succs(PC )]](C[[Ic]]s�m)

= s�m+1

Thus, after one step on the source andj steps on the target, we again reach a pair of states satisfying the conditions of the
transition theorem.

As another example, consider an instruction of classSCD with an instruction of classNCT in the delay slot. If the
source machine begins in states�, after 1 or 2 steps it reaches states�0, where

s�0 = if E [[bI ]](C[[Ic]]s�) then (C[[PC := target I ]] Æ C[[I
0

c]] Æ C[[Ic]])
s�

else(C[[PC := succs(PC )]] Æ C[[Ic]])
s� fi

If the target machine begins in statet� = s�, it reaches statet�0, where

t�0 = if E [[bI ]](C[[Ic]]s�) then
(C[[PC := codemap(target I)]] Æ C[[I

0
c]] Æ C[[PC := bb]] Æ C[[Ic]])s�

else
(C[[PC := succt(PC )]] Æ C[[Ic]])s� fi

BecauseC[[PC := t1]] Æ C[[PC := t2]] = C[[PC := t1]], and becauseC[[I 0
c]] commutes with assignments toPC , it is

easy to show thatt�0 = s�0.

The other cases for translation can be proved correct in similar fashion.
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10.5 Experience

We have used translators for delayed branches in two tools: a binary translator and a decompiler (CSF98b). In both tools,
we translate machine instructions into a low-level, machine-independent intermediate formwithout delayed branches.
The binary translator uses this form to generate target code, applying standard optimization techniques. The decompiler
analyzes the intermediate form to recover high-level information like structured control flow.

There are many issues that are relevant to completely general binary translation but which are beyond the scope of this
paper.

� Our translator does not guarantee that the source and target codes have the same atomicity properties; providing
atomic three-address operations on a two-address machine would be prohibitively expensive.

� Self-modifying code and dynamic code generation can be handled either by resorting to interpretation or by
invoking the translator dynamically; we intend to evaluate these alternatives experimentally.

� Different machines use different representations of condition codes, and a na¨ıve translation would emulate the
source-machine condition codes in a target-machine register. This emulation may be necessary in some cases
(e.g., when a Pentium program depends on the value of the “parity of the least-significant byte” bit), but in
common cases, one definition of condition codes reaches one use (in a conditional branch), and the source-machine
condition code can be eliminated by forward substitution.

� The CPU model used in this paper models hardware exceptions as assignment to a special “exception location.”
This model is suitable only for a machine with precise exceptions. It is an open question whether a similar
formalism could help derive a translation between machines with precise and imprecise exceptions.

Our original implementation was based on a case analysis of the SPARC’s architecture manual. This analysis created
an extra basic block for every delayed instruction that needed to be executed along any given path. More seriously, the
analysis did not cover all cases, as there were many combinations whose meaning was not clear from a direct reading
of the manual. It was difficult even to characterize the set of binary codes that could be analyzed. These difficulties
motivated the work presented here.

We have since replaced our original implementation with one based on the method described in this paper. The new
implementation is used in both tools. The advantages of the new method are three-fold: it can handle any branch in a
delay slot, even if the target is a branch; it generates better intermediate code than before; and we recover control-flow
graphs with fewer basic blocks.

All the transformations discussed in this paper were done by hand. We investigated tools that might have helped us
transformstable, but we were left with the impression that this is still a research problem (Sha96), and it was easy
enough to transformstable by hand. By contrast, it would be very useful to automate the derivation of the translator from
stable and the discovery of the translations of theaI ’s, bI ’s, andIc’s. This work is not intellectually demanding, but it is
tedious because there are many cases.

Our implementation includes simple optimizations not mentioned above. For example, we do not create thenop
instructions shown in Table 10.1 whenIc is skip. There are also many cases in which further transformation ofstable

can show that it is not necessary to create new basic blocks.

To test the correctness of our implementation, we developed a test suite that includes not only standard programs but also
artificial programs with different kinds of branches in delay slots. We checked by hand that the intermediate forms and
control-flow graphs derived from the translation were correct at each relevant basic block.

As presented in this paper, a branch in a delay slot requires a recursive call toloop, not tostable . Most cases, including
all those shown in the SPARC manual, can be handled by an additional unfolding ofloop, which we have done in our
implementation. The unfolding game can go on indefinitely; no matter how many times we unfoldloop, a single recursive
call to loop remains, and it is always possible to write a program whose interpretation reaches this recursive call. Because
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a program that does this indefinitely is not useful (it does nothing but jump from one branch to another, never executing
a computational instruction), we have cut off the unfolding at one step beyond what is shown in this paper. This level of
unfolding handles the case of two branch instructionsI1 andI2, whereI2 is in I1 ’s delay slot. If the target ofI1 is also a
branch instruction, our system currently rejects the code. We have not decided whether it will eventually fall back on an
interpreter, or whether we will develop a fallback translation algorithm to which bothnPC andPC are parameters.
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Chapter 11

Procedure Abstraction Recovery

Design and documentation: Cristina [Mar 99], Doug [Aug 1999], Mike [Jun 00]; Implementation: Doug [c.99]

Functions1 in source code have a representation in object code that is specific to a given operating system and hardware
architecture combination. For these object level functions to interoperate with each other, they must conform to a format
described in an Application Binary Interface (ABI). Compiler writers need to adhere to the ABI if their generated code
is to be compatible with that generated by other compilers. This constraint is only imposed on functions that are to be
available externally. However, most compilers adhere to the ABI format for all generated code.

The aim of this work is to use the relevant parts of the ABI to recover a source code like representation of procedural
aspects of object code. This allows us to abstract from machine dependencies; for example, in the way that parameters
are passed to a procedure, how values are returned and how local variables are represented.

In particular, we aim to recover the following high level constructs:

� Signatures for functions (e.g.integer add(integer, integer) )

� High level function invocations: (e.g.var1 := add(5,var2) )

� High level return statements (e.g.return var1 )

The types considered so far are:

� integer (possibly with a size if found useful)

� address (pointer to instruction or to data)

� float (with a size: 1 (single), 2 (double), 4 (quad))

This chapter does not deal with the recovery of these low-level types (see Chapter 12); you need assume that only they
exist for now.

1The termsfunctionandprocedureare used interchangeabley in this document.
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11.1 Specifications to Support Procedure Abstraction

The Unix System V ABI (uni90a) describes the application binary interface rules to be followed on different machines
when implementing Unix System V. The SPARC (uni90b) and Intel (uni90c) processor supplements describe machine-
specific rules to be followed as part of implementing the ABI interface. Such rules include how to pass parameters to
a procedure and how to return value(s) from a function. It also describes the stack frame and how values on it change
during a call. For SPARC, machine dependencies such as the register window mechanism are also explained.

When a compiler generates code for a function call, it first needs to determine where to pass the parameters (either on
registers or the stack) and place them on the appropriate locations, it then emits a call to the destination address for the
function, the called function sets up its stack frame and allocates enough space for local variables and any other space that
the ABI may require it to allocate, then the code for the rest of the function is emitted. On function return, a returned value
needs to be placed on certain location(s) and the stack frame needs to be restored to its original form prior to returning.
Once returned, the caller determines whether to move the returned value to a register or a variable as needed.

The above description can be summarized in terms of the caller’s and callee’s prologue and epilogue. The caller’s
prologue places the actual arguments and invokes (calls) the function. The callee’s prologue sets up the stack frame. The
callee’s epilogue places the return value, restores the stack frame and returns. The caller’s epilogue decides what to do
with the returned value.

A calling convention language, CCL (BD95), was developed to specify calling conventions for different languages and
compilers. The language is used as part of a retargetable compiler and as such makes use of knowledge known at compile
time, such as the number of arguments passed to a function and the types of such arguments.

At the machine-code level, the types of arguments are unknown until analysis is performed on them. Using a specification
based on types does not aid in determining their types. For example, the FSA in Figure 11.1 states that for a particular
machine, the first integer argument is passed on register%o0 and the second integer argument on register%o1, or
alternatively, a double floating point argument can be passed in both%o0and%o1. Although this makes sense from
a compiler’s point of view, in machine code we do not see a difference between storing integers, addresses or double
floats in registers%o0and%o1. The only useful information to us is the fact that the registers%o0and%o1are used to
pass arguments. Later analysis on the usage of the passed arguments may determine the difference between integer and
double float arguments.

i
o0

i
o1

d

Figure 11.1: Sample FSA to Place Integer and Double Floating Point Arguments on Registers

Given the inadequacy of CCL for out task, we have developed two new specification languages to support our analysis.
The first, IPL2 (instruction pattern language) supports the specification of the instruction sequences from which the
caller and callee prologues and epilogues are composed. IPL is an extension of SLED (RF94b), a language to support
descriptions of machine instruction syntax. IPL extends SLED to provide support for regular expressions to the language
where the atoms of an expression are individual instructions. The second language we have developed is PAL (procedure
abstraction language). which provides a means for specifying the calling convention and other procedure aspects of object
code as specified in an ABI.

The following sections demonstrate the use of these specification languages for the SPARC and Intel platforms. More
detailed descriptions of the languages are given in theUQBT source code.

2Keep those acronyms coming!!
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SPARC

The standard stack frame for a single SPARC procedure is composed of (from low to high addresses) a 16-word area to
save the register window, one word to put the address of a struct/union to return by a callee, 6 words for a callee to save
the first 6 arguments (passed in registers) to the stack,n words for output arguments 7 and above, and an area to store
locals. Figure 11.2 shows the standard stack frame for SPARC.

prev

curr

high

low
spill area for args 1-6

in arguments 7, 8, ...

struct/union return pointer

16-word window save area

variable size
(locals, spills)

outgoing arguments 7, 8, ...

spill area for out args 1-6

struct/union return pointer

16-word window save area

%fp+68

%fp+92

%fp+64

%fp

%sp+68

%sp+92

%sp+64

%sp

Figure 11.2: Standard Stack Frame for SPARC Code. The indexes and register’s are given from the context
of the callee.

11.1.1 Prologues and Epilogues

Prior to specifying the prologues and epilogues, it is convenient to introduce symbolic names for register encodings3. For
example, the symbolic name for register 24 on SPARC is%o0. The set of names defined for SPARC are shown below.

NAMES
SP = 14
FP = 30
o0 = 8

3This is analogous to thenames construct in SLED.
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i0 = 24
i7 = 31
o7 = 15
g0 = 0

On the SPARC, there are two different ways of invoking a function based on the return type of the function. Acall
instruction is always used. If the return value is a structure, union or a quad floating point value, the instruction following
the delayed instruction of thecall needs to be aunimp instruction. The immediate 22 bits of theunimp are used to
specify the size of the returned value4.

PATTERNS
CALLER_PROLOGUE std_call addr IS

call__ (addr)

CALLER_PROLOGUE struct_call addr IS
call__ (addr);
<4>; # any 4 byte instruction
UNIMP (imm22)

The callee prologues that have been identified to date are shown below. The first two are used when the size of the stack
to be allocated fits into a 13 bit immediate operand. The first one effects a change to the register window (i.e. allocates
a new set oflocal andout registers) where as the second doesn’t. The last two are analogs of the first two and handle
procedures that allocate a stack whose size cannot be stored in a 13 bit number. A procedure may not have a prologue at
all, as in the case of a leaf procedure (see page 198 of (SPA92c)) that doesn’t require any stack space.

Note: The last two patterns shown here cannot be used yet as the pattern parser cannot handle equations or local
variables. Seex11.5 for a complete description of what is yet to be implemented to support procedure recovery.

CALLEE_PROLOGUE new_reg_win locals IS
SAVE ($SP, imode(locals), $SP)

CALLEE_PROLOGUE same_reg_win locals IS
ADD ($SP, imode(locals), $SP)

CALLEE_PROLOGUE new_reg_win_large locals { locals = hiVal+lowVal } IS
sethi(hiVal,reg);
ADD (reg, imode(lowVal), reg);
SAVE ($SP, rmode(reg), $SP)

CALLEE_PROLOGUE same_reg_win_large locals { locals = hiVal+lowVal } IS
sethi(hiVal,reg);
ADD (reg, imode(lowVal), reg);
SAVE ($SP, rmode(reg), $SP)

The callee epilogue for a procedure on SPARC depends on the following factors:

� Does it return an aggregate value?

4Not all compilers (e.g. gcc) make use of this information to generate runtime size checking code.
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� Is it a leaf procedure?

� Is the value to be returned (if any) already in the right location?

� Has it allocated its own stack?

While most combinations of these factors are legal, the majority of programs will only use a limited subset of the possibile
combinations. The most common represents a standard return from a non-leaf procedure (and hence resets the register
window). The value to be returned is already in the expected location (%o0 in this case). The alternatives for the first
instruction (i.e. the actual transfer of control) represent the cases of a scalar (or void) return value and an aggregate return
value respectively.

CALLEE_EPILOGUE std_ret IS
[ ret() |

JMPL (dispA ($i7, 12), $g0) ];
restore_()

Two other common combinations are similar to the above except the value to be returned is moved into the expected
location by therestore instruction.

CALLEE_EPILOGUE ret_reg_val rs1, rs2 IS
[ ret() |

JMPL (dispA ($i7, 12), $g0) ];
RESTORE (rs1, rmode(rs2), $o0)

CALLEE_EPILOGUE ret_imm_val rs1, imm IS
ret();
RESTORE (rs1, imode(imm), $o0)

Lastly, a leaf procedure usually returns with aretl instruction when returning a void or scalar value or ajmpl
instruction when returning an aggregate value. The extra offset from the calling address in the latter case is to skip
theunimp instruction discussed previously.

CALLEE_EPILOGUE leaf_ret IS
[ retl() |

JMPL (dispA ($o7, 12), $g0) ];
{ SUB ($SP, imode(?), $SP) }

Once the callee returns, any return values are in the right place and the stack has been restored, so there is no caller
epilogue.

The prologues and epilogues presented in this section are the basis for the PAL specification. The PAL specification
encapsulates the information present in the ABI that describes how parameters are passed and values returned, where
locals are stored and any other architecture specific information. The following sections present the sections of the PAL
specification for SPARC ABI compliant programs.

11.1.2 Frame Abstraction

To simplify a PAL specification, the first section specifies how to abstract frame and stack relative address by converting
them to be in terms of a single fixed point, the abstract frame pointer (AFP or%afp ). Typically, this point should be the
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value of the stack pointer after the callee prologue (if any) has been effected as this is when the abstraction specified takes
place. On SPARC,%afp is indeed initialised to the stack pointer (i.e.%sp). The substitutions to convert other frame
and stack relative addresses to%afp relative addresses is specified in terms of the callee prologues previously specified.
The only two5 callee prologues on SPARC are similar enough that the same substitution for the frame pointer (i.e.%fp)
can be used. The analysis tracks any changes to either%spor %fp throughout the procedure and updates their respective
substitutions correspondingly.

FRAME ABSTRACTION
INIT = %sp
new_reg_win
same_reg_win
{

%fp -> %afp - locals
}

11.1.3 Local Variables

Local variables are stored within a procedure’s stack frame. The size of this stack frame can be derived from a
callee prologue (We are assuming that this is always true). The example below states that on SPARC, the amount of
space (in bytes) allocated for local variables is equal to the value of thelocals parameter of thenew reg win and
same reg win callee epilogues.

LOCALS
new_reg_win
same_reg_win
{

locals
}

Ideally, we would like to recognise any access addresses within the portion of the stack frame used for local variables.
However, given the problem of aliasing this is non-trivial and requires extensive analysis. Even with such analysis, there
is no guarantee that all such references will be detected. The approach we take is simpler and completely reliable. The
user specifies how to derive the size of the block of memory allocated for locals from the callee prologue6.

11.1.4 Parameter Locations

As discussed inx11.1, at the machine-code level we cannot distinguish the variables and types that were used when
placing parameters on appropriate parameter-passing locations. On SPARC, all parameters are copied by instances of
one word, hence, a double floating point value is copied as two words, in exactly the same way as two individual integers
or even two addresses are copied. Low-level type information can be retrieved from usage at the called site.

The ABI specifies which locations are used for passing parameters, and the order of usage of those locations. The means
by which the parameters are referenced across a call boundary is dependent upon theview changeeffected by a call. The
view change can be thought of as the low level analog of using actual and formal parameters in source code. That is, the

5Well four, if you consider the prologues we can’t yet handle.
6I am assuming that this will always be possible
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same parameter is referenced differently depending on whether the context of the reference is the call instruction or in
the called procedure.

To account for the view change effected by a call, we specify parameter locations from the both context of the caller
(outgoing parameters) and the callee (incoming parameters).

The first part of the parameters section specifies where the outgoing parameters are found. This is acheived by attaching
a parameters specification to theCALLERkeyword.

PARAMETERS
CALLER
{

AGGREGATE -> m[%afp + 64]
REGISTERS -> %o0 %o1 %o2 %o3 %o4 %o5
STACK -> BASE = [%afp + 92]

OFFSET = 4
}

Each sub-clause is optional but if present, it must obey the ordering implied in the above example (i.e.AGGREGATE
beforeREGISTERSbeforeSTACK). This ordering complies with how parameters are passed on all architectures we
have encountered.

TheAGGREGATEsub-clause states where the address of an aggregate value to be returned is found. This location will
only be used by calls to procedures that actually return a struct. Additionally, only some architectures (such as SPARC)
make use of a special location for this purpose. Others (e.g. Intel) simply pass it as the first parameter7.

TheREGISTERSsub-clause states that registers%o0..%o5 (in that order) are used for the first 6 parameters (after the
aggregate address parameter if used). Any extra parameters are passed via the stack and are found in locationsm[%afp
+ 92], m[%afp + 96], m[%afp + 100], ... as specified by theSTACKsubclause.

In addition, there can be anALIGNMENTsub-clause, after theSTACKand before the closing curly bracket.REGISTERS
can also have a type before it, to designate the type of parameters that the given registers can hold. The type can be one
of INTEGER, FLOAT, or DOUBLE. Where a type is not given, as above,INTEGERis assumed. Where more than one
type of register is given, they must be in the orderINTEGER, FLOAT, thenDOUBLE(with any or all being optional). For
example, for HP pa-risc:

PARAMETERS
CALLER
{

AGGREGATE -> m[%r28]
INTEGER REGISTERS -> %r26 %r25 %r24 %r23
FLOAT REGISTERS -> %fr4 %fr5 %fr6 %fr7
DOUBLE REGISTERS -> %fd5 %fd7
STACK -> BASE = [%afp - 52]

OFFSET = -4
DOUBLE ALIGNMENT 8 BYTES

}

When multipleREGISTERSare given as above, they are considered to operate “in parallel”. In other words, when the
first parameter goes into either %r26 or %fr4, this “parameter slot” is “used up”, and so the next parameter goes into

7This effectively makes it a “hidden” argument in that it doesn’t correspond to any source code level parameter.
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register %r25, %fr5, or %fd7, depending on the type. If the first parameter is aDOUBLE, then two parameter slots are
used up.

The ALIGNMENTsub-clause states that parameters of typeDOUBLE(64 bit floating point) are aligned on 8 byte
boundaries. This applies to registers and stack locations alike; that’s why there are only twoDOUBLE REGISTERS.
As an example, if a pa-risc function took an integer, a double, and an integer, then even though these could easily fit
into three registers, they are actually placed in registers %r26, %fd7, and stack location [%afp-52]. The alignment of
the double parameter “skips” register %r25, and because doubles are twice as big as integers, using %fd7 “uses up” the
parameter slots for %r24 and %r23. So the third parameter has to go to the stack. If there was a fourth parameter of
typeDOUBLE, it would go to [%afp-64] (and the other half at [%afp-60]), skipping the word at [%afp-56] to keep the
argument aligned on 8 byte boundaries.

This indicates a significant difference between SPARC and pa-risc architectures. On the non aligned SPARC, aDOUBLE
parameter could be split between an integer register and the stack. On the aligned pa-risc, such splits can’t happen. On
the other hand, “gaps” in the parameters can be seen in pa-risc programs, while these will never be seen on the SPARC.

Outgoing parameters are always placed at the same locations. Incoming parameters however, depend upon the prologue
of the procedure being invoked as it is this prologue that effects the aforementioned view change. Stack parameters may
be found at different offsets after allocation of the procedure’s stack frame. Also, a register window change will mean
that some registers will now accessed via different register names.

On SPARC, thenew reg win prologue changes the register window, effectively renaming the eight output registers
(%o0..%o7 ) to the eight input registers (%i0..%i7 ).

new_reg_win
{

AGGREGATE -> m[%afp - locals + 64]
REGISTERS -> %i0 %i1 %i2 %i3 %i4 %i5
STACK -> BASE = [%afp - locals + 92]

OFFSET = 4
}

The other prologue,same reg win , doesn’t change the register window but changes the stack offsets.

same_reg_win
{

AGGREGATE -> m[%afp - locals + 64]
REGISTERS -> %o0 %o1 %o2 %o3 %o4 %o5
STACK -> BASE = [%afp - locals + 92]

OFFSET = 4
}

11.1.5 Return Locations

Return values need to be placed in specific registers depending on the type of the value to be returned. As with incoming
parameters, the locations used will depend on the view change effected by the prologue of the procedure doing the return.

RETURNS
ret_reg_val
ret_imm_val
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leaf_ret
CALLER
{

INTEGER IN %o0
ADDRESS IN %o0
FLOAT IN %f0
DOUBLE IN %f0to1

}
std_ret
{

INTEGER IN %i0
ADDRESS IN %i0
FLOAT IN %f0
DOUBLE IN %f0to1

}

Note that double refers to a 64 bit float and as such is returned in a synthetic register that denotes two 32 bit registers.

Once again, theCALLERkeyword indicates that the accompanying specification is from a caller’s perspective. In this
case it is where a caller will receive a returned value.

11.1.6 Accesses to a Parent’s Stack

This is the first (and so far, only) section that is optional in that not all architectures will require it.

On SPARC, a procedure may write to a certain portion of its parent’s stack frame. This capability is provided primarily so
that parameters in registers can be spilled to the stack resulting in all parameters being located in a contiguous segment of
memory. This is typically required when the source code uses variable argument lists or takes the address of a parameter.
Compiler writers can leverage this capability and use this portion of the parent’s stack as space for temporary variables.
In order to abstract away from referring stack locations, we replace accesses to these addresses with variables. To do so
requires that these addresses are specified in a PAL specification as shown below.

PARENT STACK
new_reg_win
same_reg_win
{

%afp - locals + 68 TO %afp - locals + 88 STEP 4
}

Intel

The standard stack frame of a procedure includes space for arguments, the return address of the caller, the frame pointer
value of the caller (%ebp), and enough space for local variables and spilled values (including registers that need to be
preserved across procedure calls). Figure 11.3 shows the standard stack frame for Intel code.

11.1.7 Prologues and Epilogues

As with SPARC, we start the prologue and epilogue specification by declaring symbolic names for the register encodings.
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argument n

...

argument 1

return address

(locals, spills)
variable sized

previous %ebp

%ebp+8+4n

%ebp+8

%ebp+4
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%esp

prev

curr

high

low

Figure 11.3: Standard Stack Frame for Intel Code

NAMES
EAX = 0
ECX = 1
EDX = 2
EBX = 3
ESP = 4
EBP = 5
ESI = 6
EDI = 7

On Intel x86, there is only one way to invoke a procedure, even if the procedure is to return a value or a structure. The
call instruction is used, and although this assembly instruction maps to one of five different machine instructions, only
one is used for direct calls; the intra-segment direct callCALL .JVOD. For indirect calls (i.e. via a register), the intra-
segment indirect call is used (CALL.EVOD modrm). Indirect calls require extra analysis to determine the target address
of the call; this is addressed in a different document. For now assume all calls are direct.

PATTERNS
CALLER_PROLOGUE std_call addr IS

CALL.Jvod (addr)

The most common callee prologue sets up the frame base pointer and the stack pointer, as well as optionally allocating
space on the stack for locals and spilled values. Further, the contents of registers%edi , %esi and%ebx need to be
preserved across procedure calls. That is, if these registers are used by the callee, they need to be spilled to the stack as
part of the prologue.
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CALLEE_PROLOGUE std_entry locals=0, regs IS
PUSHod ($EBP);
MOVrmod ($EBP, Reg($ESP));
{ SUBiodb (Reg ($ESP), locals) |

SUBid (Reg ($ESP), locals) };
{ [ PUSHod ($ESI) |

PUSHod ($EBX) |
PUSHod ($EDI) ] *regs <1..3> }

In the case where an aggregate value is to be returned, the address at which this value is to be stored can be passed as
the first (hidden) argument of the call. It has been noted that some compilers move this address into%eax as part of the
prologue8.

CALLEE_PROLOGUE struct_ptr locals, regs IS
POPod ($EAX);
XCHG.Ev.Gvod (E (Base ($ESP)), $EAX);
@std_entry (locals, regs)

The standard epilogue restores any of the registers that need to be preserved across a procedure call (i.e.%ebx, %esi or
%edi ), restores the stack pointer and the frame pointer, and returns to the caller’s return address. Restoring registers to
be preserved across procedure calls can be done in one of two ways; by popping them from the stack, or by indexing into
the stack directly. It has also been noticed that some compilers generate aLEAod (load effective address) at the start of
the epilogue, to ensure the stack pointer is pointing to the right address, even if this instruction is redundant (as has been
seen in gcc -O2 generated code). TheRET.Iw instruction is used to remove the address of a returned aggregate value if
this hasn’t already been done so by the prologue.

CALLEE_EPILOGUE std_ret IS
{ LEAod ($ESP, Disp8(?,$EBP)) };
{ [ MOVrmod ($EBX, E( Disp8(?,$EBP))) |

MOVrmod ($ESI, E( Disp8(?,$EBP))) |
MOVrmod ($EDI, E( Disp8(?,$EBP))) ] * <1..3>

|
[ POPod ($EBX) |

POPod ($ESI) |
POPod ($EDI) ] *<1..3> };

[ LEAVE () | [ MOVrmod ($ESP, Reg($EBP)); POPod ($EBP) ]];
[ RET () | RET.Iw (?) ]

Simple procedures that use no stack and take no parameters have a very basic epilogue.

CALLEE_EPILOGUE simple_ret IS
RET () | RET.Iw (?)

Upon return from a call, the stack needs to be restored by the caller in order to remove the parameters that were passed
on the stack. Restoring of the stack is done by modifying the value of the stack pointer by a certain number of bytes, or

8Initially this was believed to be an optimisation as the address of a returned aggregate value must be in%eax upon returning from
the procedure. However, analysis shows that this is not the case as these procedures subsequently write to%eax before doing a return.
It does mean the simple form ofRETcan be used in the epilogue but I’m not sure that this can be classified as an optimisation
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by popping values from the stack a certain number of times (4 bytes at a time). Either way will tell us how many bytes
are restored from the stack.

CALLER_EPILOGUE clear_stack n IS
[ ADDiodb (Reg($ESP),n) | ADDid (Reg($ESP),n) ] |
[ POPod ($EAX) |

POPod ($EBX) |
POPod ($ECX) |
POPod ($EDX) |
POPod ($ESI) |
POPod ($EDI) |
POPod ($EBP) ] * n <1..7>

11.1.8 Frame Abstraction

On Intel, we initialise%afp to be the value of%esp after the prologue (if any) has been executed. As with SPARC, a
similiar substitution is specified for the frame pointer.

FRAME ABSTRACTION
INIT = %esp
std_entry
struct_ptr
{

%ebp -> %afp + (regs * 4) + locals
}

11.1.9 Local Variables

The size of the block of memory allocated for local variables will be the initial increment to the stack pointer plus the
number of bytes pushed to the stack when preserving registers.

LOCALS
std_entry
struct_ptr

{
locals + (regs * 4)

}

11.1.10 Parameter Locations

Outgoing parameters on Intel are always found at the bottom of the stack. Given that we can’t statically specify where the
bottom of the stack is, we simply choose a fixed stack address. Accompanied with a negative offset, this implies that all
address that are at multiples of this offset from are potential parameter locations. The analysis will then determine which
of these locations are live at a call and recovery as many as it needs to match the signature of the callee, starting at the
lowest addresses. This is exactly the same approach taken with stack parameters on SPARC but the fixed point specified
in the SPARC PAL specification just happens to be the lowest address (as implied by the positive offset accompanying
it).
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PARAMETERS
CALLER
{

STACK -> BASE = [%afp - 4]
OFFSET = -4

}

Procedures with thestd entry prologue will find their incoming parameters at positive offset from the frame pointer.
Of course, the specification is given in terms of%afp as we want to abstract away from concepts such as a frame pointer.

std_entry
{

STACK -> BASE = [%afp + locals + (regs * 4) + 8]
OFFSET = 4

}

Thestruct ptr prologue contains the side effect of popping the address of the aggregate value to be returned from
the stack into%eax9. As such, the incoming parameters specification for procedures prefixed with this prologue require
anAGGREGATElocation to be included.

struct_ptr
{

AGGREGATE -> %eax
STACK -> BASE = [%afp + locals + (regs * 4) + 8]

OFFSET = 4
}

11.1.11 Return Locations

The RETURNS section specifies where returned values can be found. Again, there are subsections for each callee
prologue, and one for callers, using the special keyword CALLER. Often the different integer values (byte, short, int)
are returned in the same register. If, and only if, the register numbers are different for the integral subtypes, then an
entry should exist for INTEGER.16 and so on. On a RISC machine like SPARC, parts of registers are typically not given
different register numbers, so these don’t appear:

RETURNS
# Note: even though functions with save/restore return integer locations in %i0,
# we use the STD_RET_ pseudo instruction for these, which copies %i0 to %o0.
# This simulates the semantics of the restore (for the purposes of return
# location), so we don’t need a separate set of locations for these functions

ret_reg_val
ret_imm_val
leaf_ret
std_ret
CALLER

9It it turns out that some other register is used, then the register used can be parameterised in the pattern and the parameter name used
here instead of%eax.
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{
INTEGER.32 IN %o0
ADDRESS IN %o0
FLOAT.32 IN %f0
FLOAT.64 IN %f0to1

}

On Intel, all fixed point scalar values are returned in%eax, but the word and byte part of eax is called a different register
name. All floating point values are returned on the top of the floating point stack. The register number of the top of stack
depends on whether a caller or callee is involved:

RETURNS
std_ret
frameless_epi
{

INTEGER.32 IN %eax
INTEGER.16 IN %ax # So that functions returning shorts
INTEGER.8 IN %al # or chars can be analysed as such
ADDRESS IN %eax
FLOAT.80 IN %st7

}

CALLER
{

INTEGER.32 IN %eax
INTEGER.16 IN %ax # So that functions returning shorts
INTEGER.8 IN %al # or chars can be analysed as such
ADDRESS IN %eax
FLOAT.80 IN %st

}

11.1.12 Accesses to a Parent’s Stack

Intel procedures never access any stack locations outside of their own stack apart from those storing incoming parameters.

11.2 Procedure Abstraction Analysis

The goal of this analysis is to use the specification described in the preceeding sections to remove any references to stack
locations in object code. Such references will be recovered into either parameters or local variables. There are 5 steps
involved in this analysis:

1. Replace all stack and frame pointer relative addresses with their equivalent%afp relative addresses.

2. Recover the signature (parameters only) of user code procedures.

3. Analyse each call to recover the actual parameters of the call. this step also includes recovering the return type of
the procedure called if it isn’t a library procedure.

4. Replace any accesses from within a procedure to locations in its parent’s stack with accesses to local variables.
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This analysis is to be performed only on user procedures; library procedures will be assumed to have been processed
by now, either through generation of call signatures from header files or through application of the following analysis to
library code.

The following subsection consider each of the above steps in detail. Throughout this section we will make use of the
SPARC example in Figure 11.4. Issues specific to Intel are discussed inx11.2.3.

gcd: main:
save %sp,-112,%sp save %sp,-112,%sp
mov %i0,%l0 mov 10,%o0
cmp %l0,%i1 mov 5,%o1
bge .LL12 sethi %hi(.LLC0),%l0
mov %i1,%i0 call gcd
b .LL12 or %l0,%lo(.LLC0),%l0
mov %l0,%i0 mov %o0,%o3

.LL6: mov %l0,%o0
call .rem mov 10,%o1
mov %i0,%o1 call printf
cmp %o0,0 mov 5,%o2
bne,a .LL12 ret
add %i0,-1,%i0 restore
mov %i1,%o0
call .rem
mov %i0,%o1
cmp %o0,0
be .LL10
nop
add %i0,-1,%i0

.LL12:
cmp %i0,1
bg .LL6
mov %l0,%o0

.LL10:
ret
restore

.LLC0:
"gcd of %d, %d is %d\n"

Figure 11.4: SPARC Assembly Code for GCD Program

11.2.1 Recovery of Parameters

Actual parameters are placed by the caller in one or more of the locations specified bycaller parameters . The
callee will effect theview change applicable to its prologue, and will then use the passed parameters directly or place
them on the parameter spill area. Either way, the parameters are used before definition within the callee, and this is what
tells us that the information in that location was setup elsewhere in the program.

In the example of Figure 11.4,main callsgcd , using the most frequently used calling convention;interface1 . At
thecall site, the parameter locations that are live are:
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live = {%o0, %o1}

At the callee site, we apply theview change of callee prologue1 to the live parameter locations, the stack
pointer, and the return address, leading to

%o0 -> %i0
%o1 -> %i1
%sp -> %fp
%o7 -> %i7
%sp -> %sp-112

Forgcd we summarize the live-in information for the whole procedure based on the parameter locations (view changed).
This gives us

liveIn(gcd) = {%i0, %i1}

This information tells us that there are 2 parameters, which match the two live parameter locations at the call site, hence
the actual parameters to the call are%o0and%o1. The transformed CALL instruction looks like this:

CALL gcd [<ret type>] <(%o0,<type>), (%o1,<type>)>

Note that for parameter locations that are on the stack, the view change of these looks as follows:

%sp+92+n -> %fp+92+n

Hence, accesses to%fp+92+n at the callee site are accesses to parameter locations. It is also feasible for the callee site to
access these locations using the stack pointer; this is needed for leaf routines but it can also be used in non-leaf routines:

%sp+(92+simm13)+n

We need to support both views of stack parameter locations.

Fixed vs Variable Number of Arguments

Most procedures take a fixed number of arguments. However, languages like C allow for variable number of arguments
to be passed at any one time. The ABI (uni90a) does not place any rules on variable number of parameters, but states
that the calling convention rules need to be satisfied; that is, the first 6 word parameters go into registers and the next go
onto the stack. Disassembled C code shows that the first thing the callee does is to move all the register parameters to
the parameter spill area, and then use them all on the stack (as the stack parameters are contiguous to the spilled register
parameters).

It is not clear that in all cases usage analysis of parameter locations at the callee will determine the number of parameters
taken by the callee (think ofprintf , it can take any number and the code is bound to be a loop on a string). Also,
different invocations of the procedure will take different number of arguments.I propose we pass all the live parameter
locations at the call site in the mean time; we will see from the implementation whether this will cause problems with
stack parameter locations.
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11.2.2 Recovery of Return Value

The callee will place a return value on a validcallee return location. We note that if anything is placed on a return
location, this location will be live-out of the callee. The caller will need to apply the inverse of theview change to
live-out callee locations. If the caller is to make any use of a returned value, the location where it was stored will be used
before being re-defined. Usage is commonly in the form of storing to a local variable or using it as a parameter to another
procedure. Once this is determined, the callee’s RET instruction is set to return the relevant return location.

For the example of Figure 11.4, the callee,gcd , has only one return location live-out, which matches itscallee
return for interface1 :

live-out = {%i0}

The caller uses%o0 before definition, hence this is our return location. The callee’s RET instruction can now be
transformed to:

RET %i0

The caller’s CALL instruction can now be transformed into an ASSIGN (assignment) instruction as follows:

%o0 = CALL gcd <(%o0,<type>), (%o1,<type>)>

Should we introduce a HL ASSIGN or shall we use RTL assign instead?

Note that as of 8th September 2000, the return value analysis is done before the actual parameter analysis. This is because
the return value analysis may cause re-analysis of some of the children, which may impact on the parameters of the call
being considered.

Returned Values not Used

Returned function values are not always used by the caller. In such cases, different invocations of the same procedure will
show different return location usage. In these cases, we go for the more general one (i.e. the procedure returns a value)
and we annotate each actual call with whether the return value is used or not. In this way, the signature for the procedure
is correct.

11.2.3 Issues Relating to Intel Call Signature Analysis

The nature of Intel passing parameters on the stack means that optimizing compilers may delay the restoring of the stack
until after several calls to (different) procedures have been emitted. This means that the caller epilogue is optional, and
where available, it may not necessarily match the number of bytes passed as parameters to the caller but may also include
bytes used in a previous call. We can still make use of liveness analysis to determine which arguments are passed to each
procedure nevertheless. For the purposes of illustration, we will make use of Figure 11.5, an optimized version of the
GCD program for Intel.

Proceduremain callsgcd using the calling convention specified ininterface2 with an immediate value of 12 bytes.
The calling convention does not include a caller epilogue. At thecall site, theparameter locationsthat are live are:

live = {[%esp], [%esp+4]}
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gcd: main:
pushl %ebp pushl %ebp
movl %esp,%ebp movl %esp,%ebp
pushl %edi pushl %esi
pushl %esi pushl %ebx
pushl %ebx movl $10,%esi
movl 8(%ebp),%ebx movl $5,%ebx
movl 12(%ebp),%edi pushl %ebx
movl %edi,%esi pushl %esi
cmpl %edi,%ebx call gcd
jge .L12 pushl %eax
movl %ebx,%edi pushl %ebx
jmp .L12 pushl %esi

.L6: pushl $.LC0
movl %ebx,%eax call printf
cltd leal -8(%ebp),%esp
idivl %edi popl %ebx
testl %edx,%edx popl %esi
jne .L7 leave
movl %esi,%eax ret
cltd
idivl %edi
testl %edx,%edx
je .L13

.L7:
decl %edi

.L12:
cmpl $1,%edi
jg .L6

.L13:
movl %edi,%eax
leal -12(%ebp),%esp
popl %ebx
popl %esi
popl %edi
leave
ret

.LC0:
"gcd of %d, %d is %d\n"

Figure 11.5: Intel Optimized Assembly Code for GCD Program

Applying theview change for interface2 to the live parameter locations we get:

[’%esp] -> [%esp+20]
[’%esp+4] -> [%esp+24]

and
[’%esp] -> [%ebp+8]
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[’%esp+4] -> [%ebp+12]

Proceduregcd has the following set of parameter locations live on entry, and return locations live on exit:

liveIn = {[%ebp+8], [%ebp+12]}
liveOut = {%eax}

The liveIn parameters match the ones that were live on entry, hence we can safely assume that 2 words (8 bytes) were
passed as arguments. The call is transformed to the following HL instruction:

CALL gcd [<ret type>] <([%esp],<type>), ([%esp+4],<type>)>

which is further transformed into what was actually placed at those stack locations (i.e. this information needs to be
stored previously):

CALL gcd [<ret type>] <(%esi,<type>), (%ebx,<type>)>

The liveOut information tells us that%eax is returned. Further, at the caller’s site, the value of%eax is used prior to
definition. Even if this value was not used, the ABI states that return locations should only be set to a value if they are
intended to return a value, as there is no type checking on this interface. The return instruction ingcd is changed to

RET %eax

and the caller’s site call is changed to

%eax = CALL gcd <(%esi,<type>), (%ebx,<type>)>

Although there is no caller epilogue to restore the stack, we have determined the right arguments to this call.

The next call thatmain performs is to the library procedureprintf . In this case, if we had signatures forprintf
we could only be assured of one fixed parameter (an address) and maybe some more parameters, as this is a variable
argument procedure. Also, the calling convention does not specify a caller epilogue in this case either, hence we cannot
determine exactly how many bytes are passed on the stack to this call. The best that can be done is to passall parameter
locations that are live at the call site:

live = {[%esp], [%esp+4], [%esp+8], [%esp+12], [%esp+16], [%esp+20]}

When replacing this information into the HL call, we get:

CALL printf <(.LC0,<addr>), (%esi,<type>), (%ebx,<type>), (%eax,<type>),
(%esi,<type>), (%ebx,<type>)>

Note that in this case, the last two arguments are still technically live as the stack wasn’t restored. Although we are
passing them toprintf , the code withinprintf will not use them as they were not expected (by checking the string
.LC0 ).

If however the stack was restored after the call toprintf , the following code could have been emitted to restore both
calls made bymain :

addl $24, %esp

Which would account for 8 bytes that we already knowgcd takes as arguments, and 16 bytes forprintf . This type of
arithmetics will allow us to determine the number of bytes passed to variable argument procedures in some cases (bearing
in mind that each time a different number of arguments may be passed).
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11.3 EBNF for the PAL Language

The EBNF for the PAL language follows. The standard EBNF metasymbols are used:

� {a b} for sequence

� [a] for optional constructs

� (a|b) for alternative choices

� * for zero or more occurrences

� + for one or more occurrences

PALSpec ::= register_names
caller_prologue_section callee_prologue_section
callee_epilogue_section [ caller_epilogue_section ]
frame_section local_section parameter_section
return_section [ parent_section ]

register_names ::= "NAMES" { name ’=’ number } +

caller_prologue_section ::=
"CALLER_PROLOGUE" pro_epi_decl +

callee_prologue_section ::=
"CALLEE_PROLOGUE" pro_epi_decl +

callee_epilogue_section ::=
"CALLEE_EPILOGUE" pro_epi_decl +

caller_epilogue_section ::=
"CALLER_EPILOGUE" pro_epi_decl +

pro_epi_decl ::= constructor_list

frame_section ::= "FRAME ABSTRACTION" init_decl
frame_decl +

init_decl ::= "INIT" reg_name
frame_decl ::= name + ’{’ reg_name "->" afp_exp ’}’

local_section ::= "LOCALS" local_decl +
local_decl ::= names ’{’ exp ’}’

parameter_section ::= "PARAMETERS" param_decl+
param_decl ::= names

’{’ "AGGREGATE ->" "m[" afp_exp ’]’
"REGISTERS ->" reg_name +
"STACK -> BASE = [" afp_exp ’]’

"OFFSET =" number ’}’

return_section ::= "RETURNS" return_decl +
return_decl ::= names

’{’ "INTEGER IN " reg_name
"ADDRESS IN" reg_name
"FLOAT IN" reg_name
"DOUBLE IN" reg_name ’}’

parent_section ::= "PARENT STACK" parent_decl
parent_decl ::= name + ’{’ afp_exp "TO" afp_exp

"STEP" number ’}’
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operands ::= name { "," name } *
constructor ::= name { ’(’ operands ’)’ }
constructor_list ::= constructor

| constructor ’;’ constructor_list
exp ::= "(" exp ")"

| exp "+" exp | exp "-" exp
| exp "*" exp | exp "/" exp
| reg_id | number | name

afp_exp ::=
"%afp +" exp | "%afp -" exp

reg_name ::= name | reg_id

names ::= ( name | "CALLER" ) +
name ::= [A-Z][A-Z0-9_]*[A-Z0-9]
number ::= [0-9]*
reg_id ::= ’%’[A-Za-z][A-Za-z0-9]*

11.4 Location Sets

Many of the analyses described in this chapter rely on sets of bits representing locations. This section gives an overview
of the LocationMap and BitSet classes which implement these.

11.4.1 LocationMap class

There is one LocationMap object (part of the CSR class) for the whole program. It represents a mapping from the integers
to locations of interest to the translation. For example, in one translation, integer 0 might represent ”r[8]”, and in another
translation it could represent ”m[%afp+92]”. It is convenient to define sets of bits to represent sets of locations. In these
sets, if butn is on, that means that the expression represented by integern is in the set. That way, expressions such as

livein =

S

allBBs UsedUndefined
T

(U� livein)

can be implemented in code such as

for ( bb = each in-edge)
liveIn |= bb->useUndefSet & ˜ (bb->liveIn);

11.4.2 BitSet class

There is a Standard Template Library (STL) template class calledbitset , which implements a fixed-size array of bits.
Unfortunately, since we don’t know in advance how many locations a program may have, we want a class with the same
functionality asbitset , but has a variable size (like a vector of bits). TheBitSet class implements this functionality,
using avector of unsigned integers to hold 32 bits at a time. Standard bitwise operators like & andj are used to
implement set intersection and union respectively.

Objects of classBitSet have a member variable calledusedBits which stores the number of bits in this set. Bits are
numbered from 0 tousedBits-1 . BitSet s sometimes have to represent the universal set. To do this properly, there is
a boolean class member calleduniversal , which represents the bits numbered fromusedBits to infinity. Normally,
universal is zero, so that the set is finite, and bits not stored in the vector are considered zero. However, the member
functionset() (the one taking no arguments) sets the single vector element to all ones, and sets theuniversal bit as
well. All bits of this set are considered to be one.
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It is important to take theuniversal bit into consideration when performing operations such asoperator& , set( n) ,
and so on. Two member functions, both with the namesetUsed , expand the vector when required (e.g. setting or
clearing a bit higher than can be represented with the vector at its current size, orand ing or or ing with a bitset larger
than can be represented with the vector at its current size. When the vector is expanded, the newly inserted words are
either set to all zeroes or all ones, depending on the state of theuniversal bit.

Extra care must be taken whenand ing or or ing with a set smaller (in terms of vector size) than the current set. For
example, whenand ing with a smaller set, those elements of the vector beyond the size of other operand’s vector are
effectively beinganded with a virtual word whose bits are all set to the other operand’suniversal bit. Hence these
words are cleared if the other operand’suniversal bit is zero, or left the same otherwise.

11.5 Future Work for Procedure Abstraction Recovery

This section details possible extensions and enhancements that can be made to the procedural abstraction module within
UQBT (Doug, Sep 99).

11.5.1 Pattern Language for Prologues and Epilogues

The proposals in this section include extensions to the pattern language itself (IPL), improvements to the corresponding
parser and suggestions to enforce constraints on how the patterns are used.

� Add support for locals. Locals are variables that are not parameters and as such don’t require definition before use.
Locals can be used to constrain operands over a number of instructions without requiring that a parameter is used.
Also can be used in equations. The example below from SPARC displays both uses:

CALLEE_PROLOGUE new_reg_win_large locals { locals = hiVal+lowVal } IS
sethi(hiVal,reg);
ADD (reg, imode(lowVal), reg);
SAVE ($SP, rmode(reg), $SP)

In this example,hiVal , lowVal andreg are all local variables. The first two are used in the equation to set the
value of thelocals parameter. Thereg variable enforces the operands of the same name in each of the three
instructions to have exactly the same value for the whole pattern to be successfully matched.

� Add support for equations. This enables pattern definitions like the one above where the value of an operand is
derived from an expression involving operands of the constituent instructions. In this form, equations are exactly
the same as supported by SLED. However it may be desirable to given equations a finer grained scope than the
whole instruction. This would allow pattern definitions such as the one below where the value of a parameter is
derived or explicit depending on which branch of the matching expression was taken.

CALLEE_PROLOGUE new_reg_win locals IS
SAVE ($SP, imode(locals), $SP) |
[ sethi(hiVal,reg);

ADD (reg, imode(lowVal), reg);
SAVE ($SP, rmode(reg), $SP)
{ locals = hiVal + lowVal }

]

The primary advantage of this extension is that one epilogue can match a greater variety of patterns. However it
comes at the disadvantage of added complex to both the language and the underlying parser. As it is, the parser
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will have to extend its semantic checking for equations to ensure for example that any variables used in the right
hand side of an assignment are defined on every branch of the matching expression (e.g. lowVal and hiVal)

11.5.2 Local Variables

The current local variable section in a PAL spec only supports specification of the size of the stack frame which in turn is
the amount of memory we allocate for local variables. On some architectures such as SPARC, the stack frame includes
space for other purposes than just storing local variables such as space for saving the register window in the case of a
register window overflow. We would like to be able to allow the user to specify the portion of the stack frame that is
dedicated to local variables. One means of doing so is to specify a base address and a size (similar to a stack parameter
specification) as in the following example for SPARC:

LOCALS
new_reg_win
same_reg_win
{

BASE = %afp
SIZE = locals

}

This example says that the locals parameters are located in the inclusive rangem[%afp] .. m[%afp + locals] .
Using such a specification ensures that the translated program will only allocate as much space for locals as was allocated
in the source program.

As long as only the size of the stack is specified, the local will always be indexed at offsets from%afp . For this reason,
the size specified must always be the same as the difference between the frame pointer and its equivalent%afp relative
value. This can be seen to hold in both the SPARC and Intel PAL specs.

11.5.3 Aggregate Types as Parameter and Return Types

When analysing calls to user code procedures, both the caller and callee can be coerced into a form that will guarantee
the successful compilation of the generated intermediate C code on the target platform. This results primarily from the
fact that the underlying exposes the calling convention for passing and return aggregate values in the intermediate code.

Library procedures that have aggregate types in their signature will expect the calling convention on the target platform
for passing and returning these types to be used by calls to them. The only way we can do this in C code is to typecast
the blocks of memory storing the relevant aggregate values. Consider a call to the library function with the following
signature:

time_t time(time_t *t);

To ensure that the code generated by a call to this function will be ABI compliant with the library on the target platform,
the intermediate C code must use thetime t name as follows:

(*(time_t*)(_t) = time(_t);

where t is a pointer to the block of memory that will store thetime t struct. There is no need to typecast the parameter
to the call as type clashes between pointer types will result in compiler warnings but the correct code will be generated.
A typecast would have been necessary for the parameter if it was not a pointer type.
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At the moment, the analysis does not have access to the type names required for doing the typecasting described above.

11.5.4 Implementation

This sections describes what is left to be done in the implementation is general apart from the changes suggested in the
preceeding sections.

� Change all ”csr” substring ”pal” to reflect that CSR module is now the PAL module. This includes changes to
directory names, files names, class names, variables name comments etc.



Chapter 12

Type Recovery Analysis

Design: Cristina [Mar 99], Implementation: Mike Van Emmerik[c.00], Bernard Wong [Aug 01], Documentation:
Cristina [99], Bernard [Aug 01], Brian [Oct 01]

The bulk of this document was written in 1999 and has not been updated much since. In summer 2001, Bernard
implemented some of the type propagation ideas presented in this chapter, however, the implementation is not fully tested
at the time of release of this code.

Low-level type recovery is the process of recoverying types that are available at the machine level in order for translated
programs to be correct. Type recovery is done in a series of steps, by first annotating locations with their plausible type
and then propagating types across live ranges of locations.

This document will grow as we learn more about the type requirements for translated programs. The following are the
issues that will be addressed throughout this process:

� What is the minimal set of low-level types required?

� How do we best propagate information across procedures?

� What information do we need to store for byte swapping to work correctly across different endianness machines?

In reality, we are mainly interested in determining the low-level types for parameters and return values, however, in order
to do that, one needs to also know the types for other locations that define the variables that get passed as parameters.
This analysis will be done in the following stages:

� Recovery of types for registers

� Recovery of types for local and parameter locations that are not registers

� Recovery of types for other memory locations

The second stage involves extending the register analysis to support local variable locations as well as parameter locations.
It may be that parameter locations are trivially supported by the register analysis (once parameters have been determined),
and so this stage would be involved with the support of local procedure memory.

The last stage is an optional one and is there in case we end up doing endianness analysis and attempt to minimize the
number of swaps to memory.

Unless otherwise seen to be needed later, we will work with four base low-level types: integer, float, address to data
and address to instruction. Given that the ABI (uni90a) states that floats and integers (of any size) are passed on integer
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registers, and the fact that addresses are also integer numbers, our default data type for any location is an integer (i.e. the
bottom of the lattice). In a lattice representation, if a condition holds true, a type can be promoted to one higher up the
lattice. In our case, we have a few types which can be represented in a very simple lattice as per Figure 12.1.

address to data float

integer

address to inst

Figure 12.1: Lattice of Low-Level Types

Types are determined based on usage of a location across a live range. Given that a particular location can be re-used as
different variables of different types by a compiler, the only safe assumption is that the live range for a given location will
haveonetype. I believe this assumption is valid for non-overlapping registers.

For the promotion of types, we use a slightly different lattice to the one displayed in Figure 12.1. Distinguishing integers
from addresses is a hard to solve problem as the assembly of the machine does not provide for mnemonic instructions to
distinguish them. For example, the following code:

sethi %hi(71167),%o1
or %o1,%lo(71167),%o0

sets register%o0 to the value of71167 . From looking at this code alone we cannot tell whether 71167 represents an
address (in the instruction or data area) or a large constant number. Only usage of register%o0will determine the type of
71167. For this reason we use the lattice in Figure 12.2 to describe the types of addresses; namely, an integer may “look
like” and address, but until we can identify usage of that integer or address, we cannot determine whether it is an address
(and hence promote to type address).

integer

address to data

looks like addr to datalooks like addr to inst

address to inst float

Figure 12.2: Lattice of Low-Level Types

Once a type is determined, types are propagated across the live range of the particular location.

Note that even though we place data at the same memory locations in the target address space as in the source address
space, we still need to collect type information on pointers to data, as this information is needed in getting byte swapping
(i.e. the simple endianness solution) to work correctly on translated programs.
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12.1 Type Analysis for Registers

By default, a register is considered to be an integer register. Usage of a register on a procedure call or as the return value
of a call can change its type. Types are propagated from usage to definitions, so here are the steps to follow at different
parts of the translation process:

� Collect plausible type information at decoding time.

� Perform type propagation by type induction.

12.1.1 Collecting Type Information at Decode Time

There are three rules that can be used at decoding time to annotate type information in registers.

The first two rules deal with static checking of literal constants against addresses of text and data sections, and annotating
the relevant register to “looks like” an address, denoted, “˜ pi” for looks like a pointer to an instruction, and “˜ pd” for
looks like a pointer to data.

Type Rule 12.1 If a MS-RTL instruction is of the form “r = Num” andNum 2 addrRanges(textSegments), then type(r)
= ˜ pi.

Type Rule 12.2 If a MS-RTL instruction is of the form “r = Num” andNum 2 addrRanges(dataSegments), then type(r)
= ˜ pd.

The following rule applies to any control transfer instruction, namely, calls, conditional and unconditional jumps. If the
target address of the control transfer instruction is stored in a register, than that register has pointer to instruction type,
denoted “pi”.

Type Rule 12.3 If an MS-RTL instruction is of the form “controlTransfer r”, then type(r) = pi.

12.1.2 Determining Live Ranges of Registers

In order to propagate types across registers and across procedures, live ranges for each register need to be found first. A
register may take several different variables throughout the lifetime of a procedure, hence the need for such live ranges.

A live range extends between the definition (i.e. assignment) of a register until the death (i.e. re-assignment) of that
register. For example, in the followingmain code:

2 mov 10,%o0
3 mov 5,%o1
4 sethi %hi(.LLC0),%l0
5 call gcd
6 or %l0,%lo(.LLC0),%l0
7 mov %o0,%o3
8 mov %l0,%o0
9 mov 10,%o1
10 call printf
11 mov 5,%o2
12 ret
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The live ranges for register%o0are:

� Register%o0becomes live at instruction 2, and its live range extends to instruction 5

� instructions 5 to 8

� instructions 8 to 10

� instructions 10 to 12

12.1.3 Propagating Type Information

Type propagation can only be performed inHRTLcode, i.e. after parameter analysis recovery has been performed and
the program’s code has been lifted to the level of machine independent RTLs.

Known types (i.e. non integer) are propagated across live ranges of registers, including across procedure calls, taking into
consideration the signatures for library functions.

The first rule states how to go up the lattice when the type of the RHS is non integer, basically, propagate from the type
of the usage to the type of the definition.

Type Rule 12.4 If a HRTLinstruction is of the form “r = exp” and type(exp) = A and type(r) = int, then type(r) = A.

Note that the type of an expression is the type further up the lattice of the individual registers forming the expression.

The next rule looks at the return value of a function call and propagates that type to the newly defined register.

Type Rule 12.5 If a HRTLinstruction is of the form “r = call X” and returnType(X) = A, then type(r) = A.

The next rule states that a library function’s formal argument types are propagated to the associated actual parameters. In
the case of variable argument functions, only the fixed formal parameter types can be propagated.

Type Rule 12.6 If a HRTLinstruction is of the form “call libFunc(...,ri, ...)” and the function libFunc has the signature
“libFunc(..., fi=ti, ...), then type(ri) = ti.

The above three rules can be applied on a pass through the code, without need of any extra data structures other than the
live ranges for registers. The next rule requires extra analysis to be performed on procedures, as a register that appears as
pointing to an instruction may actually be invoked elsewhere in the program, such as in theqsort program.

Type Rule 12.7 If there is an instruction of the form “call r”and9 r2: type(r2) = ˜ pi, then, if r2! * r, type(r2) = pi.

In order to apply type rule 12.7, we need to compute the reaching definitions ofr2 throughout the program, including
its transitive closure as the register could have been passed as parameter and then copied to another register before it is
invoked.

12.2 Type Analysis for Other Memory Locations

Type analysis of other memory locations can be done to support endianness analysis: the identification of when endianness
swaps are necessary when the target machine has a different endianness than the source machine. A translated program’s
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initialized memory is left as-is, in the source machine’s endianness. We currently swap the bytes ofeverymultibyte value
that is read or written to memory. If type analysis were extended to include information about the endianness of each
value, then we could determine not only which endianness swaps are unnecessary, but also when they mustnot be done.
For example, the procedurescanf is passed an address where its result must be stored. The value that will be stored
in memory will be in native (target) endianness. However, when the caller reads the value, if its bytes are swapped, the
native value will be corrupted. This problem occurs today with every “call-by-reference” procedure that takes addresses
where their results are written.

We could do a data flow analysis to discover what values have native endianness and what do not. This could be done
during type analysis and a bit set indicating the endianness of each value and location.

Note that it is not enough to specify “call-by-reference” information for just library procedures such asscanf . The
translated program’s own procedures may also be “call-by-reference”.

12.3 Speculative Decoding

Trees of program code can be built through speculative decoding, in such a way that a forest of trees is built, with the
main tree being the one that starts at the program’s entry point. Speculative decoding is useful if code ever gets code
through the interpreter, in which case, the interpreter’s switch manager can determine if the target address has already
been decoded, in which case, efficient translated code is run instead of being interpreted. However, speculative decoding
is expensive on time resources, but for static translators this may be ok anyway.

Type rule 12.8 states that for all word-aligned values ofN that belong to any of the text segments, if the first bytes of that
address match a callee prologue (see Chapter 11,x11.1 for SPARC and Pentium callee prologues), thenN is the start
address of a new code tree.

Type Rule 12.8 8N : N is word-aligned andN 2 addrRanges(textSegments) and m[N ] : : :m[N + i] =
calleeprologue then type(L) = pi.

Clearly, applying this technique would be done after the normal decoding process andUQBT should have tagged which
word-aligned memory locations have already been processed so that those locations are ignored in this lengthy pass.

12.4 Register Live Ranges

In order to perform some of the promotion analysis, we need to keep track of live ranges for all registers used in a
procedure. The importance of this is that a register may hold values of different types at different points in the program,
hence we cannot just say “register 5 is of type float” as it may be that it is of type integer and then becomes of type float.
A suitable data structure to keep track of ranges and types is needed.

The following example should be on the RTLs rather than the assembly code, but uqbts is giving the wrong answer

A live range extends between the definition (i.e. assignment) to a register until the dead (i.e. re-assignment) of that
register. For example, in the followingmain code from Figure 11.4:

2 mov 10,%o0
3 mov 5,%o1
4 sethi %hi(.LLC0),%l0
5 call gcd
6 or %l0,%lo(.LLC0),%l0
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7 mov %o0,%o3
8 mov %l0,%o0
9 mov 10,%o1
10 call printf
11 mov 5,%o2
12 ret

By the time the analysis is done, we will have performed the prologue/epilogue analysis, hence the first and last
instructions are not there. The live ranges for register%o0are:

� Register%o0becomes live at instruction 2, and its live range extends to instruction 5

� instructions 5 to 8

� instructions 8 to 10

� instructions 10 to 12

12.5 Reaching Definitions

In order to apply type rule 12.7, we need to compute the reaching definitions ofL, the transitive closure of reaching
definitions. The use of theqsort example is ideal in this case, as two levels of indirection are needed in order to find
the location where a function pointer gets used.

12.6 Type Recovery Analysis Implementation

Implementation and documentation: Bernard [Aug 01]

In order to evaluate the type recovery processes discussed in the previous sections of this paper, an initial implementation
of type recovery analysis based on this paper has been completed.

This implementation however is only an initial version and does not implement every rule stated in this paper. The
following is a list of type rules that the current version of type recovery analysis implements:

� Type Rule 12.3 ”controlTransfer r”, then type(r) = pi

� Type Rule 12.4 ”r = exp” and type(exp) = A and type(r) = int, then type(r) = A

� Type Rule 12.5 ”r = call X” and returnType(X) = A then type(r) = A

� Type Rule 12.6 Type propagation between library functions

Without rules 12.1 and 12.2, it is not possible to implement the “looks like” types mentioned earlier in this paper.
Therefore, the different low-level types that are represented are integer, address to instruction, address to data and float.

The first necessary step is to infer the plausible type information of each register in each of its live ranges. This step is done
after the binary files has been brought up to the HRTL level of abstraction. It is possible to perform the initial type recover
at the machine specific RTL level. However, important information such as parameters and return value to functions are
not available at the machine specific RTL level and will need to be added later. For simplicity of implementation reason,
it was decided that the type recovery analysis will begin after the binary file has been bought up to the HRTL level.
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The first information that we want to gather from the HRTL is the location of every use and definition of each register.
From this information, we can build use-definition chains and determine the live ranges of each register. Since we assume
that the type information for a non-overlapping register in a particular live range is always the same, therefore each use-
definition chain would only have one type and can be used as a means to propagate type information of each register
across instructions. The use-definition chain is therefore one of the most important data structure we use for type recover.

To actually infer the type information, the HRTL instructions need to be parsed for specific cases that uncover the type
information. The HRTL instructions are stored in a prefix format as a list of integers called semantic strings. The
simplicity of this prefix format allowed the creation of a parser, specific to uncovering type information from semantic
strings, to be a relatively straight forward process. The following is a list of some of the cases which the parser is looking
for:

� Registers within MemOf tokens. This can be complicated by functions and operations following MemOf tokens.

� Registers following a control transfer token.

� Certain binary operator that has implict type information to the registers it operates on.

� Certain function operators, which often has explict type information to the registers it operates on.

The parser will first find all the registers that are in the semantic string and determine whether it is a use or definition of
the register. It will insert this information into a use-definition chain data structure. The parser will also insert into the
data structure any type information that it can infer.

Additional, the parser will look for simple register aliasing situations that can later be used for type propagation. For
example, in the following example, register 1 and register 2 are consider aliases in type value. The use-definition chains of
these two register at this particular point will be linked together. Therefore, if more type information was later discovered
about register 2, the type information of register 1 would also be updated.

r[1] = r[2]

This stage of type recovery will already uncover a significant amount of type information. Long use-definition chains
will likely have the correct type information as the many uses of the register would most likely uncover the type.

In order to find the complete use-definition chains for every register, the program must be analyzed in its entireity. Each
register must be tracked from its first definition to its last use. There are several implementation problems with tracking
a register in that manner. One problem is the difficulty in tracking a register as the flow of instruction passes a control
transfer instruction. A register can be defined before the control transfer instruction and then be used in both the branches.
Therefore, the data structure used for the use-definition chains must be complex enough to handle this case correctly. A
second problem is the size of the data-structure used to hold the use-definition chains. Since the backend of UQBT that
performs code generation only looks at HRTL code a basic block at a time, it would be much more convenient to also
have use-definition data structures for each basic block instead of a monolithic one for the whole program.

The approached that was taken in this implemenation was to create use-definition chains at the basic block level. This
was chosen mostly because of its simplicity. The use-definition chains will always be straight lines at the basic block
level, as there will not be any control transfer instructions. Retrieving the information to insert into the data-structure is
also a simple process as all the information can be found inside each basic block. Therefore, the code to generate the
data structure is small and modularized for different types of basic blocks. However, the main disadvantage to creating
the use-definition chains at the basic block level is that the chains are often incomplete. Many chains will only have uses
but no definitions and some chains will only have definitions but no uses. Therefore, this data structure does not store the
equivalent amount of information as the one that covers the complete program. However, the missing information can
be recovered by performing type propagation across basic blocks and across functions. The type propagation is simply
completing incomplete chains across basic blocks and functions.
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To implement type propagation across basic blocks, a depth first traversal of the basic blocks inside each function is
performed. During the depth first traversal, a pointer to the parent of each basic block is kept inside the basic block’s data
structure. At each basic block, use-definitions chains that have uses but no definitions are found and are made candidates
for type propagation. Determining which chains are candidates is a very quick task as there are only certain places where
incomplete chains may be. Incomplete chains are always found as the first use-definition chain of each register. And each
chain can only have one definition which, if it exists, is always the first element in the chain. Therefore, onlyn elements
needs to be looked at for each basic block to determine which chains need to be propagate, wheren is the number of
registers. Next, to find the definition part of the chains, the algorthm will traverse up the call graph, using the pointer to
the parent basic block stored during the traversal.

Since this traversal follows the flow of normal execution, traversing back up the control flow graph should always find
the desired register definition. However, there are cases where this might not be true because of the limitation of keeping
only one single pointer to the parent basic block. It also depends on the aggressiveness of the traversal.

The original traversal algorithm that was implemented would only consider every basic block once. Once a particular
basic block has been reached, a flag is marked to indicate that future traversals should end before reaching this basic
block. However, this traversal is much too conservative as it only consider one path to each basic block when there could
possibly be many paths. To solve this problem, a more aggressive traversal algorithm allowed a basic block to be traversed
multipled times. To avoid infinite loops, it still marks basic blocks that have been traversed. When a basic block that has
been traversed is reached, it would be traversed again but be treated as a leaf node. Therefore, the algorithm would not
continue to traverse down this path any further and avoid possible infinite loops. However, this still introduces a possible
infinite loop situation when dealing with back branches due to the limitation of keeping only one pointer to the parent’s
basic block.

A
|
B Assume the straight path from B to C is going down
|\ and the crooked path from B to C is goind up (back branch)
|/
C

Suppose that register 1 is defined in basic block A and used in basic block B. To traverse this graph, the path A-B-C
would be taken. Once basic block C has been reached, it would try to traverse to basic block B. Since basic block B has
already been traversed before, its traversal flag will be set. However, with the second algorithm, it would still be traversed
again and treated as a leaf.

When basic block B is reached for the second time, it is discovered that it contains a use-definition chain with uses but
no defines for register 1. Backwards traversal of the graph using the parent pointer would be used to find the basic block
with the definition of register 1. However, the parent pointer of basic block B now points to basic block C, and the parent
pointer to basic block C points to basic block B. Therefore, this traversal will never complete as the definition of register
1 is in basic block A.

To work around this possible problem, the implemented algorithm will try to detect any loops in the traversal. In most
cases, this is enough to overcome this problem. However, there still exist cases where infinite loops can occur. A
maximum number of basic block traversal was added to work around these special cases.

Propagating type information across functions is done in a very similar way as propagating across basic blocks. The
complexity of propagating across functions is slightly higher as every call site and every return site in each function
must be recorded. With propagation of return value, it could involve a large set of registers as a function can have many
return sites which would all involve different use-definitions chains of registers. This is actually benefitual to the type
propagation as it implies that the whole set of registers must all be the same type.



12.6 Type Recovery Analysis Implementation 207

Type propagation may seem to be even more complicated and complex than simply creating complete use-definition
chains. However, the beauty of type propagation is the ability to propagate type information from library functions. Since
the type information for parameters and return value for standard C functions are known, any call to these functions will
allow trusted type information to be propagated back to user functions.

12.6.1 Results

The following type information was inferred for the functionmyCompare which can be found in theqsort2 regression
program:

Currently In Procedure: myCompare
Registers stored in this Basic Block are:
8 --> Def @ 108c8 --> <32pd> Use @ 108cc 99

Contains Alias
--> Def @ 108cc --> <32i> <no_use>

9 --> Def @ 108cc --> <32pd> Use @ 108cc 99
Contains Alias

24 --> Def @ param --> <32pd> Use @ 108c8 0
Contains Alias

25 --> Def @ param --> <32pd> Use @ 108cc 0
Contains Alias

The above data output shows that we were able to identify that register 8 was defined at address 108c8 and used at address
108cc. It also identified that the register is of pointer to data type at those two instructions. Registers 24 and 25 were also
identifed to be pointers to data. The information about registers 24 and 25 is especially important as both these registers
are parameters to the myCompare function. Therefore, we now know what the type signature for the myCompare function
is. Also, all the register shown above contain aliases. Therefore, if we found out any new type information about one of
these registers, the type information of at least another register would also be updated.

This type information was manually checked against the HRTL instructions and also the original source code and was
verified to be correct. However, no automated testing system to determine the type information correctness is currently
available.

12.6.2 Future work

There are several areas which need to be worked on in order for more accurate type recovery analysis in the future.
Currently, although the type information for most registers are recovered, there still exist cases where the type information
for a register is still not available. For these cases, rules 12.1 and 12.2 can be used to determine possible type information.
These possible type information may not be always correct but would allow the backend additional information to
determine what the correct code that it needs to generate.

Type analysis should be extended to determine the endianness of each value and location. This is needed to know when
it is incorrect to swap the bytes of values loaded or stored to memory. It will also allow us to avoid doing swaps that are
unnecessary.

Backend support of the type analysis recover will also need to be added in the future. The information gathered through
type analysis should significantly increase the correctness of the code generated by the backend.
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Finally, a test suite that can automatically verify that the inferred type information is correct needs to be written. Currently,
the only method of verification is manually analyzing every HRTL instruction by hand. An automated method that can
use the orginal C source code to verify type information would be the ideal tool.

The current implementation has not been thoroughly tested, some propagation across procedures is not working as
expected.



Part IV

Backends
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Chapter 13

The C Back End

Design: Mike, Trent, Cristina. Implementation: Mike. Documentation: Mike [Nov 01], Cristina

We have experimented with different backends forUQBT. In 1998 we started with anRTL optimizer and chose VPO for
this task. VPO (BD88) is a retargetable optimizer of register transfers. VPO’s interfaces were clearly specified throughout
1998 as part of the Compiler Infrastructure Project (vpo98). This work is described in Section 15.1, which refers to work
done in April 1998 and may no longer be current. We successfully interfaced to VPO and optimized SPARC-based
programs. However, the specs for Pentium code were not available when we needed to test Pentium based translations,
so the focus changed to using off the shelf C compilers as the UQBT optimiser. In 2001 we revisited the VPO backend
and used it to optimize code for several target platforms, this work is described in Chapter 15.

The main optimizer that we have used throughout 1998-2001 has been via a C interface, i.e., we use a C compiler as
an optimizer and generate low-level C code out of ourHRTL . We have experimented with Sun’s cc and GNU’s gcc
compilers and have obtained results with both on SPARC and Pentium platforms (see Chapter 18 for 1999 results). The
type of code that we generate is low-level C code, in that all control transfer is in the form of goto’s, it uses a lot of casting
and is hard to read.

The C backend makes extensive use of theTranslate class. The main reason for this is to prevent the need for passing
around many parameters, e.g. the stream (os ), current procedureproc , and so on.

13.1 The Current Type and Casting

C operators are somewhat polymorphic. For example, the right shift operator (>>) means either “shift right arithmetic”
or “shift right logical” depending on the type of the operands (signed integer or unsigned integer respectively). This
contrasts with RTS, which uses different operators for these two cases. The only way to “tell” the C compiler to perform
one or the other right shift operation is to cast the operands correctly. All integer registers and variables are declared as
signed, and are cast to unsigned as needed. In general, it is necessary to be aware at all times of the current type of an
operand (which could be a primitive such as a register, variable, or constant, or it could be a more complex expression),
and the type that the C compiler is going to assume that an operand is. When these differ, a cast is required.

As an example, consider this simple assignment:

000125b8 *32* v0 := v0 >>A 24
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The right shift arithmetic operator can be specified in C by ensuring that the first operand (v0 ) is unsigned. Sincev0
will be declared as a signed integer, it will have to be cast. The way that this works is that the expression emitter
(Translate::processExpr ) (and many other back end functions) take a parameter calledcType , which is the
“current” or “expected” type. ForidShiftR and other “unsigned” operators, the current type is forced to unsigned
before being passed toprocessExpr . (idshiftR is unusual in that it only requires the first operand to be unsigned;
other “unsigned” operators require both operands to be unsigned). WhenprocessExpr recurses to process the first
operand (v0 ), it comparescType with the type ofv0 , and finds a mismatch. A cast is therefore emitted.

There are two types of cast used in the backend. One is just a “regular” cast, e.g.(unsigned)v0 . The other is referred
to as a “heavy duty cast”; e.g.*(unsigned int*)&v0 . The latter can be understood by reading it from right to left.
We start withv0 , of type “int”, then take its address, resulting in “pointer to int”. This is then cast to “pointer to unsigned
int”; finally this is dereferenced to yield “unsigned int”. The advantage of the “heavy duty cast” is that it is possible to
cast from almost anything to almost anything else, e.g.*(int*)&f8 is of type int , even though f8 may be declared
as typefloat . It is often important to do this, because in changing types with a conventional cast, C will often perform
a conversionoperation. All conversions in RTL are explicit, so the implicit conversion will usually result in unwanted
semantics.

As an example, consider the translation of a Sparcitof instruction. This instruction takes a bit pattern from afloating
point register, interprets the pattern as an integer, converts it to a floating point bit pattern, and writes this to the destination
floating point register. Let’s say we are converting %f2 to %f3. Both %f2 and %f3 are declared as floating point variables
in the C output. To perform the conversion, we need code like this:

f3 = (float) *(int*)&f2;

This code contains both a conventional (left) and a heavy duty (right) cast. The heavy duty cast is needed to convince the
C compiler to treat the bit pattern in f2 as an integer. The conventional cast casues the conversion, which in this case is
the desired semantics. Note that the following would not work:

f3 = (float) (int)f2;

The compiler would first convert f2 from float to integer, then back to float again. The result is wrong, because the bit
pattern in f2 is not in floating point format to start with.

Note that heavy duty casts should not be used when there is a change of size of the operand. Consider a big endian target
machine, e.g. Sparc. Suppose that r8 contains the value 5. Thus,(int)r8 has the value 5, as expected. However,
*(char*)&r8 has the value 0! This is because the heavy duty cast assumes that the address of a pointer does not
change when the object it points to changes. This is simply not valid for big endian machines.

Semantic strings, which are used throughout UQBT to represent expressions, have a singleType object, representing
the type of the overall expression. WheneverSemStr::getSubExpr() is called, the newly created semantic string
has the correct type for the subexpression. For example, the overall type for the expressionitof(32, 64, r[24] is
float64, but the subexpression (r[24] ) is of type int32.

13.2 Overlapping registers

Many architectures have registers that have subsets that can be referenced by name. For example, parts of the pentium
register%eax can be referenced as%ax (lower 16 bits),%al (lower 8 bits), and as%ah(bits 8-15). UQBT has separate
names for these register parts, but obviously changing one register has to have the appropriate effect on other registers.
To complicate matters, the C representation for these overlapped registers depends on the endianness of the source and
target machines.
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ClassOverlap (in backend/common/overlap.cc ) handles these complexities. It has methods to initialise itself
(including the reading of information from the.ssl file), a method to record the use of registers, and methods for
emitting C code (both to declare the overlapping registers, and to emit code appropriate to a particular register).

There is an extra pass through the procedure (Translate::firstPass() ) whose main job is to find which registers
are used by the procedure. This information (kept in the instance member regNumbers, a set of integers) is used to declare
as a union only those overlapped registers that are needed for this procedure. (Although there is little if any overhead in
declaring all possible overlaps, there would be very significant clutter in the output C file).

For example, consider a pentium source program where register%eax (only) is accessed as both 32 bits and 8 bits. The
32 bit register happens to ber[24] , and the 8 bit register happens to ber[8] . The following C code declares these
registers:

union {
int32 i24;
struct {

int16 dummy1;
int16 h0;

} h;
struct {

int8 dummy2;
int8 dummy3;
int8 b12;
int8 b8;

} b;
} i24;

When used as a 32 bit register,%eax is referenced asi24.i24 . When used as 8 bits, it is referenced asi24.b.b8 .
These locations can be assigned to, or used as values in expressions.

Note that in this example, the target is a big endian machine (pentium is a little endian machine). If the target was a little
endian machine, the order of the int16 and int8 elements in structs h and b would be reversed, to keep h0 and b8 at the
least significant end. This is automatically handled byclass Overlap .

The information needed byclass Overlap is found in the.ssl file. For example, in 80386.ssl, we see

[ %eax, %ecx, %edx, %ebx,
%esp, %ebp, %esi, %edi ][32] -> 24..31,

%ax[16] -> 0 SHARES %eax@[0..15],
...
%al[8] -> 8 SHARES %ax@[0..7],
...
%ah[8] -> 12 SHARES %ax@[8..15],
...
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Chapter 14

The JVML Back End

The Java Virtual Machine Language (JVML) back end was written as an experiment in translating machine code to run
in a Java Virtual Machine (JVM). There were 3 different versions of this back end. The original 1999 back end,jbmu ,
was a hand-written back end that supported translations ofHRTLonto JVML (i.e. Java bytecodes). Thejbmu translator
was an experimental translator at best, to try and show the feasibility of translating to JVML. The generated code would
then be assembled by the Jasmin assembler. This translator is described in Section 14.1.

Realizing that so many of the optimizations that were needed in thejbmu translator were the same ones implemented by
any optimizer such as thegcc compiler, Trent took over the job of writing a machine description (MD) file for the JVML
language so thatgcc could translated our low-level C code into JVML code, assembled by the Jasmin assembler. This
work was done in 1999 and is described in Section 14.2. The standalonegcc extensions to support JVML have been
released under GPL and are not part of the distribution of theUQBT system.

In mid 2000, Sameer rewrote part of the JVML back end in Java, basically, making it similar in nature to the original
jbmu back end. Brian extended this back end throughout the end of 2000, adding floating point support, non 32-bit
integer types, type and size conversions, and more. This translator is part of theUQBT distribution, unfortunately, there
is not much documentation for it at present time; we have put together some notes in Section 14.3.

14.1 jbmu - A JVM Backend

Design: Trent and Cristina, Implementation: Trent, Documentation: Trent [Mar 99]

This section describes the initial implementation of a JVM backend, jbmu, which was written in Java (Dec98-Feb99).
UQBT’s intermediate representation was in fluctuation at the time, so the backend is dependent on an older version of
UQBT. This backend was not completed; a second JVM backend was written for gcc. This documentation was written at
a time when experimentation with other stack-based languages was expected, as such, it was designed to be retargetable.
This chapter is left herein for historical reasons. [Cristina - May 00].

The binary translation of an arbitrary source machine binary to stack based machine bytecodes requires a generic frontend
to produce non-machine specific intermediate data and an efficient backend to produce target byte codes. To date, little
work has been focused on the construction of backends, especially for backends targeted at stack based machines. Current
technologies in retargetable backends lend little to this task, because they have taken the stance of Register Transfer Lists
(RTLs) as an intermediate representation. This reduces the performance of target machines that have less registers than
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source machines and fails to address more serious needs of a stack based machine backend. Other forms of intermediate
representation have been presented (JR99) but, to date, RTLs appear the most recognised. The Java Virtual Machine, for
example, has no registers, however, the JVM specification allows any method to use a defined number of local variables,
which can be mapped directly onto the integer registers of a source machine. With these problems in mind, we can state
the task of the backend:

� To generate an internal representation.

� To optimise that representation using non-machine specific optimisations.

� To perform generic stack based machine optimisations.

� To generate bytecodes for a specific stack based machine.

The points above are well understood and their implementation can be seen in compiler design but, despite this, there is
little code that can be reused in such a backend. For this reason, it would be beneficial to write a generic global optimiser
that could be reused in other projects and targeted at other machines.

14.1.1 Non-Machine Specific Optimisations

Non-machine specific optimisations can be done with no knowledge of the target machine. They are non-machine specific
optimisations and, although they sometimes can be improved with machine specific information, they are generic and
should be implemented with no knowledge of the target machine. This allows for the reuse of such code when retargeting
to a different machine.

The crucial stage of any backend is global optimisation. Whatever the internal representation, there is need for some
basic optimisations:

� Data flow analysis: the movement of dead variable values into sub-expressions. This is particularly necessary in the
case of register-based machines to stack-based machines translation to eliminate temporary register assignments.
This reduces the number of “local variables” a method requires which speeds up the overall code.

� Constant folding: any computation that can be done at compile time is removed from the internal representation.
This leads to smaller bytecode and less operations to be performed by the stack based machine.

� Common sub-expression elimination: the availability of local variables allows us to create temporaries for
commonly used expressions. This prevents the re-computation of intensive expressions and reduces the overall
bytecode size.

� Invariant movement and other optimisations: more compiler originated optimisations can be made by generating
a control flow graph in the internal representation and moving code. This will result in faster “inner loops” and
allow more opportunity for global optimisations like constant folding. See (ASU86b) or (FJ88) for details.

Bytecode Generation and Scheduling

Every backend must eventually produce code for a specific target machine. This will inevitably lead to bytecode selection.
The instruction set of a target machine may be redundant. Often there is more than one way to perform a series of
operations with some being more efficent than others. There are two primary solutions to this problem. A compiler
designer may only use a subset of the available instructions, which leads to inefficient code, or may attempt to choose the
“best” instruction to match the internal representation.

There is a lot of work on the subject and will not be repeated here (for example, (ESL88) speaks of a generic pattern
matching approach which may be useful, however, most of their code is in Modula 2 and, as such, cannot be easily reused).
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Stack based machines introduce more problems as the types of the operands must match the instruction generated. This
typing is to be considered extreme distinguishing betweenchar , int andbyte types.

The scheduling of instructions is most important on a stack-based machine. This can reduce the number of local variables
used and, as a result, the number of bytecodes need to store and retrieve them. This is an obvious job for dataflow analysis
when the local variable is a temporary, but many times the assignment of a local variable that is used at some later stage
can be replaced with an instruction that duplicates the value on the stack at the appropriate moment. These are topics that
promise to give the most optimisations in stack-based machine code.

14.1.2 Internal Representations

The retargetable stack based machine backend consists of a number of steps (figure 14.1):

RTL

Generic
Optimiser

Front End

Stack Based
Optimiser

Stack Based
Code Generator

Stack Based
Machine
Backend

(Ideal)

Parsing and
Abstraction

Intermediate
Representation

Intermediate
Representation'

Bytecode File

Stack Machine
Specs

Figure 14.1: Flow Chart of the Stack Based Machine Backend

1. Parsing and abstraction: reduction of register transfer list representation to basic assignment, call and branch
statements.
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2. Generic optimiser: machine independant optimisation of those statements.

3. Stack based optimiser: stack based machine specific optimisations.

4. Stack based code generator: generation of translated bytecodes from the output of previous steps. In the idealised
model, the stack based code generator can take a number of specification files that define the target stack based
machine.

Each of these stages has an interface that interconnects them. The interface generated from parsing and abstraction of
the RTL is used in the optimiser. This interface is known as the “intermediate representation” and consists of a control
flow graph with each basic block containing an array of statements. The optimisers generate the same interface as they
receive, and as such, can be removed from the process when optimisations are not required (such as in testing). The code
generator extends the interface output from the optimiser with bytecode information placed in each of the statements
contained within a basic block. This data is then linearised into an output file for the required machine.

The process depicted in figure 14.1 is an idealisation of the current experimental model of the stack based machine
backend. The current process is better depicted in figure 14.2 with the difference being the final stage of processing.
Currently, the stack based machine backend is targeted at the Java Virtual Machine and will be hand extended to other
stack based machines by rewritting this final stage. Once this is done, it will be easier to generalise about stack based
machines and approach the prefered model of absolute retargetability.

Intermediate Representation

The intermediate representation consists of a control flow graph, that is, a set of interconnected “basic blocks”. A basic
block is defined as having only one entry point and one exit point. As control flows through a program it follows a path
that can be plotted. If one was to plot all the possible paths through a program, one would be constructing a control flow
graph. In this way, a frontend programmer can use any form of control structures in their language without fear of having
to implement them in the backend. For example, anif-then-else structure consists of four basic blocks. The first
basic block contains the expression being tested. If the expression is true, control flows to the second basic block. If the
expression is false, control flows to the third basic block. Both the second and the third basic blocks fall through to the
fourth basic block.

The first basic block is said to have two out-edges. The fourth basic block has two in-edges. A pretested loop is
constructed just as easily.

Each basic block in the control flow graph contains an array of statements. These statements are mainly assignment
statements but some are also call statements. Basic blocks which have two out edges (called “two-ways”) have an
extra statement attached, the “conditional statement”. Statements are made up of expressions. An expression can be
many things including arithmetic operations, logical operations, call and assignment operations. Each expression may
have a number of parameters. Expressions with two parameters are the binary expressions (add, multiply, divide, etc).
Expressions with one parameter are the unary expressions (negate, not, etc). Unary expressions store their one parameter
in the “left” node whereas binary expressions use both the “left” and “right” nodes.

These parameters are used to construct a tree structure for each statement. An optimiser will walk this tree structure and
perform optimisations that modify the structure. A code generator will walk the tree structure and generate code to be
placed in various nodes of the tree. Both these uses of the tree structure require additional information to be added to
various nodes. Specifying this data in the intermediate representation classes would be non-generic and may result in
bloated trees filled with data that never gets used. This method would also mean that the intermediate representation
would have to be changed with every new use of the structure. One would have to be very careful to not “break” the data
structure by removing anything that a user of a previous version of the data structure may have assumed would never
change. A solution to this problem is to allow the extension of “objects”, that is, the instantiation of classes, not just
classes themselves. To do this, each Java class in the implementation of the intermediate representation is defined as an
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extension of the “Extendable” class. A method can now be written to extend any of these classes in such things as an
optimiser or a code generator.

Data structure of the intermediate representation

The Intermediate Representation contains a number of classes that form a hierarchical structure of usage:

Program is used to represent a complete program. It contains an array of procedures.

Procedure is used to represent a single procedure. It contains the name of the procedure and a control flow graph.

BasicBlock is used to construct a control flow graph. It contains a type, an array of in-edges, an array of out-edges, and
an array of statements. Basic blocks of thetwoway type contain acondition statement which is used to
determine which of the two out-edges are followed during program execution.

Expression is used to construct statements. Expressions contain a type, a single integer parameter, and left and right
expressions depending on the expression type.Call expressions contain an array of expressions that are the
parameters to the call.

14.1.3 Examples

The following examples show the current state of the UQBT frontend and the stack based machine backend. The
following C program tests assignments and simple conditional branches. It is written on the SPARC archetecture:

void main() {
int i,j,k;

j = i+k;
k=6;
i=j+5;

printf("%i\n",i);
if (j<k)

printf("%i\n",j);
printf("%i\n",k);

}

UQBT generates an output file which is parsed by the stack based machine backend into the following statements in the
intermediate representation.

proc main

bb type call
r[8] := r[48]
r[9] := r[50]
r[8] := r[8] + r[9]
r[49] := r[8]
r[8] := 0 | 6
r[50] := r[8]
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r[8] := r[49]
r[9] := r[8] + 5
r[48] := r[9]
r[9] := 69 << 10
r[8] := r[9] | 552
r[9] := r[48]
Call printf(r[8],r[9])

bb type twoway
r[8] := r[49]
r[9] := r[50]
r[0] := r[8] - r[9]
bb cond: r[0] >= 0

bb type call
r[9] := 69 << 10
r[8] := r[9] | 552
r[9] := r[50]
Call printf(r[8],r[9])

bb type call
r[9] := 69 << 10
r[8] := r[9] | 552
r[9] := r[49]
Call printf(r[8],r[9])

bb type ret

These statements are passed to the code generator for Java, which adds bytecode information to each of the nodes in the
Intermediate Representation. Note that optimisation has been disabled for this example. The Intermediate Representation
is then flattened to produce an output file. Comments have been added for clarity:

L0:
iload 48 ; r[8] := r[48]
istore 8
iload 50 ; r[9] := r[50]
istore 9
iload 8 ; r[8] := r[8] + r[9]
iload 9
iadd
istore 8
iload 8 ; r[49] := r[8]
istore 49
ldc 0 ; r[8] := 0 | 6
ldc 6
ior
istore 8
iload 8 ; r[50] := r[8]
istore 50
iload 49 ; r[8] := r[49]
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istore 8
iload 8 ; r[9] := r[8] + 5
ldc 5
iadd
istore 9
iload 9 ; r[48] := r[9]
istore 48
ldc 69 ; r[9] := 69 << 10
ldc 10
ishl
istore 9
iload 9 ; r[8] := r[9] | 552
ldc 552
ior
istore 8
iload 48 ; r[9] := r[48]
istore 9
iload 8 ; Call printf(r[8],r[9])
iload 9
invokestatic printf
goto L1

L1:
iload 49 ; r[8] := r[49]
istore 8
iload 50 ; r[9] := r[50]
istore 9
iload 8 ; r[0] := r[8] - r[9]
iload 9
isub
istore 0
iload 0 ; bb cond: r[0] >= 0
ldc 0
if_icmplt L2
goto L3

L2:
ldc 69 ; r[9] := 69 << 10
ldc 10
ishl
istore 9
iload 9 ; r[8] := r[9] | 552
ldc 552
ior
istore 8
iload 50 ; r[9] := r[50]
istore 9
iload 8 ; Call printf(r[8],r[9])
iload 9
invokestatic printf
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goto L4

L3:
ldc 69 ; r[9] := 69 << 10
ldc 10
ishl
istore 9
iload 9 ; r[8] := r[9] | 552
ldc 552
ior
istore 8
iload 48 ; r[9] := r[49]
istore 9
iload 8 ; Call printf(r[8],r[9])
iload 9
invokestatic printf
goto L2

L4:
ret

This bytecode is unoptimised which is to be expected as the Intermediate Representation is unoptimised. The generic
optimiser reduces the number of statements in the intermediate representation. The stack based machine optimiser uses
specific stack based machine optimisations to reduce the number of bytecodes, local variables and stack depth. Finally,
the code generator for the Java Virtual Machine selects the best bytecodes to be used in the final output.

14.1.4 The Runtime Environment

Binary translation is not just a compiler backend (though it can be). Generally, there is a lot of code that can be shared
between translated programs. This code has the task of emulating the environment that the code was originally written
for. Such things as calling conventions and dynamic linking must be known to the backend to generate code that can link
to its new environment. We can see the need for a run time environment through a case study. The following C program:

void main() {
printf("hello world\n");

}

compiles to the following assembly code (some code is removed for the purpose of readability):

.LLC0:
.asciz "hello world\n"

sethi %hi(.LLC0),%o1
or %o1,%lo(.LLC0),%o0
call printf,0
nop
ret
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which can be translated and optimised to:

r[0] := .LLC0;
call printf
return

Finally we can add to this code the knowledge of calling convention. On a SPARC, parameters are passed in the first
six general purpose integer registers. The functionprintf expects to see a pointer to an asciiz string as its first
parameter. This is a problem in Java, for example, because.LLC0 refers to an offset in the source binary’s read-
only data section. The translated program will need access to this data if it is to pass the string onto a function like
System.out.println . The problem is actually harder than that.System.out.println expects aString
object type which is quite different to an asciiz string. The translated program will need to construct such an object using
a method not unlike the following:

static String getstring(int rodatastart,byte[] rodata,int i) {
String a = "";

while (rodata[i-rodatastart]!=0) {
a += (char)rodata[i-rodatastart];
i++;

}
return a;

}

The first parameter is the source machine address of the start of the read-only data section. The second parameter is
a reference to the actual bytes contained within the read-only data section. The final parameter is the source machine
address of the asciiz string which we assume to be located somewhere within the read-only data section. We refer to this
calling structure as “passing core” and it must be used in all runtime support libraries.

Finally theprintf function must be written in Java to link with the translated binary. The function could be as simple
as a wrapper to the equivalent Java function or, in the case of printf, something more complicated. This must be done for
every library function to be called. The size of a run-time environment is extensive in the case of graphical user interface
(GUI) environments. This can be seen in the WINE project (win96) which aims to emulate the Microsoft Windows
environment on 80x86 X-windows systems. We can reuse most of the work in that project. This promotes the feasibility
of binary translation of Windows executables to the JVM with an interface to the awt classes. The biggest obstacle of
the WINE project is the Application Binary Interface (ABI) of Microsoft Windows. Each binary refers to more than its
own data segments and system API calls. In many operating systems, applications have access to data structures stored
in shared libraries and, as in the case of Microsoft Windows, in the operating system itself. These references must be
recognised by the backend and replaced with a reference to the runtime support class. These problems are not limited
purely to Microsoft Windows (although they appear most abundantly there), they also pop up in SPARC binaries. One
such example is the use oferrno from the standard I/O C libraries.Errno is a global integer that resides in a shared
library. When it is written to, the page that is shared is copied into the new process space. One would wish a backend to
recognise global variables that reside in support libraries and redirect them to the runtime support class.

14.1.5 Summary

The development of backends borrows heavily from the field of optimising compilers. The targeting of a backend to
a stack based machine introduces new problems in optimisation. The JVM and its strict typing introduces problems
that have rarely been seen by compiler writers before. A runtime support library is necessary to minimize the size of
the translated applications and is specific to each source machine and platform. The development of a binary translator
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to Java bytecodes promises a new mentality in application distribution. The “translate once, run anywhere” concept is
already within our reach, what still awaits is a resultant application that runs with a similar performance on the JVM as
on the source machine. This work outlines the steps involved in such a backend and takes the first tentative steps towards
that end.

14.2 gcc-jvm - A JVM Backend for the gcc Compiler

Design: Trent, Implementation: Trent, Documentation: Trent [Aug 99]

This section describes Trent’s experiences with porting EGCS (gcc version 1.1.2) to a stack-based machine, the JVM in
particular. It is written in first person.

When I first began investigating the possibility of porting the Experimental GNU Compilation Set (EGCS) to the Java
Virtual Machine (JVM) I thought it would be possible to semantically describe the JVM to EGCS and have it adequately
generate stack based machine byte codes. I hoped that I would be able to specify to the back end that the only way to load
a constant or a register (local variable) was via the stack and EGCS would break its internal representation effectively.
This appears to be a little too optimistic. My attempts at constructing a machine description where EGCS is forced to
do all moves via the stack failed, not because I was supplying too little information to the back end, but because I was
supplying too much. This lead to an alternate strategy: I decided to take all the instructions that one would find on a
register based machine and implement them using a number of byte codes. The resultant byte code was a poor but correct
representation of the original program. Soon I had simple programs (hello world) working and could actually perform
some benchmarks. The results were astounding: small register transfer bound programs ran at comparable speeds to
native code. This is best explained with an example.

int fibo(int i) {
if (i<2) return 1;
else return fibo(i-1)+fibo(i-2);

}

void main(int argc,char **argv) {
printf("fibo %i is %i\n",40,fibo(40));

}

Fibonacci is a register transfer bound program that takes 22 seconds on a SPARC Ultra 9 to run natively. If we compile
it to JVM byte code we get the following (for the fibo function).

.method public _fibo(I)I
.limit stack 9
.limit locals 17

iconst_0
istore 14

iload 1
bipush 1
if_icmple L2

iload 1
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bipush -1
iadd
istore 10

aload_0
iload 10
invokevirtual Fibo/_fibo(I)I
istore 10

iload 10
istore 13
iload 1
bipush -2
iadd
istore 10

aload_0
iload 10
invokevirtual Fibo/_fibo(I)I
istore 10

iload 13
iload 10
iadd
istore 10

goto L8
L2:

bipush 1
istore 10

L8:
iload 10
ireturn

.end method

On the same machine running version 1.1 of the JVM, this bytecode takes 90 seconds to run. The overhead is caused
primarily by the two method calls. The following Java source code compiles to a program with the same functionality.

class Fib {

int fibo(int i) {
if (i<2) return 1;
else return fibo(i-1)+fibo(i-2);

}

void main(int argc,int argv) {
System.out.println("fibo " + 40 + " is " + fibo(40));

}
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public static void main(String[] args) {
Fib f = new Fib();
f.main(0,0);

}
}

The resultant class file takes 56 seconds to run. Significantly less than the EGCS generated byte code. The following is
the byte code that is generated by javac (for the fibo method above).

Method int fibo(int)
0 iload_1
1 iconst_2
2 if_icmpge 7
5 iconst_1
6 ireturn
7 aload_0
8 iload_1
9 iconst_1

10 isub
11 invokevirtual #13 <Method int fibo(int)>
14 aload_0
15 iload_1
16 iconst_2
17 isub
18 invokevirtual #13 <Method int fibo(int)>
21 iadd
22 ireturn

Smaller size and less local variable usage improves the speed of the byte code. A possible solution to this problem is
to use a post processing optimisation stage such as BLOAT. When applied to the poor byte code generated by EGCS, it
produces the following.

Method int _fibo(int)
0 iload_1
1 iconst_1
2 if_icmple 31
5 iload_1
6 iconst_m1
7 iadd
8 istore_2
9 aload_0

10 iload_2
11 invokevirtual #20 <Method int _fibo(int)>
14 istore_2
15 iinc 1 -2
18 aload_0
19 iload_1
20 invokevirtual #20 <Method int _fibo(int)>
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23 istore_0
24 iload_2
25 iload_0
26 iadd
27 istore_0
28 goto 33
31 iconst_1
32 istore_0
33 iload_0
34 ireturn

This is still a lot more bytecodes than the javac generated output but runs in 55 seconds. This leads to an apparent paradox:
How can more bytecodes run faster than less byte codes? The answer lies in the behaviour of the Just In Time compiler.
For version 1.1 of the JVM one can export an environment variable JITARGS to ’dump’ to print excessive amounts of
debugging information. Using the bash shell one would do the following command:

export JIT_ARGS=dump

Now any execution of the JVM will result in JIT debugging information being dumped to standard error. For version 1.2
of the JVM one would do the following command:

export _JIT_ARGS=dump

The following is output by the JIT for the javac generated bytecode:

0 iload_1 1b
1 iconst_2 05
2 if_icmpge a2 00 05

subcc %i1, 2, %g0
bge 5
nop

5 iconst_1 04
6 ireturn ac

or %g0, 1, %i0
ba 8
nop

7 aload_0 2a
8 iload_1 1b
9 iconst_1 04

10 isub 64
sub %i1, 1, %l0

11 invokevirtual b6 000d
or %l0, %g0, %o1
or %g0, %i0, %o0
ld [%o0 + 4], %g1
ld [%g1 + 52], %g1
ld [%g1 + 68], %g1
jmpl [%g1 + %g0], %o7
nop
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unimp 0x000a5a78
or %g0, %o0, %l0

14 aload_0 2a
15 iload_1 1b
16 iconst_2 05
17 isub 64

sub %i1, 2, %l1
18 invokevirtual b6 00 0d

or %l1, %g0, %o1
or %g0, %i0, %o0
ld [%o0 + 4], %g1
ld [%g1 + 52], %g1
ld [%g1 + 68], %g1
jmpl [%g1 + %g0], %o7
nop
unimp 0x000a5a78
or %g0, %o0, %l1

21 iadd 60
add %l0, %l1, %l0

22 ireturn ac
or %g0, %l0, %i0

The major overhead of the above code being the two method calls. Ignoring the method calls, ten native machine
instructions are generated. The following is output for the BLOAT optimised EGCS output:

0 iload_1 1b
1 iconst_1 04
2 if_icmple a4 00 1d

subcc %i1, 1, %g0
ble 5
nop

5 iload_1 1b
6 iconst_m1 02
7 iadd 60

add %i1, -1, %i2
8 istore_2 3d
9 aload_0 2a

10 iload_2 1c
11 invokevirtual b6 0014

or %i2, %g0, %o1
or %g0, %i0, %o0
ld [%o0 + 4], %g1
ld [%g1 + 200], %g1
ld [%g1 + 68], %g1
jmpl [%g1 + %g0], %o7
nop
unimp 0x000a5b60
or %g0, %o0, %l0

14 istore_2 3d
or %g0, %l0, %i2
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15 iinc 84 01fe
add %i1, -2, %i1

18 aload_0 2a
19 iload_1 1b
20 invokevirtual b6 0014

or %i1, %g0, %o1
or %g0, %i0, %o0
ld [%o0 + 4], %g1
ld [%g1 + 200], %g1
ld [%g1 + 68], %g1
jmpl [%g1 + %g0], %o7
nop
unimp 0x000a5b60
or %g0, %o0, %l0

23 istore_0 3b
or %g0, %l0, %i0

24 iload_2 1c
25 iload_0 1a
26 iadd 60

add %i2, %i0, %i0
27 istore_0 3b
28 goto a7 0005

ba 1e
nop

31 iconst_1 04
32 istore_0 3b

or %g0, 1, %i0
33 iload_0 1a
34 ireturn ac

Again ignoring the two method calls, eleven native machine instructions are generated. One can now see that byte code
size is not an entirely fair measure of resultant JIT generated code size.

The introduction of local variable usage that cannot be mapped into registers (for example, local arrays) a register based
machine requires a stack frame. Commonly, a stack pointer and a frame pointer are maintained to point to a section of
volatile memory. This posses a problem for the JVM port: there is no generic memory. Possible solutions are to maintain
a ”stack” array of bytes and do all stack accesses to that array. The problem becomes more complex when one considers
global memory. The solution I originally chose was to perform all memory input/output with a method contained within
a run time support class. The method to read an integer from any arbitrary point in memory was called memref and the
method to store an integer to any arbitrary point in memory was called memstore. These two methods would examine
the address requested and determine the required array reference: read only data, read/write data or stack. To perform a
memory reference the backend need only generate the following:

sipush 24324 ; address
invokevirtual Classname/memref(I)I
istore 9

The resultant bytecode was very easy to read and could be easily debugged (for example, one could monitor all reads and
writes to memory). Unfortunately memory bound programs experienced dramatic performance losses. In the order of
sixty times slower execution. The solution was to move all memory references inline and abandon the array segregation.
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All memory was placed in a single array, called ”memory”, in the run time support class and now the back end is required
to generate significantly more code. To load an integer from an unsigned byte array one need only perform the following
(big endian).

Register := memory[location] << 24 |
memory[location+1] << 16 |
memory[location+2] << 8 |
memory[location+3]

However, the JVM does not have unsigned types, and thus each signed byte must be converted to an integer representation
of its unsigned value:

Register := (memory[location]<0?256+memory[location]:memory[location]) << 24 |
(memory[location+1]<0?256+memory[location+1]:memory[location]) << 16 |
(memory[location+2]<0?256+memory[location+2]:memory[location+2]) << 8 |
(memory[location+3]<0?256+memory[location+3]:memory[location+3])

To improve the performance of each integer memory reference, the memory array is made an array of int instead of an
array of byte. Initialised is then put into the array already in unsigned format. The speed increase comes at the expense
of a 4:1 increase in space requirements. The following code is generated by the back end to perform an integer memory
reference:

aload_0
getfield Classname/memory [I
iload 12 ; address
dup2
iaload
bipush 8
ishl
dup_x2
pop
iconst_1
iadd
dup2
iaload
bipush 16
ishl
dup_x2
pop
iconst_1
iadd
dup2
iaload
bipush 8
ishl
dup_x2
pop
iconst_1
iadd
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iaload
ior
ior
ior
istore 11 ; destination

The same memory bound benchmarks now run at 20 to 30 times as slow. Memory management is still a significant issue
that is difficult to resolve.

The build process

The output of the compiler proper is one jasmin (Mey97) assembler file per C language input file. If the input files contain
no global data, the build process is simple, concatenate the multiple jasmin files into a single file and assemble to a class
file. However, C files containing global data produce an addition output file global.s. References to labels contained in
global.s will appear in the jasmin output preceded by ”symref” and proceeded by ”end”. As each C input file is compiled,
the global.s outputs are concatenated together into gglobal.s. This file is assembled to object format and a search and
replace program (sed) is used to replace each symbol reference with an offset into the data section. Finally the object file
is objcopied into a raw data file and passed to the run time support class to be loaded into the memory array. This process
is only needed in programs with multiple input files and global data.

14.3 The Java JVM Back end

Design: Cristina and Brian, Implementation: Sameer [Aug 00], Brian [Nov 00], Documentation: Brian [Nov 01]

The Java JVM back end is a rewrite of the C-based original JVM back end that was written in early 1999. We were
interested in seeing whether the Java language could be used to write back ends for our translator needs. The following
notes explain part of the operation of this back end. Experience with the user of this back end is described in the
Experiencechapter (Chapter 20) in Section 20.3.2.

The Java JVM backend operates much like the C and other backends. Unlike the C (Chapter 13) and the VPO (Chapter 15)
backends, however, it is single-pass. The Jasmin code for each procedure is emitted in one pass. A small runtime library
implemented in the fileTranslatedFile.java provides support for the generated code. That file contains a method
realMain that is called first when the translated program starts execution. TherealMain() method initializes the
memory used by the translated program and copies the program’s command line arguments into that memory. The
realMain() method then calls the translated program’smain() method, which contains the code for the program’s
main procedure. All generated methods are static except formain() . This is done for technical reasons (main is
declared abstract inTranslatedFile.java ).

It recursively processes a source procedure’s HRTLs for a procedure and emits directives for each HRTL into a Jasmin
source file. Given a HRTL, it checks first whether it is a high-level HRTL such as a CALLHRTL, or if it is a RTLList,
a list of low-level RTLs. If the former, directives for the control transfer or other high-level HRTL are emitted. If the
latter, directives for each RTL in the list are emitted. A postorder traversal of each RTL’s subexpressions produces the
stack-oriented JVM bytecodes for that RTL.

Memory is represented using a single large Java byte array ”memory”. The source program’s bss and data segments are
read into the appropriate elements of that array so that a data item at a particular address x can be read from memory[x].

The most complex thing (perhaps) about the JVM backend’s operation is its allocation of JVM locals for the HRTL
variables:
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� Local 0 always holds the Javathis reference if the procedure ismain() , and the first procedure argument
otherwise.

� Locals 1-7: all or remaining formal parameters (assumes there are up to 6 parameters at most).

� Local 8 and 9: unused.

� Local [10..(10+n)): the n local HRTL variables used in the method.

� Locals [(10+n)..99]: the HRTL temporary registers.

� Local 100: a temporary variable used for, e.g., byte swapping.

14.3.1 Usage of the Java JVM Backend

To use the JVM backend, buildUQBT with with-target=sparc and then request the JVM backend using the
command line option-j . This will makeUQBTuse the JVM backend rather than the default low-levelC backend. The
Makefile generated in the output directory created byUQBT includes rules to run Jasmin and build the necessary Java
class files for the translated program.
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Chapter 15

The VPO Back End

Design: Mike, Cristina, Norman. Implementation: Mike [98], Brian [01]. Documentation: Mike [98], Cristina, Brian
[01]

In early 1998 we were using the VPO (very portable optimizer) system by Jack Davidson and students, University of
Virginia, as our optimizer of choice. We experimented with SPARC translations before we moved onto the C back end
(see Chapter 13). VPO’s RTL interface back then was new and did not support x86 or other machines yet. The 1998 VPO
back end is described in Section 15.1. This section is useful for historical reasons.

In 2001 we went back to use VPO for optimization, by then, VPO’s new RTL interface supported not only SPARC, but
also x86 and ARM amongst other machines. We were interested in translations to these three machines. The original
1998 VPO back end was revived in a new form and made much more extensible and robust. The 2001 VPO back end is
described in two parts: first, the experiment in translating IRTL to SPARC VPO RTLs is described in Section 15.2, and
next, the experiences with translatingHRTLto ARM VPO RTLs are described in Section 15.3.

15.1 The 1998 VPO Back End

This section describesvpoback , an experimental RTLUQ to RTLV PO translator which generates a file suitable for
piping to VPO, so that an executable file can be generated. This backend is not meant to be a serious prototype for a
real backend, but is intended to demonstrate the compatibility of the two RTLs. The experiment was a success; it was
possible to translate enough RTLs to generate a simple “hello world” binary executable file for the SPARC platform (from
a SPARC source binary).

15.1.1 Description

The experimental backend has been written to work with a preliminary version of the VPO interface, as supplied by the
University of Virginia in February 1998. This version has two distinct interfaces; one to generate Register Transfer Lists,
and one to handle higher level concepts such as functions and global symbols. All functions of the first interface have
names beginning withRtl , while functions of the latter interface have names beginning withVPOi .

235
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15.1.2 Handling expressions

In general, expressions in VPO are very similar to expressions in our RTlists. For binary expressions, there are two
considerations when translating from RTLUQ to RTLV PO. Firstly, the operators have to be translated. Secondly, the
sethi instruction has to be considered specially. Most of our operators have direct VPO equivalents. Notable exceptions
are rotates with carry (RTLV PO does not have them), and bit extractions (RTLV PO does not appear to have them).

When translating thesethi instruction, it was found necessary to translate expressions of the formK << 10 (where
K is a constant, and<< represents the left shift operator) to expressions likeHI[X] , whereHI is a special Sparc specific
unary operator in VPO, and X has the valueK<<10.

15.1.3 Handling registers

Normal machine registers, such as r[8] (and even r[0] for register %g0) translate directly to VPO using the
Rtl constLoc() function. Some registers are named (i.e. they are represented as aRegister object, whoseIndex
member points to an object of typeConstant , whose value is a string, e.g. “%fp”). Others are implemented as special
registers (i.e. they are represented as aSpecialReg object). SpecialReg objects have a name (it could also be%fp;
both representations exist at present). These named registers are translated into the appropriate general purpose register
(%fp maps to register 30, and%spmaps to register 14).

Temporary registers (e.g. r[ tmp123] ) are translated to ordinary registers beginning with index 51 (for
textttr[ tmp001]). VPO is to be changed so that temporary registers will occupy their own storage spaces.

15.1.4 Handling memory

An object of class Memory contains a pointer to a Value object, which could be of three types:eCONSTANT,
eREGISTER, or eSPECIALREG. These represent the address of the memory being referenced. Where the address
is constant, theRtl constLoc() function is used. Where the address is given as a register, the register is processed
as a location. This location is fetched usingRtl fetch() , and the resultant expression is used as the operand to
Rtl location() .

15.1.5 Handling RT assignments

RT assignments involve a location and an expression. The location will be either a register or memory object; each of these
is translated to a VPO location as above. The expression is also translated as previously described (section 15.1.2). Where
registers or memory are involved in the expression, they are translated as described above, and the result is converted into
a value using theRtl fetch() function. The location and expression resulting from the above (of typesRtl ty loc
andRtl ty expr respectively) are combined and emitted using theVPOi rtl() interface function.

15.1.6 Handling Control Transfer instructions

All the above translations are handled by considering a single Register Transfer (RT) at a time. Basically, each RT of each
RTL in the function of interest is examined in a double counter for loop. However, there are a few situations that have to
be handled by examining a whole RTL; control transfer instructions and frame instructions are examples. Complex code
examines each RTL to see if it matches the pattern of the appropriate instruction of interest; if so, code is emitted to VPO
directly instead of translating the whole list of RTs separately. It is hoped that changes to the representation for RTLUQ

will simplify this comparison.
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If the instuction is recognised as a control transfer instruction, more complex code decides whether the instruction is a
conditional or unconditional branch, call, or return instuction. (This complex, difficult to debug code may one day be
automatically be generated by some sort of tool given a piece of specification or RTL tree).

Return instuctions are simple; an assignment from registerRT (a special VPO pseudo register) to register textttPC is
emitted.

For a call instruction, a symbol has to be generated for the destination of the call. (This will become a call to the
“assembly interface” one day; at present, it is a VPOi function). At the time of writing, the names of dynamic symbols
was not available, so the function name is fixed at “printf”. The call is generated by emitting an assignment to special
VPO register ST (“STack”?) from the global symbol for the destination of the call. In order to convince VPO that main
was not a leaf function, we had to use theVPOi registerUse() function, with an argument list including all registers
from 1 to 15, indicating that all these registers had to be saved across the call (and therefore, leaf optimisation for the
procedure containing the call is not possible).

Unconditional branches are not implemented as of this writing; they should present no special problems beyond those
required for a call.

Conditional branches in VPO have the formPC=IC:0,L1234 wherePCof course represents the program counter,IC
represents the integer condition code register, the colon represents a relational operator, andL1234 represents a label.
This is emitted as a guarded assignment, usingRtl guard() andRtl Rtl assign() . The required operator has
to be determined from an expression contained in the RTL for the branch instruction (it depends on the condition codes
used, as well as the operators, and whether the condition code is used directly, or negated first). This is again difficult to
write code that may be automated in the future.

As an example of this process, consider thebg (branch if signed greater) Sparc instruction. There are three RTs in
the RTL; the main RT contains the subexpression˜(%Z | (%N ˆ %V)) (where˜ represents logical negation, andˆ
represents the exclusive OR operator). When this subexpression is detected, the VPO opertor required isRtl op gt .

It was found that VPO does not have suitable operators for handling the jump if positive/negative instructions, and jump
on overflow / no overflow.

15.1.7 Processing Frame instructions

The save and restore instructions (which establish and remove stack frames) are recognised at the RTL level, just as
conditional control transfer instructions are. At present, only the restore instruction is correctly recognised, and this is
used to call theVPOi functionEnd() function.

15.1.8 Other VPO calls

The functionpremble() calls several VPOi functions that are needed to initialise VPO itself, and to set up a label for
main . These functions set up the register map and special location map; both of these are going to be changed in the
next version of the VPO interface.

15.1.9 Sample Generated Code

This output is from an early version. It should be replaced by a later version.

The input file was compiled from the folowing source bygcc:

#include <stdio.h>
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int main()
{

int a=5; int b=7;
unsigned u=5; unsigned v = 7;

if (a == b) printf("Equal\n");
if (a != b) printf("Not Equal\n");
if (a > b) printf("Greater\n");
if (a <= b) printf("Less or Equal\n");
if (a >= b) printf("Greater or Equal\n");
if (a < b) printf("Less\n");
if (u > v) printf("Greater Unsigned\n");
if (u <= v) printf("Less or Equal Unsigned\n");
if (u >= v) printf("Carry Clear\n");
if (u < v) printf("Carry Set\n");

}

Generated output (filtered by thedecode program and formatted for 3 columns):

- .seg "text" +r[51]=r[8] +r[16]=R[r[51]]
- .global _start +R[r[51]]=r[11] +r[17]=r[14]-r[9]
-_start: +r[51]=r[30]+20 +PC=ICs0,L67452
+r[30]=r[0]|0 +r[16]=R[r[51]] +r[8]=66{10
+r[51]=r[14]+64 +r[51]=r[30]+24 +r[30]=r[0]|232
+r[16]=R[r[51]] +r[16]=R[r[51]] +r[51]=r[30]+28
+r[17]=r[14]+68 +r[17]=r[14]-r[9] +r[16]=R[r[51]]
+r[17]=r[14]-32 +PC=IC!0,L67236 +r[51]=r[30]+32
+r[30]=r[0]|r[1] +r[8]=66{10 +r[16]=R[r[51]]
+PC=IC:0,L66984 +r[30]=r[0]|144 +r[17]=r[14]-r[9]
+r[30]=r[0]|r[1] +r[51]=r[30]+20 +PC=ICh0,L67488
+r[8]=66{10 +r[16]=R[r[51]] +r[8]=66{10
+r[30]=r[0]|116 +r[51]=r[30]+24 +r[30]=r[0]|256
+r[30]=r[0]|r[16] +r[16]=R[r[51]] +r[51]=r[30]+28
+r[30]=r[0]|r[17] +r[17]=r[14]-r[9] +r[16]=R[r[51]]
+r[10]=r[16]{2 +PC=IC:0,L67272 +r[51]=r[30]+32
+r[17]=r[14]+4 +r[8]=66{10 +r[16]=R[r[51]]
+r[17]=r[14]+r[10] +r[30]=r[0]|152 +r[17]=r[14]-r[9]
+r[8]=130{10 +r[51]=r[30]+20 +PC=ICl0,L67524
+r[30]=r[0]|572 +r[16]=R[r[51]] +r[8]=66{10
+r[51]=r[10] +r[51]=r[30]+24 +r[30]=r[0]|280
+R[r[51]]=r[11] +r[16]=R[r[51]] +r[51]=r[30]+28
* +r[17]=r[14]-r[9] +r[16]=R[r[51]]
+r[8]=64{10 +PC=IC’0,L67308 +r[51]=r[30]+32
+r[8]=64{10 +r[8]=66{10 +r[16]=R[r[51]]
+r[30]=r[0]|824 +r[30]=r[0]|168 +r[17]=r[14]-r[9]
+r[17]=r[14]+r[15] +r[51]=r[30]+20 +PC=ICg0,L67560
+r[8]=0{10 +r[16]=R[r[51]] +r[8]=66{10
+r[30]=r[0]|4 +r[51]=r[30]+24 +r[30]=r[0]|296
+r[51]=r[23]+r[8] +r[16]=R[r[51]] +r[30]=r[0]|0
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+r[16]=R[r[51]] +r[17]=r[14]-r[9] *
+r[51]=r[8]+4 +PC=IC>0,L67344 +r[8]=64{10
+r[16]=R[r[51]] +r[8]=66{10 +r[8]=64{10
+r[17]=r[14]-0 +r[30]=r[0]|184 +r[30]=r[0]|308
+PC=IC:0,L67144 +r[51]=r[30]+20 +r[17]=r[14]+r[15]
+r[17]=r[14]+4 +r[16]=R[r[51]] +r[8]=0{10
+r[51]=r[16] +r[51]=r[30]+24 +r[30]=r[0]|8
+r[16]=R[r[51]] +r[16]=R[r[51]] +r[51]=r[23]+r[8]
+r[17]=r[14]+4 +r[17]=r[14]-r[9] +r[16]=R[r[51]]
+r[51]=r[16] +PC=IC<0,L67380 +r[51]=r[8]+4
+r[16]=R[r[51]] +r[8]=66{10 +r[16]=R[r[51]]
+r[17]=r[14]-0 +r[30]=r[0]|200 +r[17]=r[14]--1
+PC=IC!0,L67116 +r[51]=r[30]+20 +PC=IC:0,L67660
+r[30]=r[0]|5 +r[16]=R[r[51]] +r[17]=r[14]+-4
+r[51]=r[8] +r[51]=r[30]+24 +r[51]=r[16]
+R[r[51]]=r[11] +r[16]=R[r[51]] +r[16]=R[r[51]]
+r[30]=r[0]|7 +r[17]=r[14]-r[9] +r[17]=r[14]+-4
+r[51]=r[8] +PC=IC‘0,L67416 +r[51]=r[16]
+R[r[51]]=r[11] +r[8]=66{10 +r[16]=R[r[51]]
+r[30]=r[0]|5 +r[30]=r[0]|224 +r[17]=r[14]--1
+r[51]=r[8] +r[51]=r[30]+28 +PC=IC!0,L67632
+R[r[51]]=r[11] +r[16]=R[r[51]] *
+r[30]=r[0]|7 +r[51]=r[30]+32

This is a brief summary of the interace functions used byvpoback .

15.1.10 RTL Interface

Rtl unary Generates a unary expression
Rtl binary Generates a binary expression
Rtl fetch Converts a location to an expression
Rtl op special Generates a special RTL operator
Rtl int Generates an integer as an expression
Rtl location Generates a location
Rtl constLoc Generates a location from a space and an index
Rtl assign Generates an RT assignment from a location and expression
Rtl guard Generates a sort of guard (for conditional branches)
Rtl label Generates a label (e.g.L1234 )
Rtl globalSymbol Generates a global symbol (e.g.printf )
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15.1.11 VPOi Interface

VPOi rtl Sends an RTL to output
VPOi registerMap Sends a register map line to output
VPOi specialLocationMap Tells VPOi about the special locations
VOIi assembly Generate assembler directives
VPOi functionName Tells VPOi about a function
VPOi functionEnd Tells VPO and VPOi that a function has ended
VPOi variableDeclaration Sends a variable definition to output
VPOi registerUse Sends register use information to output

15.2 Initial 2001 Experiments with VPO – Translating IRTL to VPO
RTLs

Design: Brian; Documentation: Brian; Implementation: Brian [June 01] based on Mike’s 1998 SPARC VPO backend.

The IRTL Sparc-to-VPO backend uses the University of Virginia’s Very Portable Optimizer (VPO) to generate optimized
SPARC code from an IRTL (not HRTL) representation of a source SPARC program. The quality of the optimized code
is about the same as produced by gcc with optimization level-O4 . IRTLs (intermediate RTLs) are a representation of
programs that is close to the machine level. IRTLs differ from RTLs primarily in having delayed branch instructions
removed. They differ from HRTLs in being source machine-specific and not having the additional information about, for
example, procedure parameters and return values, that results from expensive HRTL analysis.

This backend is experimental and incomplete. It cannot translate some programs where the more sophisticated (and
expensive) HRTL analysis is required. For example, the test programparamchain requires information about return
values that is only provided by HRTL analysis. The IRTL backend also does not currently support switch statements
(although this would be relatively easy to add). The IRTL backend passes about 75% of theUQBTregression tests.

VPO provides instruction selection, instruction scheduling, and classical global optimization. VPO has been retargeted
to a wide variety of architectures including the SPARC, ARM, Pentium, and MIPS. It operates on programs that
are represented as register-transfer lists (RTLs). These RTLs resemble those used by UQBT but are lower-level, the
expressions allowed are simpler. While the VPO RTL language itself is machine-independent (VPO has been used with
several C front ends), VPO RTLs encode target machine-specific information. A VPO RTL is required to represent one
target machine instruction. This is called theVPO invariant.

Mike van Emmerik had done some initial experiments with VPO in 1998 that showed that VPO could be effective for
optimizing translated programs. One objective of the current work was to experiment further with VPO. Another was to
explore the use of a backend that translates UQBT IRTLs into VPO RTLs. IRTLs (intermediate RTLs) are a representation
of programs that is close to the machine level. IRTLs differ from RTLs primarily in having delayed branch instructions
removed. They differ from HRTLs in being source machine-specific and not having the additional information about,
for example, procedure parameters and return values, that results from expensive HRTL analysis. The expectation was
that it would be straightforward to translate the low-level IRTLs into VPO RTLs for the same machine. A secondary
goal was to explore how effective IRTLs are as a basis for translations when the target machine is the same as the source
machine. IRTLs are inexpensive to create compared to HRTLs, but it was unclear whether additional information would
be required.
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15.2.1 Design of the IRTL to VPO backend

The SPARC IRTL to VPO backend (“VPO backend”) is structured much like the other UQBT back ends. The VPO
backend is called for each procedure to emit code for its IRTLs. It does not directly emit code but instead emits VPO
RTLs and other directives that are written to a fileprocname .cex . The VPO backend makes use of a small library, the
VPO input libraryVPOi, to produce the .cex file. The Makefile generated for a translated program later invokes the VPO
optimizer on each .cex file to generate an optimized assembler source file. That .s file is then assembled to produce a .o
file for each procedure of the source program.

The VPO backend has two passes. A first pass scans each basic block and IRTL in order to discover what variables, labels,
and procedures need to be declared to VPO. A second pass then processes each IRTL to emit the necessary VPO RTLs
and directives. A recursive walk is made of each IRTL expression. IRTL expressions (and so IRTLs) are higher-level
than VPO RTLs since they may require several target machine instructions to implement. For example, the single IRTL

000109ec *32* r[8] := m[r[16] + 948]

requires three SPARC instructions and so at least three VPO RTLs.

IRTL in more detail

While IRTL is close to the machine level and to UQBT RTLs, some machine-specific details have been abstracted away.
As mentioned above, IRTL does not contain information about delayed branches. This is useful for a VPO backend since
VPO does not support the specification of delayed branches in its input RTLs. IRTL also does not contain information
about whether a procedure in the source program was a leaf procedure or whether it had a register window (usedsave
andrestore ). Detailed information about a procedure’s entry prologue and epilogue are abstracted away. For example,
when a procedure returns an integer result, the IRTLs describing the semantics of a return specify the semantics from the
viewpoint of the caller (the caller’s%O0register is set) and do not indicate how the original procedure returned that value:
whether it stored into%O0or %i0 .

Although IRTL does not reflect the extensive analysis done for HRTL, some analysis is done. For example, each basic
block is identified and categorized. Also, switch statements are recognized and analyzed, and the resulting IRTL includes
data structures describing each switch statement. The IRTL for a switch also includes a synthesized variable for the
switch index in place of, say, the machine register containing the original index.

15.2.2 Status of the VPO backend

The VPO backend currently passes 34 (75%) of our 45 regression tests. This compares with 33 for the Expander backend
which, although it has access to the more precise HRTL information, does not implement floating point. The VPO
backend does not implement switch statements yet. This would be easy to do (perhaps needing three days), and would
enable the backend to pass an additional five tests.

Performance

Table 15.1 shows the performance of the VPO backend compared to optimized gcc (gcc -O4) for a number of small
programs. The backend does not currently run larger programs such as compress so these figures are only a rough
indication of the backend’s ability, through VPO, to generate efficient code. The time required to run each program is
given in seconds. Source programs were compiled using gcc 2.8.1 using both -O0 and -O4. All programs were run on an
otherwise idle 451 MHz Sun 420R with 4GB of RAM running Solaris 2.8.
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Program gcc -O4 VPO backend

Fibo-O0 (40) 9.9 21.5
Fibo-O4 (40) 10.2 11.8
Sieve3000-O0 10.3 12.4
Sieve3000-O4 12.0 11.1
MBanner-O0 (500K) 47.7 51.0
MBanner-O4 (500K) 18.0 13.4

Figure 15.1: Performance - gcc versus SPARC IRTL to VPO backend

Performance of the VPO backend’s version of Fibo-O0 suffers because the source program kept its input argument in
memory rather than a register and stored it in the caller’s frame. While the VPO backend can optimize references to local
variables (caching them in machine registers), it was unable to optimize the many references to memory for the input
argument. The VPO version of Sieve3000-O0 is slightly slower because VPO still emitted many unnecessary register
to register moves. There is a chance that this performance could be improved by giving VPO more precise information
about the lifetimes of temporary locations.

15.2.3 Experience

This section describes various things that were learned during the development of the IRTL to VPO backend. The next
section summarizes the lessons learned during this work.

Need for procedure argument and return analysis

The most significant item learned during this work was that analysis of procedure argument and return value information
is required for a VPO backend to correctly generate code. This is unfortunate since that analysis is expensive. The
reason for this is ultimately that VPO requires detailed information about the lifetime of each location (machine register
or memory location). A client program must specify for each procedure call what locations contain parameters and what
locations will contain return values. The VPO backend does not have this information, with the result that many programs
do not run, in particular the larger, more realistic (representative) ones.

Currently, the VPO backend assumes that up to six parameters are passed and that they are passed in the SPARC registers
%o0 to %o5. This is clearly not enough for many programs, and is not a correct assumption. It also may result in
VPO generating suboptimal code since it must, e.g., reserve space for possibly unused parameters in the calling frame.
However, this assumption was sufficient to continue the backend’s development long enough to make significant progress
and to discover other issues.

Analysis must also be done to discover information about return values. The test programparamchain illustrates this
need:

void addem(int a, int b, int c, int* res) {
*res = a+b+c;

}

void passem(int a, int b, int c, int* res) {
addem(a, b, c, res);

}
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int main() {
int res;
passem(5, 10, 40, &res);
printf("Fifty five is %d\n", res);
return 0;

}

Whenparamchain is compiled -O4 without inlining, the following SPARC code is produced for procedurespassem
andaddem:

addem()
10934: 82 02 00 09 add %o0, %o1, %g1
10938: 82 00 40 0a add %g1, %o2, %g1
1093c: 81 c3 e0 08 jmp %o7 + 8
10940: c2 22 e0 00 st %g1, [%o3]
10944: 00 00 00 00 unimp 0x0
10948: 00 00 00 00 unimp 0x0
1094c: 00 00 00 00 unimp 0x0
10950: 00 00 00 00 unimp 0x0
passem()
10954: 82 10 00 0f mov %o7, %g1
10958: 7f ff ff f7 call addem
1095c: 9e 10 00 01 mov %g1, %o7

Note the unusual code forpassem . While it is a leaf procedure, it makes a call. The two instructions surrounding the call
save then restore the return location in%o7so thataddem will return, not to it, but directly to its caller,main . However,
information about these instructions is lost in the IRTLs for these procedures:

IRTLs for procedure addem:
Ret BB (0x3da430):
00010934 *32* r[tmp] := r[8]

*32* r[1] := r[8] + r[9]
00010938 *32* r[tmp] := r[1]

*32* r[1] := r[1] + r[10]
0001093c *32* m[r[11]] := r[1]
0001093c RET

IRTLs for procedure passem:
Call BB (0x3b82e8):
0010954 CALL addem()

Ret BB (0x3b81d8):
00000000 RET

Sincepassem makes a call, VPO will have it use a register window. But this code is incorrect since thenaddem (which
VPO will make a leaf procedure) will store its result in the memory location pointed to byr[11] , or %o3, of passem ,
not main as intended. Furthermore, the value stored will be based on the uninitialized%o0through%o2of passem ,
not of the intendedmain .
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Even if VPO were to makepassem a leaf procedure (so thataddem reads then stores intomain’s variables), the code
still doesn’t work since thenpassem will return to the wrong procedure: not tomain but topassem . Worse, it will
return to executepassem’s RET instruction, which will jump to itself, causing an infinite loop.

The solution for this is to do the same extensive analysis for procedure arguments and return values that HRTL analysis
does. This will haveaddem read and writevariables, rather than registers, similar to the following code generated for
addem by the low-levelC backend:

void addem(int32 r8, int32 r9, int32 r10, int32 r11) {
...
tmp=r8; /* a parameter variable, not the register %o0 */
r1=(r8)+(r9);
tmp=r1;
r1=(r1)+(r10);

*((int32*)( *(unsigned int32*)&r11))=r1;
return;
}

Where to store procedure results?

Since the VPO backend did not have accurate procedure parameter and return value information, it was initially hard
to know where to return integer results. A leaf procedure stores an integer result in%o0 while a normal procedure,
with a register window, stores the result in%i0 . As mentioned before, IRTL does not indicate where a integer-valued
procedure actually stored its result (or whether the procedure is a leaf procedure or not). Consider the following code for
banner6’s procedurebanprt . These are HRTLs, but IRTL has similar information (without the argument information
and high-level information about conditional jumps).

High level RTLs for procedure banprt(r[24]<32i>)
L4: Oneway BB (0x4570b8):
00000000 *8* m[r[28] + 84] := truncs(32,8,0)
00000000 JUMP 10b78
...

Twoway BB (0x456330):
00010bb0 *32* r[tmp] := r[27]

*32* r[27] := r[27] + 1
00010bb4 *32* r[tmp] := r[28]

*32* r[28] := r[28] + 85
00010bb8 *32* r[tmp] := r[26]

*32* r[26] := r[26] + 85
00010bbc *32* r[tmp] := r[27]

*32* v10 := 7
*32* v9 := r[tmp]
*32* r[0] := r[27] - 7
SUBFLAGS( r[tmp], 7, r[0] )

00010bc0 JCOND 10b78, condition signed less
High level: v9 < v10<32i>
Synthetic out edge(s) to L4 L5
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L5: Ret BB (0x4571c8):
00010bc8 *32* r[8] := r[24]
00010bc8 RET

Note the store tor[8] , or %o0. This is the overall meaning of the return, and the semantics as viewed by the caller, but
is “incorrect” here for the purpose of emitting VPO RTLs. The original procedure was a normal, non-leaf procedure and
stored its result in%i0 .

Another source of trouble here was that VPO decides, as part of its optimizations, whether a procedure will have a register
window or not; there is no way for a VPO client to specify this. The problem then was how the VPO backend should
decide where to store the result.

The solution was to predict whether VPO would give a procedure a register window. VPO’s rule for deciding this is
simple: if a procedure writes to any non-“scratch” register (e.g., %o7 or a local register), it is given a register window.
The VPO backend determines (predicts) whether VPO will make a procedure a leaf procedure or not, then stores the
result in the appropriate location. The drawback of this is a fragile dependence on VPO’s implementation, which might
change at any time.

Straightforward allocation of local variables can fail

The VPO backend originally allocated a separate VPO local variable for each local variable in a procedure’s IRTL. These
local variables are ones stored in the procedure’s frame and are referenced usingm[%fp-NN] , or %fp-NN when an
address is needed. This failed in some cases because VPO chooses the layout and ordering of local variables. It will
decide whether to optimize access to a variable by storing it in a register rather than memory. It will even chose whether
to optimize a variable away completely if it can determine that the variable’s result is never used. The problem is that some
programs depend on the order and relative layout of variables in memory. As a result, the backend initially generated bad
code for the test programreturnparam :

typedef struct myStructTag {
char a[16];
char b[16];

} myStruct;

char* getFirstStr(struct myStructTag* p) {
return p->a;

}

int main() {
myStruct s;
strcpy(s.a, "Hello");
strcpy(s.b, "World");
printf("Elements are %s and %s\n", getFirstStr(&s), s.b);
return 0;

}

gcc inlines astrcpy of a short string literal into a sequence of memory stores. The VPO backend originally treated
the destination of these stores as separate variables, which VPO could reorder in memory. As result, the translated
returnparam program stored the last two bytes of each literal in locations thatprintf did not read. The solution
was to use an array to hold all local variables and to reference the variables using indexes. This allows more direct control
over storage layout. The drawback is that this often requires more storage.
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VPO supports SPARC V8, not V9

VPO currently only supports the SPARC V8 instruction set, not V9. Since UQBT also supports (mostly) V8, this is
usually not a serious problem. It does sometimes lead to less efficient code since, for example, it is not possible to use 64
bit shifts, multiplies, or other operations.

There are some occasions, where this can cause a problem. For example, when the-f flag is not used, UQBT’s
frontsparc.cc used to inline the V7 compatibility routines.mul and.umul into a sequence of RTLs that require a
V964 bit multiply instruction.frontsparc.cc now generates RTLs that require only V8 instructions. If UQBT later
supports the full SPARC V9 architecture, it will be hard to use VPO unless it also supports V9.

Controlling what code is emitted can be difficult

VPO chooses what order to emit SPARC instructions, may revise them, and even eliminate them for better efficiency.
This is usually desirable, but can sometimes be a problem for a client such as the VPO backend that require a particular
order for some instructions. The VPO backend emits VPO RTLs that inline some V7 compatibility routines such as
.rem (represented by UQBT’sidMods ). The inlined code for.rem consists of a signed divide, a signed multiply,
then a subtract. Since VPO supports SPARC V8, the divide must be preceded by aWRYinstruction that puts to most
significant 32 bits of the dividend into the%Yregister. Unfortunately, VPO moves theWRYafter the divide regardless of
what dependencies are put into the VPO RTLs. This has not caused a failure yet in testing, but probably some programs
will fail.

Undocumented VPO RTLs must sometimes be used

To generate 8 and 16 bit loads, additional “semantic” VPO RTLs must be emitted. Perhaps these additional RTLs are
used to decide whether to generate signed or unsigned loads. It is annoying that the fact that these are required does not
appear in VPO’s noweb documentation. Fortunately, thelcc compiler front end demonstrates how to support byte and
halfword loads. (In general, having the source code forlcc is invaluable as furtherdocumentationfor VPO.) The code
below from the VPO backend illustrates what is necessary to emit VPO RTLs for these loads:

/*====================================================================
* FUNCTION: SparcIRTLToVPOBackend::processMemoryRead
* OVERVIEW: Emits VPO RTLs for a memory load SemStr.
* PARAMETERS: exp: points to the UQBT SemStr for the load.
* cType: expected type of the value being read.
* RETURNS: A VPO Rtl_ty_expr for the value read from memory.
*===================================================================*/

Rtl_ty_expr SparcIRTLToVPOBackend::processMemoryRead(const SemStr* exp,
Type cType) {

int currSize = cType.getSize(); // desired size in bits
// get temp reg to hold the value read from the memory location
Rtl_ty_loc temp = getTempReg(cType);
Rtl_ty_loc memLoc = processMemOf(exp, cType);
Rtl_ty_expr expr = Rtl_fetch(memLoc, currSize);

// VPO requires extra "semantic" RTLs to emit 8 and 16 bit loads
if (cType.getType() == INTEGER) {

if (currSize == 8) {
if (cType.getSigned()) { // LDSB
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expr = Rtl_binary(Rtl_op_lshift, expr, Rtl_int(24));
expr = Rtl_binary(Rtl_op_rshiftA, expr, Rtl_int(24));

} else { // LDUB
expr = Rtl_binary(Rtl_op_and, expr, Rtl_uint(255));

}
} else if (currSize == 16) {

if (cType.getSigned()) { // LDSH
expr = Rtl_binary(Rtl_op_lshift, expr, Rtl_int(16));
expr = Rtl_binary(Rtl_op_rshiftA, expr, Rtl_int(16));

} else { // LDUH
expr = Rtl_binary(Rtl_op_and, expr, Rtl_uint(0xffff));

}
}

} // else LD, LDD, LDF, LDDF, which require no special treatment

// emit the actual load instruction
VPOi_rtl(Rtl_assign(temp, ((currSize < 32)? 32 : currSize), expr),

NULL);
return Rtl_fetch(temp, currSize);

}

VPO RTLs do not support some SPARC instructions

It is not possible to emit a single VPO RTL to generate some instructions such asBPOS(branch if positive) andBVS
(branch if overflow set). These can be implemented using RTLs that generate a nested pair of conditional branches, but
this is awkward and inefficient. It is likely that the VPOi interface and the SPARC VPOi extension interface reflect just
what the various VPO clients, most of which areCcompilers, have required over the years. Ideally, VPO would have an
“escape hatch” to emit such instructions.

15.2.4 Lessons

The lessons from this experience include:

� Significant additional analysis is needed for IRTL to be a suitable basis for a VPO backend. This includes, at
a minimum, analysis of procedure argument and return value information. Such analysis is already done when
producing HRTL, which suggests that HRTL would be a better representation for future VPO backend work.

� UQBT needs more control over what code and data are generated by VPO. This includes being able to specify,
when necessary, what instructions must be generated and in what sequence. For UQBT to be able to implement
synchronous signals correctly, it must be able to instruct VPO that instructions may not be moved around
instruction “barriers” that it specifies. UQBT also needs to be able to control more directly and more precisely
where data is stored and what loads and stores of that data must be preserved in VPO’s output. We implemented a
barrier interface into VPO, but such barrier is not part of our distribution.

15.2.5 Usage

To use the IRTL Sparc-to-VPO backend, buildUQBT with with-target=sparc and then request the IRTL backend
using the command line option-O . This will makeUQBTuse the VPO optimizer as a backend rather than the default
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low-level C backend. The Makefile generated in the output directory created byUQBT includes rules to run VPO then
the SPARC assembler, and then build the executable for the translated program.

15.3 The ARM VPO 2001 Back end

Design: Brian; Documentation: Brian [Nov 01]; Implementation: Brian [Oct 01].

The ARM VPO backend uses the University of Virginia’s Very Portable Optimizer (VPO) to generate optimized ARM
code. The quality of the optimized code it produces is about the same as produced by gcc with optimization level-O4 .
VPO provides instruction selection, instruction scheduling, and classical global optimization. It has been retargeted to a
wide variety of architectures besides the ARM including the SPARC, Pentium, and MIPS.

The particular ARM architecture supported by the ARM VPO optimizer is the ARM7TDMI, which is implemented, for
example, by Intel’s StrongARM processor. This architecture has no floating point or integer divide hardware and only
supports 32 bit integers. However, the ARM VPO backend will emit synthetic floating point instructions that make use
of traps to invoke a software implementation of the operations in a runtime library. The ARM VPO backend supports
the calling conventions described in the document “The ARM-THUMB Procedure Call Standard”, document number
SWS ESPC 0002 B-01, published by ARM Limited. These calling conventions are implemented by the gcc compiler on
the ARM, and theUQBTARM VPO backend uses the gcc libraries. These libraries include implementations of integer
divide and mod functions that emulate these operations.

The ARM VPO backend also supports little-endian addressing. The ARM architecture itself is endianness-neutral, but the
ARM backend was designed to generate programs that could run under Linux on the ARM, which requires little-endian
addressing.

15.3.1 Status of the ARM VPO backend

The ARM VPO backend is largely complete, at least for source programs that use integers that are 32 bits or less. Integers
longer than 32 bits could be supported by an emulation library, but this has not been implemented. The backend also does
not currently support switch statements (although this would be relatively easy to add).

15.3.2 Use of the ARM backend

To use the ARM VPO backend backend, buildUQBTwith with-target=arm and then request the VPO backend
using the command line option-O . This will makeUQBTuse the ARM VPO optimizer as a backend rather than the
default low-levelCbackend. The Makefile generated in the output directory created byUQBTincludes rules to run VPO
then the ARM assembler, and build the executable for the translated program. Cross-development GNU gcc, ld, and
assembler tools can be downloaded to build ARM executables on other platforms such as Linux and Solaris. It is also
possible to find native GNU tools for some ARM platforms.

15.3.3 Overview of the ARM VPO backend’s operation

The ARM VPO backend operates much like the C and other backends. It uses two passes to emit VPO “RTLs” and
other directives for a procedure being translated. The directives and other information are written to a file called
procname.cex where “procname” is the name of the source procedure. That.cex file is later read by the VPO
optimizer, which then produces an assembler file for the translated procedure.
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The backend’s first pass scans the procedure’s HRTLs to look for and declare to VPO various things such as input
parameters, block labels, and references to HRTL variables and registers. The second pass recursively processes the
procedure’s HRTLs and emits directives for each HRTL. Given a HRTL, it checks first whether it is a high-level HRTL
such as a CALLHRTL, or if it is a RTLList, a list of low-level RTLs. If the former, directives for the control transfer or
other high-level HRTL are emitted. If the latter, directives for each RTL in the list are emitted.

In a little more detail, the first pass declares each input parameter with the appropriate size and offset in the ARM
procedure frame. It also declares VPO labels for each HRTL block label, and declares each called procedure as an
external reference. A VPO variable called “locals” is declared as an array to hold all HRTL local variables: that is,
the variables stored in the abstract HRTL frame and referenced using an address relative to%AFP. We declare a single
array for the locals instead of separate VPO variables to ensure that the locals have the original order and offsets in the
frame. We access the locals using explicit offsets into the “locals” array. For the same reason, we also declare an array
“symVars” to hold all HRTL symbolic variables such asv[0] . VPO local variables are also declared for each referenced
HRTL register, temporary, and machine-dependant register such as%Y. The first pass also declares a 64 bit temporary for
use when marshalling arguments in procedure calls.

The ARM VPO backend first emits code to store incoming parameter registers into the variables allocated to hold those
parameters. If the procedure is the main procedure of the source program, code is emitted to swap the elements ofargv .
The second pass then emits code for the HRTLs in each basic block of the procedure. VPO temporary registers are used
extensively to hold intermediate values in order to ensure that no VPO “RTL” becomes too complex for VPO to process.
VPO requires that each VPO RTL correspond to a single target machine instruction.

Code generation is fairly straightforward except for parameter passing in procedure calls. The ARM calling conventions
we use pass both integer and floating point values in ARM registersr0-3 and, if necessary, on the stack in reverse order.
It is possible for the two “words” of a 64 bit double floating point value to be split betweenr3 and the stack. If so, a
temporary memory location is used to marshal the double since there is no direct data path on the ARM between the
floating point and the integer registers.

Another complication of generating code for the ARM is its limited support for immediate values in instructions. The
ARM only supports 8 bits immediate values in data processing instructions and only 12 bit offsets in load and store
instructions. This means that constant addresses and values larger than 8 bits must be stored in memory and at a location
close to the instructions that reference them. To deal with this, we store such constants in the code stream (with a branch
around them at the start) and use PC-relative addressing to access them. We build a data structure to hold such “deferred”
constants during code generation and then emit the constants at the end of the procedure’s code.

15.3.4 Experience

One limitation we discovered with the ARM VPO optimizer is its limited support for ARM addressing modes. This made
the code sequences for any byte swaps longer than would otherwise be possible. For example, a 4 byte swap requires 10
ARM instructions currently. With support for the ARM addressing modes that support shifted operands, this could be
done in 7 instructions. If the ARM backend supported conditional instructions (instructions that are only executed if a
condition is true), just 4 instructions would be needed. Jack Davidson reported that his team at the University of Virginia
is adding support for more ARM addressing modes.
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Chapter 16

The Code Expander – A Retargetable
Backend

Design: Manel, Cristina, Brian; Documentation: Manel; Implementation: Manel [Apr 01]

This chapter describes the design and implementation of a retargetable backend for the UQBT framework. The objective
of this backend is to be able to abstract a significant part of the work that is currently being replicated on the different
backends (the low-level C backend, the JVM backend), into an abstract class, and to implement subclasses that only focus
on the particular details of code generation for the different targets.

The ultimate goal for this work is to take the HRTL-based representation and be able toexpandit into an RTL-
based representation. This approach is general enough to generate machine code, high-level language code, and other
representations that may be interesting to be generated.

16.1 Design and Implementation

Figure 16.1 shows the proposed view of the retargetable backend; where the code expander is an abstract class which gets
implemented in different ways by subclasses that emit code for a variety of target architectures or languages. (Aside: this
diagram needs to be upgraded so that the class relationships are not shown here but elsewhere). The abstract classCode
Expander(CE) is the core of the retargetable backend).

The CE is an abstract class that implements all the common tasks that need to be done when translating from the HRTL
representation into a particular target (e.g.: SPARC machine code, low level C, JVM bytecodes, etc). The main features
of the CE are as follows:

Highly retargetable. The CE can be easily retargeted to different backends. As the CE is general enough, there is no
limitation in order to implement new CE subclasses for generating code for a new target. This is because all the
details about the target must be included into the CE subclass. The CE does not assume any restriction about the
target.

Easily reusable. The code generation phase is completely driven by the CE. When implementing new subclasses, users
only needs to be worried about “filling in” the abstract methods that belong to the CE interface, as well as all the
information related to the code generation target.

251
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Figure 16.1: Retargetable Backend scheme.

Different levels of abstraction allowed. As the CE is general enough, it is possible to build a hierarchy of subclasses in
order to join the common tasks that need to be done when generating code for a group of targets. For instance, in
Figure 16.1, there is a subclass of the CE calledMachine Code Generation. This is an unique subclass that is able
to deal with all the common tasks that need to be done when generating machine code, no matter what the target
machine is (e.g. SPARC, PA-RISC, Pentium, etc). Different subclasses of the “general CE subclass” are in charge
of the real code generation for every particular architecture.

Note that this retargetable backend does not include an optimization phase when generating code. We assume that a
different framework takes care of the unoptimized code that the UQBT backend is generating (e.g. a C compiler from
generated.c files, a SPARC postoptimizer from generated ELF.o files, etc). However, it is always possible to include
an optimization phase into a subclass of the CE. No limitation on optimizations is imposed on the retargetable backend.

16.1.1 Code Expander

The Code Expander(CE) is the core of the retargetable backend. The CE is an abstract class that implements all the
common tasks that need to be performed when translating from the HRTL representation into a particular target. The
actions taken by the CE are at function level, by calling the methodexpandFunction . The program should declare a
CE object for every function in the HRTL representation of the source binary.
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The CE class is target independent, which means that it does not need to be re-implemented again. The tasks performed
by the CE are as follows:

� Collecting all the information that may be need by the target-dependent part of the backend (CE subclasses). This
task includes, for instance, collecting information about the number of registers, symbolic variables, parameters
and temporals used in the function. In the case that some necessary information for a particular target is not
collected by the CE, the whole HRTL representation is available to collect the information in the subclass
implementation.

� Parsing and decomposing the HRTL representation, calling to the target-dependent implementation for generating
code and for getting/settinglocations. A location is a mapping between an HRTL subexpression and anentityof
the target (e.g. a machine register, a memory location, a stream of characters, etc). The management of locations
will be explained in the next section (16.1.2), but the CE is in charge of decomposing the HRTL into locations.

� Calling the target-dependent emitting functions to actually emit the code that needs to be generated. The methods
for location management as well as the code emitting arevirtual methods for the CE class. This means that they
must be implemented in the CE subclasses.

When a complete function has been expanded using the CE (and also the corresponding code has been generated), the CE
caller may invoke thegenerateFile method. This is also a virtual method that generates a file containing the code
generated previously. As it is a virtual method, it needs to be implemented in the CE subclass. Then, calling this method
may have the effect of generating a.o file, a .c file, or simply copy the generated code into a buffer in memory. The
April 2001 implementation includes generation of code into an ELF .o file.

Finally, the CE’s static methodgetExpInstance has been included into the CE interface in order to get the correct
instance for a particular CE subclass implementation at runtime. This method returns an object of a particular subclass
based on a character received as a parameter. This character acts as an identifier to choose the desired subclass.

16.1.2 Code Expander subclasses

When retargeting the CE to a new target, a subclass of the CE must be declared. The CE subclasses need to implement
all the things that need to be done when generating code for that particular target.

The CE subclasses are target-dependent, which means that a new CE subclass needs to be implemented for every new
target. The tasks performed by the subclasses CE are as follows:

� Using all the information that the CE collected in order to generate the target code. In the case that some necessary
information for a particular target is not collected by the CE, the whole HRTL representation is available to collect
the information in the subclass implementation.

� Management oflocations, which are mappings between a HRTL expression and anentity of the target (e.g.
a machine register, a memory location, an stream of characters, etc). The CE gets/sets locations for HRTL
subexpressions, but the CE subclass is in charge of “mapping” every HRTL subexpression into a target entity.
For instance, in a single HRTL assignment, the location for the right hand side (RHS) of the assignment is the
target location where the RHS is stored in the target machine (e.g. a register). In the same way, the location for the
left hand side (LHS) of the assignment is the target location where the target maps the LHS (e.g. a position in the
function’s local stack). The CE subclass returns location identifiers to the CE functions that “do not make sense”
to the CE, but make for the CE subclass (i.e. are target-dependent).

� Dealing with the complete code generation phase. This means that the CE subclasses implement all the CE virtual
functions to actually generate the code for the particular target that the CE subclass is being retargeted to. Also,
the CE subclass has to deal with type/size data, calling convention, cross-endianess and all the details that are
target-dependent.
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The CE subclasses are target-dependent. However, when retargeting the CE, a hierarchy of classes can be created. For
instance, in Figure 16.1, there is a subclass of the CE calledMachine Code Generation. This is an unique subclass that
is able to deal with all the common tasks that need to be done when generating machine code, no matter for what target
(e.g. SPARC, PA-RISC, Pentium, etc). Then, different subclasses of this “general CE subclass” are in charge of the real
code generation for every particular architecture.

16.2 A SPARC code generator

The CE has been implemented and retargeted to a SPARC V8 code generator. The NJMC toolkit has been used to generate
the encoder routines from the SLED SPARC specification files (see Chapter 17 for some information about this encoding.
Therefore, the SPARC code generator is a subclass of a “general” code generator that uses the NJMC framework, which
is subclass of the CE.

The SPARC code generator maps all the HRTL registers and symbolic variables into the function stack. Also, it builds a
dictionary oflocations, to find out when the code generator is dealing with SPARC locations (registers, memory positions
on the stack) or HRTL locations (subexpressions, source registers or symbolic variables). The mapping information is
the following:

� Locations0..63 : SPARC register file

� Locations128..255 : source registers, that is, register of the original source architecture.

� Locations256..383 : symbolic variables

� Locations384..511 : special registers (condition codes, etc).

� Locations512..575 : output parameters (past the sixth) on SPARC.

� Locations576 and above: special values (memory, constant, etc).

Table 16.2 shows an example about the sequence of actions taken by the CE and the SPARC code generator when
processing the expressionr3 := r0 + 1 .

Code expander SPARC code generator

RHS := processExpr(’r0+1’)
lc1 := processExpr(’r0’)

return getLocation(’r0’) return ’%fp+120’
lc1 := fetch(lc1) emit ’ld [%fp+120],%l0

return ’%l0’
lc2 := processExpr(’1’)

return getLocation(’1’) return constant(1)
lc2 := fetch(lc2) emit ’mv 1,%l1’

return ’%l1’
return emitBinOp(lc1,’+’,lc2) emit ’add %l0,%l1,%l2’

return ’%l2’
LHS := processExpr(’r3’)

return getLocation(’r3’) return ’%fp+128’
emitAssign(LHS,RHS) emit ’st %l2,[%fp+128]

Figure 16.2: Sequence of actions for an add operation.
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First of all, the CE processes the RHS of the expression, which is the add operation. This is made by a recursive CE
method calledprocessExpr that processes a general HRTL expression. Then, the method processes every operand of
the binary operation separately, getting locations and values from them. In the example, it is easy to see the actions taken
by the SPARC code generator, which basically returns locations where the operands are located in the target machine, as
well as emit SPARC code to process the expression.

When the RHS has been processed, the CE processes the LHS. Note that now there is no need to get the value of the LHS
location, because we want only to store information into this location (the RHS value). The sequence of actions ends with
the assignment, which is translated into a store operation of the computed value (the addition) into the location wherer3
has been mapped by the SPARC code generator (%fp+128 ).

16.2.1 Status

The SPARC code generator is able to deal with interesting things, like cross-endian accesses or complete SPARC calling
convention. However it does not able to deal with neither floating point computation nor 64-bit data.

Also, the generator is not complete, which means that there are some translations from HRTL semantic strings into
SPARC code which are not implemented yet. However, it is very easy to complete the generator by just adding the right
translation to every entry.

16.2.2 Example: factorial

In this section we show a complete example of how the SPARC code generator works. The example is with the C
implementation of the “factorial” function. The C code is as follows:

int fact (int x)
{

if (x >= 2)
return fact(x - 1) * x;

else
return 1;

}

The C code is compiled with the GNU gcc compiler, on a SPARC V8 machine, to obtain the following assembler
representation:

.fact: save %sp, -112, %sp
cmp %i0, 1
bg .L1
nop
ba .L2
mov 1, %i0

.L1: call .fact
add %i0, -1, %o0
call .umul
mov %i0, %o1
mov %o0, %i0

.L2: ret
restore
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When UQBT processes the binary file containing the SPARC machine code of the factorial function, it builds a HRTL
representation of the machine code. This high level representation looks like this:

.fact (r24):
tmp := r24
v7 := 1
v6 := tmp
r0 := r24 - 1
JCOND (v6 > v7) .L1
r24 := 1
JUMP .L2

.L1: tmp := r24
r8 := r24 - 1
r8 := CALL .fact(r8)
r9 := r24
r8 := r8 * r9
r24 := r8

.L2: r8 := r24
RET r8

UQBT performs some analyses that are able to remove delayed branches and reconstruct the semantics of the source
machine calling convention. This can be easily seen in the previous HRTL code. Also, it is interesting to note that the
code has a lot of redundancy that the analysis phases of UQBT inserted. This is because there is no optimization phase
introduced by UQBT at the HRTL level.

After the HRTL representation of the program has been generated, UQBT calls to the SPARC code generator, and
generates the following code:

.fact: save %sp, -232, %sp
...

ld [%fp-128], %l0
ld [%fp-132], %l1
cmp %l0, %l1
mov 1, %l2
bg .t1
nop
clr %l2

.t1: cmp %l2, %g0
bne .L1
nop

...
.L1: ...

ld [%fp-120], %o0
call .fact
nop
st %o0, [%fp-120]

...
.L2: ...

ld [%fp-120], %l0
ret
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restore %l0, %g0, %o0

As the generated code is too large, only the code from theif comparison and the code from the recursive call are shown.
Looking at this code, there are some important things that need to be pointed out:

� All the source register and symbolic variables are mapped by the generator on the local stack, aslocal variables
(all references use negative offsets from the SPARC frame pointer). Also the original function stack is mapped in
the target’s stack frame, hence the new stack frame is larger than the original one.. Figure 16.3 shows the stack for
the factorial program.

prev

curr

high

low
spill area for args 1-6

in arguments 7, 8, ...

struct/union return pointer

16-word window save area

variable size
(locals, spills)

outgoing arguments 7, 8, ...

spill area for out args 1-6

struct/union return pointer

16-word window save area

%fp+68

%fp+92

%fp+64

%fp

%sp+68

%sp+92

%sp+64

%sp

Figure 16.3: Stack layout for the factorial function

� The code generated for the compare and branch is clearly redundant. In a comparison,true or falsevalues are
generated as a result of the comparison, and the actual branch is based on this result. As the SPARC V8 instruction
set does not have conditional move instructions, an intermediate label (and, of course, an additional branch) is
needed.

� Delay slots are nullified, so that a post optimizer does not need to perform any complex analysis about delayed
branches, and can schedule useful code on a delay slot.

The generated code is very inefficient, because code generation is performed one HRTL instruction at time and there
is no optimization phase involved. However, a post-link time optimizer should be able to easily optimize this code just
applying some classical optimizations like:
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� Redundancy elimination,

� Dead code elimination,

� Branch propagation,

� Constant propagation,

� Stack compaction,

� Register re-allocation and

� Code scheduling.

The resulting optimized code should be very similar to the original one.



Chapter 17

Encoding of Assembly Instructions to
Machine Code

Design: David; Documentation: David, Cristina; Implementation: David [Mar 99]

This chapter describes a 1999 investigation into dynamic executions of software and binary encoding of intermediate
representations using the NJMC toolkit encoding routines. The objective of this exercise was to take an assembly input,
encode the instructions into machine code and execute the output instructions at run-time. This exercise resulted in RAE,
a Run-time Assembler Executor, which is described in this chapter.

The ultimate goal for this software is to take an RTL-based representation and be able to generate machine code that
is executed on the target machine. The dynamic behaviour of RAE should also be implemented by allowing switching
between each component on-the-fly. On-demand processing also enforces task switch as data are executed and gathered
as needed. This component can then be plugged into the backend of dynamic binary translators or emulators.

17.1 Design and Implementation

The current RAE implementation can process SPARC assembly programs and execute encoded binaries on the SPARC
(V8 for both input and output). x86 implementation shall be followed once the SPARC version of RAE can handle RTL-
based input. The input assembly files are produced by VPO (BD88) as we are hoping to use VPO as an optimizer in static
binary translations. Test files used for testing RAE are programs written in the C language. To get the assembly version,
VPCC is used to compile the programs in to assembly file. Note: VPCC understands K&R syntax only.

RAE is made up by 4 main components (see Figure 17.1):

� The parser, which parses VPO-generated assembly files using a LALR parser. Structures, relocations, label
information are gathered as each unit of input is parsed. Details regarding the parser are explained in more detail
in the following subsections.

� The emitter, which uses NJMC toolkit encoding routines to encode the assembly instructions into binary
instructions. The emitter is invoked mainly by the parser and is reponsible for outputing the final binaries needed
by the executor.

� The executor, which executes the translated binary code at run-time.

259
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Assembly
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Runtime Assembly Executor (RAE)
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EmitterExecutor

Encoded
binary

Figure 17.1: Components of RAE

� The switch manager, which maintain the connections between the above components. It jobs is to direct the flow of
translationprogram execution and the communications between the components such that on-demand processing
can be achieved.

The dynamic behaviour of RAE results mainly from the ability to process on-demand in the individual components.
Processing of each component are done only when there is a need to do so. For example, when the emitter emits enough
information for execution, the executor is invoked. The executor is then paused when there is a call to a label which it does
not yet know about, hence it invokes the parser to parse more source in search for the desire label. Each component are
closely coupled in a way that they are triggered on-demand. Granularity of RAE can be seen as processing one procedure
at a time in the parser component.

17.2 RAE Parser

The parser is the first to be called by RAE. In a sequencial order, the parser starts at the top of the assembly file and
processes the input in an orderly fashion. The granularity unit of the parser is a single procedure at a time. The parser
must gather enough information from the input file such that other components can be invoked. During the parse, the
parser invokes the emitter for every instruction that needs to be emitted. The combination of parsing and emitting pauses
once the entry point to the main program is found in which the executor is called to execute the encoded instructions.
Sometime during the running of the program, the switch manager may invoke the parser to parse more assembly input as
needed.

Each procedure is consider to have a text segment and a local data segment. The first procedure starting from the begining
of the file and have no text segment. It has a single data segment which stores the labels that are accesible by the rest
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of the program. This is the only procedure that has no code segment and it is the global data segment. This segment is
responsible to have names and labels that are used throughout the rest of the program which are not found in there local
data segments. Apart from being a single segment procedure, this segment contains data that are similar to the rest of the
procedure’s local data segments (at least in the eyes of the parser, they are treated the same).

17.2.1 Data Segments

Data segments are static piece of memory that are allocated before the execution of the program. These segments may
contains both initialised and uninitialised data. Two types of data segments can be found in an assembly input file:
textttglobal and textttlocal data segments. The global data segment contains variables and label references that can be
accessed anywhere throughout the program. Contents within the local data segment are known only to its corresponding
text segment.

Input to the parser

The following assembly constructs are found in data segments within the input file.

� .seg "data" - this signifies the beginning of a data segment. It is at this point that a new data relocatable block
is created. Relocatable block are base structures provided by the NJMC toolkit.

� .align NUM - NUM is usually 4, 8 or 16. a call to the align(NUM) routine is made whenever this is encoutered.

� .common VAR,SIZE,ALIGN - variable VAR is declared with size SIZE, and its byte aligned to ALIGN. Call
to align(ALIGN) is made first, VAR is added to the global symbol table if it have not been already added, SIZE
bytes is emited to the current relocatable block using emitm(). Since no initial value is required, the emitter simply
emits junk (currently set to be the integer 2) for the .common identifier. For example, in the following variable
declaration
.common cm var, 1024, 4
the namecm var will be added to the symbol table with its offset from the beggining of the global data segment.
The RAE then emits a series of 1024 bytes with the value of 2 to specify that the address is occupied through a
series of calls toemitm (which handles incrementing thePCcounter and allocating space if the maximum buffer
space is reached). Another way to do this would be to calladdlc() which simply increments thePCcounter.
Although usingaddlc() is considerably quicker, extra code needs to be added to performs similar housekeeping
functions inemitm like checking buffer overfloads if the relocatable block have just been created. addlc() can be
safely used if a previous call the emitm() has been made since the creation of the relocatable block. If addlc() is
the first to be called after a new relocatable block, then some house keeping is definately required.

� .global NAME - signifies NAME is a global name that can be accessed anywhere in the program. NAME is
added to the global symbol table and a relocatable address for the NAME label is also created.

� LABEL: - signifies a data label definition. If LABEL is not already in the symols table (searches local symbols
first then globals), it will be added and a relocatable address is created aswell.

The following belong within a LABEL

– .byte XXXX,

– .word XXXX,

– .double XXXX,

– .ascii XXXX - the values XXXX associated with these tags are simply emited to the current relocatable
block.
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The input assembly file is generated from VPO, but its organisation of data and text segments make it difficult for a
single parse. For each text segment, there is always a corresponding local data segment (which could be empty). The
organisation of the VPO assembly will start with the global data segment, follow by the first text and local data segment
pair, then the second pair etc... in that order. Each pair of the text and local segments is grouped as a single procedure by
the parser. Problem with a single parse over the input file arises when encountering references to local data variable its
corresponding the text segment. Since its local data segment comes after its text segment, no reference information about
variables are known at the point of emiting an instruction. To overcome this problem, each local data segment could be
moved infront of its repectable text segment. This can be very tedious when the input file contains a large number of
procedures. To fixes this problem, relocation closures are used. Relocation closures are created when an unknown symbol
(or address) is referenced in the text segment. When the symbol is discovered (in its corresponding local segment), the
closure is applied to the instruction that created the relocation closure. This is done by patching the instruction space with
the correct relocation address.

Example

The following example code demonstrates the processing done during the parse:

input code:

.seg "text" (1)

.align 8 (2)

.global .L45 (3)

.L45: (4)
save %sp, -96, %sp (5)
sethi %hi(.L60), %o0 (6)
add %o0, %lo(.L60), %o0 (7)
...
...
.seg "data" (8)
.align 8 (9)
.L60: (10)
.word 0x46ff (11)
...

At the entry to the procedure, the parser allocates a new relocatable block and does some housekeeping (1). At (3), the
symbol .L45 is added to the global symbols table (global so that other procedures can call .L45). A label for .L45 is
also created but not defined. (4) defines label .L45 by assigning it the current offset from the beginning of the relocatable
block. A save instruction is emited to the relocatable block by invoking the respective emitter function (5). As it encouters
.L60 in (6), it attempts to lookup the global symbols table in search for .L60 and fails. The parser adds .L60 to the local
symbols table and creates a label for it. It then invokes the emitter which creates a relocation closure for this instruction.
(7) uses .L60 again, this time the parser finds .L60 in its local symbols and asks the emitter to emit the add instruction. But
the emitter detects that .L60 is not defined and created another relocation closure. When the text segment is completed,
the parser creates another relocatable block for its local data segment(8). At (10), the parser defines .L60. At (11), 0x46ff
is emitted to the relocatable block.

As the RAE parser parses the VPO assembly output, it builds 2 (except the first procedure) relocatable block for each
procedure it encounters along with a symbol table for all the symbols that are define in this procedure. When the parser
finishes parsing a procedure, it tries to fix all the incomplement instructions during the parse by applying the closures. As
each closure is being appled, it patches over incomplete instruction with the correct target address of the labels.
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Notice that the first procedure does not have a text segment. This procedure contains the global data section, hence the
symbols table for this procedure contains all the symbols and labels that are global to the entire program. This table
defines variables that are accessible during program execution.

For succesful instruction encoding using global and local variable address references and run-time execution, an exact
copy of the disk image is created in memory. At the end of a procedure parse and after closures are applied, information
within each relocatable block are copied to a contiguous piece of memory that is suitable for execution.

17.2.2 Text

As each procedure is being parsed, each assembly instruction is determined, mapped and constructed by issuing a call to
the emmiter (see section 1.3) which invokes the corresponding NJMC encoding routine. For example, for the assembly
instruction

add %o0, 10, %o0

A call to theadd function is made by the emitter to emit the actual instruction to the text relocatable block.

To process procedure call instructions, the parser looks up the global symbol table and decides the next set of actions:

� For labels (infact, symbols as well) that are defined in the symbols table, an explicit call instruction to the label’s
address is encoded.

� For labels not found in the table, the parser checks if the label exists in the libraries used by the program (currently
only libc.so.1 is checked). If so, it is implemented as an indirected call. Indirected calls are patched with
two instructions—sethi and jmpl . The former instruction takes the address of the library routine, puts it into
register%g5, then a jump and link (jmpl ) follows.

� For unknown label, a call to the switch manager is made. The parser creates a new label for the destination of the
call. Since the address of the destination is unknown at the time of encoding, the name of the procedure that’s
being called is also passed to the switch manager. See the section in On-demand to see how the switch manager is
used.

The processing of branches is similar to that of calls for labels that have been defined. Branch targets that are unknown
will result in generating a relocation closure for the instruction with the target label added to the local symbols table.
Branch target is never in the libraries.

Closures are applied at the end of the parsing phase. All fix ups within intructions are handled by looping through the set
of closures and applying each in turn. For address that are still undetermined during closure analysis, the program will
simply fail with an error.

17.2.3 Others

In the case of loads and stores during the parsing of the input file, the parser needs to indentify and encode the appropriate
instructions. Both version of float and integer loads uses the sameld mnemonic but their opcodes are different. The
parser determines whether the instruction involves floating point registers and encodes the instruction accordingly—ld
for integer loads andldf for floating point loads.
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17.3 RAE emitter

The RAE’s emitter is automatically generated by the NJMC tookit using the Sparc encoding specifications. Communica-
tion between the parser and the emitter is through the functions found insparc.h . This file provides encoding functions
that will produces machine binaries for each Sparc instruction.

17.3.1 NJMC toolkit

The NJMC toolkit can use a machine instruction specification to create both encoding and decoding routine. In this
report, I will be discussing encoding only. The routines that can be used for encoding (as are used in RAE) are generated
by running xtools over the Sparc specification files. Function names are generated with relation to the names used in the
spec files. eg. the add instruction will be implemented with the C function ADD(rs1, regor imm, rs2).

17.4 RAE executor

Control is parsed to the RAE executor with the entry address of the main program. The executor executed the encoded
instruction just like any other piece of code in memory. The name of executor is gcode, and its assign a value when the
address of main is found. The executor is invoke by calling gcode() explicitly.

17.5 On-demand

One significant change from RAE rev 1 to rev 2 is the introduction of on-demand processing. On-demand processing
allows parsing, emiting and executing of code that are only requied at run-time.

For each procedure parsed by the RAE parser, 2 relocatable blocks and 1 symbols table is constructed (except the first
procedure). The emitter is invoked during the parse and actual instructions and data are emited within the relocatable
block. At the end of a parse (end of one procedure), all the relocation closures are apply. Copies of each relocatable to a
contiguous piece of memory is done before the RAE parser starts parsing another procedure.

The RAE parser will parse the input file until the main procedure is found. Program execution start as soon as main is
parsed and emited. For all other piece of code that are not yet parsed at this point in time, a call to the ”switch manager”
is generated to take its place. When a program needs to call a procedure ”proc1” yet to be parsed, instead it calls the
switch manager. The switch manager looks up the list of procedure that it knows about and tries to find ”proc1”. If
sucessful, ”proc1” is called. If ”proc1” does not exist in the known procedure list, the switch manager asks the parser to
parse another procedure until ”proc1” is found and the code is emited. When ”proc1” is found, the switch manager no
only passes control to ”proc1”, it also patches the original call to the switch manager with a call to ”proc1”.

Example code before and after patching.

original code to from input

add %o0, 0x188, %o0
call proc1, 2
add %o1, 0x302, %o1

When call to ”proc1” needs to be emited, the emitter emits a call to the switch manager instead (instructions 0x60a70
and 0x60a74). In order for the switch manager to know that ”proc1” is the required procedure, the address containing the
string ”proc1” is also emited (instructions 0x60a68 and 0x60a6c).
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0x60a64 <_end+32108>: add %o0, 0x188, %o0
0x60a68 <_end+32112>: sethi %hi(0x5bc00), %g5
0x60a6c <_end+32116>: add %g5, 0x258, %g5 ! 0x5be58 <_end+12640>
0x60a70 <_end+32120>: sethi %hi(0x13c00), %g6
0x60a74 <_end+32124>: call %g6 + 0x3b4 ! 0x13fb4 <switch_manager>
0x60a78 <_end+32128>: add %o1, 0x302, %o1

After the switch manager have found the address for ”proc1” (through calls to the parser and emitter in search for ”proc1”),
it patches the call to the switch manager with a straight call to ”proc1”. It also removes the instructions at 0x60a68 and
0x60a6c.

0x60a64 <_end+32108>: add %o0, 0x188, %o0
0x60a68 <_end+32112>: nop
0x60a6c <_end+32116>: nop
0x60a70 <_end+32120>: sethi %hi(0x62000), %g5
0x60a74 <_end+32124>: call %g5 + 0x390 ! 0x62390 <_end+38552>
0x60a78 <_end+32128>: add %o1, 0x302, %o1

Because the switch manager is do self modifying code, flush instructions is needed to flush the cache such that it reflect
what is now in memory. A jump to the procedure ”proc1” is made at the end of the switch manage
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Chapter 18

Results

Documentation: Cristina, Mike [Sep 99]

This chapter provides current preliminary results in the use of theUQBT framework in 5 instantiations of the framework.
The results were reported in 1999 at the Workshop on Binary Translation, Oct 99, and have not been updated since.

After these results were reported, there has been progress such that all the SPARC to SPARC and Pentium to SPARC
tests in the distribution filetest/regression.test pass. Note that some of these passes are in fact rather forced—
in some cases the generated C code is edited with a sed script. These are all due to limitations that we acknowledge,
and which could be fixed if and when some things get implemented, such as endianness analysis for library function
parameters. Of the Spec95 integer benchmarks, onlycompress andgo actually translate correctly, as far as we know,
and onlycompress translates Pentium to SPARC. We have attempted to translate a few others, but it’s tedious work
due to lack of better debugging infrastructure. This illustrates the need for a debugging system, as discussed elsewhere.

The following translators were used for experimentation and data collection:

� uqbtss: static SPARC to SPARC

� uqbtsp: static SPARC to Pentium

� uqbtps: static Pentium to SPARC

� uqbtpp: static Pentium to Pentium

� uqbtsj: static SPARC to Java bytecode

A SPARC to SPARC and a Pentium to Pentium translators are useful to test the adequacy of the internal representation,
as translated programs should not slow down when translating from machine M to machine M using the same optimizer
compiler. Further, as seen in the results in this section, a binary translator can be used as an optimizer of binary code.

The UQBT framework currently decodes and partially analyzes SPEC95 benchmark programs, such as compress, ijpeg,
and gcc. The largest of such programs is gcc with 1Mb of binary code (1.6Mb executable on SPARC and 1.2Mb on
Pentium). Our type analysis implementation is not complete, therefore we currently only translate programs that take
integer and pointer to data parameters. This limits the size of the programs that can currently be translated to the ones
presented in Figure 18. Further, our resourceable interpreter is not fully implemented yet, hence we do not support
programs that require runtime interpretation. This has not been a problem for the programs presented herein, but will be
required for larger programs.

Figure 18 presents results for 5 different instantiations of the UQBT framework. The test programs are:
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� Fibo(40), which calculates the fibonacci of 40 and has 63 lines of assembly code,

� Sieve(3000), which calculates the first 3000 primes and has 61 lines of assembly code, and

� Mbanner(500K), a modified version of banner(1), which loops 500,000 times to display argv[1] (“1234567890”
in this case) and has 204 lines of assembly code and a read-only data section of 336 bytes.

For all programs, we measured the time in seconds to execute the program on the target machine and compared that
to the time measurement produced by a native compiler on that target machine; this allows us to see the quality of the
translation. Each test program also lists on the second row the size in bytes of the executable file for comparison purposes.
SPARC results were obtained on an UltraSPARC II, 250MHz machine with 320Mb RAM running Solaris 2.6. Pentium
results were obtained on a Pentium MMX, 250 MHz machine with 128Mb RAM running Solaris 2.6. The source binary
programs (input to the translator) were all compiled with gcc 2.8.1 -O4. Translated code programs used two different
optimizing C compilers; gcc 2.8.1 and cc 4.2, on both SPARC and Pentium machines. Native code for the target machine
was compiled using gcc 2.8.1 with -O0 and -O4 options, on both SPARC and Pentium.

As can be seen from the results, the statically translated code is just as efficient as native code on translations across the
same architecture (i.e. SPARC to SPARC and Pentium to Pentium), and small or negligible overhead is created on static
register-based translations across different architecture machines. This is due to the abstraction of code intoHRTLcode
and perhaps the small size of the test programs, which do not necessarily test all the features of large programs (such as
differences in types or the need for interpretation). Some translated programs (those translated by uqbtss and uqbtpp)
are faster than their native counterparts because of accidents of instruction scheduling. We compared the input and the
translated program and noticed a few extra nop’s and unfilled delay slots in the input optimized binaries. These can make
a very large difference for programs like fibonacci, which have very short inner loops doing most of the work.

The version of Sieve that is translated from the Pentium to the SPARC runs 9% slower than the version compiled from C
source code by the native SPARC compiler, when using gcc as the optimizer with UQBT. Because the Pentium has fewer
registers than SPARC, the Pentium compiler did not put all variables in registers. In the translation from the Pentium
binary, those variables remain in memory, but when the native SPARC compiler translates the same source code, it puts
all variables in registers, so the natively compiled version is 9% faster. In contrast, the cc optimizer does perform this
optimization and the result is a generated binary that runs at the same speed as native code.

Translations between machines of different endianness, such as SPARC and Pentium, may require the use of byte
swapping at each load and store in order to access initialized data. This is the case of the Mbanner Pentium to SPARC
static translation, where a 100% overhead is seen. This is due to two main factors: memory locations are not promoted
to registers wherever possible, and there are redundant byte swaps due to endianness differences. In our translation to
SPARC, the machine has to perform costly byte swapping for one 32-bit load instruction, which results in 10 SPARC
instructions. Two redundant 32-bit byte swaps result in 20 SPARC instructions which the optimizer cannot remove. This
problem is not seen in SPARC to Pentium static translations however, because the Pentium has a single instruction to
perform 32-bit byte swapping. The two shortcomings identified in the generated code can be rectified by implementing
binary translation-specific optimizations at theHRTLlevel, before emitting machine-dependent code.

The Pentium to SPARC translations suffer a large performance hit because of the way that endianness swaps are
implemented. The cost is some 8 SPARC instructions, with an extra 2 for the first one (and if the register used to
hold the mask is re-used). Most SPARC machines these days have UltraSparc processors, and with these machines it
is possible to perform endianness swaps during loads and stores (alternate address space 0x88 performs the required
swapping).

To implement the alternate address scheme, the macros need to be split into two groups; one for loads, and one for stores.
(Both of these would be almost the same for Pentium targets). Also, there is the issue that for the lowest overhead, two
different assembly language forms have to be used; one for when the SPARC addressing mode is register plus register,
and one for when it is register plus constant. We did not implement these changes, so regrettably we do not know what
the true cost of translation from Pentium to SPARC really is (i.e. at present, it is needlessly being swamped by the cost
of endianness swaps using the first-mentioned method).
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For the translator of SPARC to Java bytecodes we show initial results obtained without having performed stack-based
optimizations on the code. Nevertheless, the JIT compiled version compares favourably with native code on the SPARC,
especially due to the efficiency of present JIT compilers, which translate two or three bytecode instruction sequences into
one target native instruction. These results apply to small integer benchmarks.
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Translated Code Native Code
Program gcc opt cc opt -O0 -O4

Fibo(40) sec 18.2 21.3 41.0 23.0
bytes 24,924 6,700 24,628 24,564

Sieve(3000) sec 23.7 24.1 29.3 24.5
bytes 24,732 6,316 24,552 24,452

Mbanner(500K) sec 25.8 22.2 63.7 26.6
bytes 30,500 12,248 30,652 30,268

Static SPARC to SPARC Translation

Translated Code Native Code
Program gcc opt cc opt -O0 -O4

Fibo(40) sec 23.0 24.3 41.0 23.0
bytes 24,916 6,680 24,628 24,564

Sieve(3000) sec 26.9 23.9 29.3 24.5
bytes 24,776 6,312 24,552 24,452

Mbanner(500K) sec 53.3 36.9 63.7 26.6
bytes 34,188 21,448 30,652 30,268

Static Pentium to SPARC Translation

Translated Code Native Code
Program gcc opt cc opt -O0 -O4

Fibo(40) sec 27.7 28.5 28.6 25.9
bytes 16,512 7,292 16,144 16,152

Sieve(3000) sec 17.8 17.4 18.9 18.6
bytes 16,244 6,548 15,964 15,944

Mbanner(500K) sec 42.5 n/a 80.5 44.8
bytes 22,240 21,524 25,436

Static SPARC to Pentium Translation

Translated Code Native Code
Program gcc opt cc opt -O0 -O4

Fibo(40) sec 25.8 24.5 28.6 25.9
bytes 16,496 7,268 16,144 16,152

Sieve(3000) sec 18.6 17.1 18.9 18.6
bytes 16,228 6,536 15,964 15,944

Mbanner(500K) sec 48.7 46.5 80.5 44.8
bytes 25,664 16,016 21,524 25,436

Static Pentium to Pentium Translation

Translated Code Native Code
Program Interpreter JIT -O0 -O4

Fibo(40) sec 421.64 58.02 41.0 23.0
bytes 739 739 24,628 24,565

Sieve(3000) sec 103.66 20.52 29.3 24.5
bytes 677 677 24,552 24,452

Static SPARC to Java Bytecode Translation

Figure 18.1: Running Times and Code Sizes for Static Translators Instantiated from the UQBT Framework



Chapter 19

Instantiation of Translators

Design: Cristina; Documentation: Cristina [Apr 01]

This document is based on the experience gained by the UQBT team in instantiating binary translators out of the UQBT
framework. The following translators have served as test beds for the development of this process:

� SPARC to Pentium

� Pentium to SPARC

� MC68000 to MC68000

� PA-RISC to SPARC

The UQBT framework, described in Chapter 4 and replicated below in Figure 19.1, provides the basis for a step-wise
process of instantiating modules out of the framework.

In order to instantiate a new translator, the APIs and specification files for the source platform need to be described. The
output of the module that services each API or specification is tested in order to ensure correctness of the intermediate
output.

The instantiation process consists of the following steps:

1. Binary-file decoder support

2. Instruction decoding support

3. Instruction semantics support

4. Control transfer support

5. Procedural abstraction support

6. Machine-specific support

7. Code generation support

Each step is described in some detail in the following sections. Throughout this presentation, the steps have been divided
into the three logical parts of the translator, that is, instantiating a front-end, instantiating to HRTL level, and instantiating
a back-end.
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Figure 19.1: The UQBT Framework

19.1 Instantiating a New Front-end

In order to support a new front-end for a machine Ms, we need to provide support for the binary-file format in which the
executable file is stored in, as well as the syntax and semantics of the machine Ms instructions.

19.1.1 Binary-file Decoder Support

In order to support different binary-file formats, such as ELF, PE, PRC, etc, UQBT exports a loader API called
BinaryFile . BinaryFile is an abstract class that makes available functions to:

� construct, load and unload binary files,

� extract information from sections,

� extract information from symbol tables (if any),

� extract information from relocation tables (if any),

� display/dump the contents of all headers, and

� obtain initial program state information, such as entry point(s), and determine whether a given address is a
dynamically-linked address or not.
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For a given binary-file format BFFi, theBinaryFile API is satisfied by implementing the derived BFFiBinaryFile
class. In this class, some extra functions are used to implement theBinaryFile interface, depending on the complexity
of implementing the API functionality.

Testing of this step is done by displaying/dumping to the screen the contents of all headers and sections read from the file.
This contents is then checked manually against the contents produced by a binary-file dump tool, commonly distributed
with operating systems these days. For example, under Unix, theelfdump tool displays the contents of an ELF’s file
headers. A typical size of information dumped is around 500 lines of ascii text. Similar results are achieved by using
GNU’s objdump tool.

Modules to bring across from the UQBT source code (we use the following command:cvs co -N -d .
uqbt/dirName and then rename theuqbt directory to a suitable name):

� Theuqbt/loader directory and all its files

� Theuqbt/include directory and all its files

� The driver and Makefile for the bffDump program (uqbt/loader/bffDump ); these programs need to be placed
at top level.

The skeleton filebffDump.cc provides the basis for creating a binary-file dumper, also known by others as object
dumper, which displays the raw contents of each of the headers and fields of the given binary-file.

TheBinaryFile::DisplayDetails function needs to be overridden and implement the displaying of the BFF’s
header, its program header and section headers, as well as the information within those sections.

Usingelfdump on Solaris, the following options show parts of the Elf file; invokingelfdump with a file name displays
all the section information in the file. Options (from the man page):

� -e : dump the elf header,

� -p : dump the program headers,

� -c : dump section header information,

� -d : dump the contents of the .dynamic section,

� -s : dump the contents of the symbol table sections (that is, .dynsym and/or .symtab).

Testing against a tool likeobjdump requires different options to be set in order to see different parts of the file:

� --file-headers : displays the Elf header

� --section-headers : displays the section headers

� --headers : displays the section headers only (it does not include the program headers)

� --syms : displays the contents of the symbol table

� --dynamic-syms : displays the contents of the dynamic symbol table

� --all-headers : displays all section headers and the contents of the symbol table.

19.1.2 Instruction Decoding Support

This is the most time consuming step in the process as the binary translator writer needs to become fully familiar with the
instruction set to be supported. This step involves reading through architecture manuals and representing the information
for instructions in terms of the SLED language. SLED allows for the description of the types of instructions in a
given machine, the fields of such instructions, the values of particular fields of instructions, and the description of what
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individual instructions are, in essence, allowing for the mapping of binary bit streams to assembler instructions. In our
experience, depending on how complex the instruction set is, and how familiar the writer is with the instruction set, this
step can take anywhere from 2 weeks to 2 months.

The New Jersey Machine Code toolkit (NJMCTK) not only supports the SLED language, but also supports an abstraction
to decode and encode machine instructions. The decoding abstraction provides for amatchingstatement whose syntax
resembles that of a C switch statement, and whose semantics is equivalent to matching the series of bits that form
an instruction and returning the values of the variable fields of an instruction. In this way, a decoder (disassembler)
of machine instructions can be written, and the time to do this is minimal (less than 1 day), in fact, it is possible to
automatically generate such a decoder. This decoder is tested against an existing disassembler for the source machine
through a series of test cases. This is possible as most Unix systems include adis utility in their distribution or one is
included as part of the GNUbinutils.

The following files/directories need to be downloaded:

� uqbt/loader

� uqbt/include

� uqbt/machine

� uqbt/disasm and put the files from this directory at top level (disasm.cc, disassembler.m, mltk.sh and Makefile)

� rename directoryuqbt to something else (e.g.disasm )

Write the SLED spec for the architecture of choice. New machine descriptions are to be placed in thema-
chine/machineName directory. Write a decoder based on the spec; sample decoders are given in the machine di-
rectory; for example, themachine/sparc/disassembler.m file is the decoder for the SPARC.

The decoder to be written is a “matching” file, which gets processed by the New Jersey Machine Code toolkit (NJMCTK),
along with the SLED spec, into a C++ file which performs the matching of bits to instructions. For information on SLED
specifications refer to Ramsey and Fern´andez (RF97a) and Chapter 6 of this documentation.

Appendix A contains notes on how to configure UQBT to generate disassemblers.

19.1.3 Instruction Semantics Support

The writing of the SSL spec is not too hard to do once the SLED spec has been written, basically because by then the
writer is very familiar with the instruction set being described. In our experience, writing the SSL spec takes less than
one third of the time that it takes to write the SLED spec.

Our current testing of the SSL spec is in terms of an extension to the decoder. Instead of the decoder dumping raw
assembly information, it dumps RTL information. Such information is manually tested against the assembly output.

In the decoder file, you need to add support to return semantic strings rather than plain strings. Further, an extra function
will be needed to cater with numbers and predefined register names (e.g. disReg() and disNum()).

Except for the PA-RISC, all other CISC and RISC architectures we have dealt with were almost straight forward supported
by SSL. However, in the case of PA-RISC, a more expressive language was needed in order to support pre and post
semantics of instructions based on bits of an instruction. This mean that an extension to the language was done and it
took far longer than expected.
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19.2 Instantiating to HRTL Level

The Ms-RTL to HRTLtranslator is composed of support for control transfer instructions, procedural information, and any
extra code to support source machine-specific details.

19.2.1 Control Transfer Support

The New Jersey Machine Code toolkit (NJMCTK) supports the SLED language as well as an abstraction to decode and
encode machine instructions. The decoding abstraction provides for amatchingstatement whose syntax resembles that
of a C switch statement, and whose semantics is equivalent to matching the series of bits that form an instruction and
returning the values of the variable fields of an instruction. In this way, a decoder of machine instructions can be written.
The support for the control transfer API is in terms of extra instructions that get added to this matching driver statement,
so that control transfer information gets encoded into the decodedMs-RTLs.

This API is very loose and not formally specified per se, though it is hardcoded into the code. The Ms-RTL instructions
to which control transfer support has been applied, are an “in between” RTL form that we call IRTL. IRTL stands for
“independent RTL”, and they resemble HRTL instructions, with the exception that their operands have not been obtained
yet (these are obtained through procedural abstraction recovery).

This step is almost trivial and can be implemented in 1 day after looking at skeletons of existing translators.

19.2.2 Procedural Abstraction Support

The PAL spec is based on the operating system ABI conventions for setting up the call stack frame, parameter passing
and calling conventions. Specifying this information takes little time (2 days) once the information to be specified has
been determined.

Testing of the PAL spec is done by compilation into the source binary form. In this way, a translator of mc68328 Palm
to mc68328 Palm binaries is instantiated for testing purposes. We test the SSL and PAL specs by determining if the
translated programs behave in the same way as the original program. In our experience, we do not introduce performance
degradation, in fact, the generated binaries compare favourably to native code geneated on the target machine, and in
some cases it performs faster (due to optimization choices). However, before being able to perform this test, the next step
may need to be applied.

Programs do not necessarily only adhere to the OS’ ABI calling conventions, therefore, some of the calling conventions
that we have included in PAL specs have been determined by trail and error, after testing a program that does not adhere
to the ABI conventions. We normally just include the new convention in the PAL spec.

19.2.3 Machine-specific Support

Add any extra analysis that is too machine-specific: In order to remove all the peculiarities of a given source machine,
there may be need for an extra analysis to be added.

In our experience, each machine has a particular peculiarity that is too machine-specific to be supported in the framework.
For example, SPARC has delayed transfers of control, x86 has a stack-based representation for their floating point
instructions, mc68k makes use of a data pointer as a global pointer into data, etc. We normally try to address these
issues in a fairly generic way, though it is not always necessary to solve them in that way. In the case of delayed transfers
of control, our generic solution has been useful for reusing it for PA-RISC code.
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19.3 Instantiating a New Back-end

Throughout the last few years, the UQBT’s back-end has interfaced to a C compiler in order to optimize the intermediate
code generated by UQBT. In that framework, HRTL code is translated to low-level C code, effectively using the C
compiler as an assembler. We are now extending the framework to integrate with existing retargetable optimizers at the
RTL level. In this way, HRTL code is translated toMt-RTL code and fed into an optimizer such as VPO (BD88) using
the new VPO interfaces from the Zephyr project (vpo98). Figure 19.2 illustrates the new UQBT framework.
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Figure 19.2: The 2001 UQBT Framework

In order to generateMt-RTL code we need to solve several problems that are not discussed in this paper; these are:

� Transform HRTL code toMt-RTL code in a machine-independent way. This step requires a few extensions to the
PAL language in order to support code generation of procedure call information in a retargetable way, for example,
by being able to use specified calling conventions and parameter passing conventions, as well as being able to set
up the stack frame in the way expected in the target machine.

� Satisfy theMt-RTL invariant that some optimizers require. This invariant basically asks for an RTL to be
equivalent to an assembly instruction in the target machine. This invariant allows retargetable optimizers to
perform not only machine-independent optimizations but also machine-dependent ones.
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Translation via low-level C

The C code generator back-end generates low-level C code, effectively using the C language as a macro assembler.
Figure 19.3 shows the code generated by this back-end for the sample program. As can be seen from the code, type
casting is used very often due to the need to ensure that the C compiler does not infer different semantics to the one
expected.

19.3.1 Translation via RTL code

Please refer to documentation in Chapter 15.

19.3.2 Translation to JVML code

Translators to bytecode require extra environment support to compliment the strengths of the JVM. The lack of a generic
memory model on the JVM forces us to emulate the data and stack of a translated program. Library functions from the
source architecture must also be supplied to the translated program. This is facilitated by a superclass from which each
translated program is inherited. The superclass provides simulated memory access in preloaded byte arrays and wrapper
routines to library functions which invoke the native Java subsystems.

For more information, please refer to Chapter 14.



280 Instantiation of Translators

#include "uqbt.h"
void proc1(int16 v0, int32 v1, int16 v2) {
int16 v3;
int32 v4;
int16 v5;
int16 v6;
int16 v7;
int16 v8;
int32 r3, r4, r5, r8;
int32 temp1;
int32 tmp1;
/* 3c6 */

*(int16*)&r5=v0;
*(int16*)&r4=v2;
temp1= *(int16*)&r4;
v5=temp1;
v4=33566720;
v3=proc3(v4,v5);
temp1=v3;
*(int16*)&r3=temp1;
tmp1=(unsigned int16)( *(unsigned int16*)&r3);
v6=tmp1;
if ((*(int32*)&v6)==(0)) goto L1;
temp1=(int32)( *(int16*)&r3);
r8=temp1;
temp1=r8;
*(int32*)&v3=temp1;
goto L2;
L1: /* 3f0 */
temp1= *(int16*)&r5;
v3=temp1;
v7=v3;
if ((*(int32*)&v7)==(0)) goto L3;
goto L4;
L3: /* 3f6 */
v3=proc2();
temp1=v3;

*(int16*)&r3=temp1;
tmp1=(unsigned int16)( *(unsigned int16*)&r3);
v8=tmp1;
if ((*(int32*)&v8)==(0)) goto L5;
temp1=(int32)( *(int16*)&r3);
r8=temp1;
temp1=r8;
*(int32*)&v3=temp1;
goto L2;
L5: /* 406 */
v5=1000;
FrmGotoForm(v5);
proc4();
proc5();
L4: /* 418 */
*(int32*)&v3=0;
L2: /* 41a */
return;
}

Figure 19.3: Generated C code for the example in Figure 20.4
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Experience in the Use of the UQBT
Framework

Documentation: Cristina [Sep 99, Sep 01], Mike

This chapter documents our experiences in building theUQBT framework, and ours and others experiences in the use
of the framework to instantiate translators. Our experiences in building the framework are described in terms of effort to
create theUQBT framework itself and effort in instantiating a new frontend or a new backend. The adaptability of the
framework is shown through the support for other architectures. The core of this chapter was written in 1999, the Palm
experiences were written in 2001.

As reported in the Instantiation chapter (Chapter 19), writing a new frontend requires the SLED, SSL and PAL
specifications to be written, as well as the binary-file format and the control-transfer APIs to be satisfied. Further, any
machine-specific information that is not supported directly by the framework needs to be coded in as part of the RTL to
HRTL translation step. When writing a new backend, experimentation is mainly with different ways of generating code
(at different levels of abstraction) in order to try out a different optimzizer (say VPO or the PostOptimizer).

20.1 Effort in Building the UQBT Framework

The UQBT framework provides binary translation writers with support for new architectures at low cost. This is evidenced
by the effort to support a new architecture, which is low because most of the UQBT framework is reused. We quantify
the effort to develop the UQBT environment and the effort to reuse it. We also provide our experiences with supporting
a new target architecture, a stack-based architecture in this case.

20.1.1 Development of the Framework

The development of the UQBT framework has been an order of magnitude larger than writing a hand-crafted binary
translator from scratch. This complexity was introduced by the need to make the framework re-sourceable in particular,
and the need to separate machine-dependent concerns from machine-independent analyses. UQBT has been developed
over a period of 4 years by a small team, consuming 6.2 person-years (some of those with relatively inexperienced
students initially).

281
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The use of specifications allows us to create new binary translators quickly, by instantiating from the UQBT framework
by specifying the source and target machine, reusing most of the components in the system and providing a driver skeleton
for the decoding phase. In order to support peculiarities of particular machines, extensions to the system may be required,
either in the form of extra analyses (specific to one machine) or extra constructs in the semantic language.

To add DCTL support we expect a 0.2 person-year effort as this is a simple transformational language which is easily
described and used. DCTL can replace about 1000 lines of code, which are currently specific to the SPARC architecture.
Due to the low occurrence of the delayed transfer of control concept on modern architectures, we have not placed a high
priority in the implementation of this language.

20.1.2 Reuse of the Framework—Low Cost

The size of the specifications gives an estimate of the amount of code a developer would need to write in order to get
the basic translation system to work, or in determining how much it supports a given pair of machines. Current machine
instruction descriptions (syntax, semantics, control flow) for SPARC and Pentium architectures are between 1,100 and
2,600 lines, and calling convention and stack frame specifications are around 200 lines each (see Figure 20.1. This is in
contrast to 26,500 lines of source code, 6,200 lines of definitions in header files, 3,900 lines of specification files and the
skeleton driver generated by the framework (on average 2,000 lines).

Machine SLED SSL PAL
SPARC 306 689 173
Pentium 746 1626 172
mc68K

Figure 20.1: Number of Lines of Code for Different Machine Specs.

This highlights the reduced amount of code that a binary translation writer would have to develop. Further, reuse of
specifications is also possible, particularly when other people have already written such specifications.

20.1.3 Endianness

This section needs to be updated.

Without special analysis, it is necessary for the translated program to run using the endianness of the source program.
This basically implies swapping the byte ordering of multi-byte memory references after every load and before every
store. The Pentium processor has single instructions for doing this, but the sequence on the SPARC is 10 instructions for
the first swap, and 8 instructions thereafter if a constant mask can be retained in a register.

For memory intensive programs, this overhead can be quite large, and in the case of a SPARC target, there is additional
register pressure as well (i.e. a variable that might have otherwise been optimized to registers will have to be spilled to
memory). Further, in the context of byte swapping, instructions like “increment memory variable”, that require 5HRTL
instructions:

v1 = m[%afp + 4]
byteswap (v1)
v1 = v1 + 1
byteswap (v1)
m[%afp + 4] = v1
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end up being represented in SPARC machine code as a series of up to 21 instructions: 1 instruction for the memory load,
8 or 10 instructions for the first byte swap, 1 instruction for the increment, 8 instructions for the second byte swap, and 1
last instruction for the memory store. This type of code cannot be optimized by even the best current optimizers.

In the generated code, some of the byte swaps are redundant or could be eliminated with analysis, in effect removing
the overhead created on machines that do not natively support byte swapping of words. In the UQBT framework, this
analysis can be done at theHRTLlevel, but such analysis has not been implemented at this point in time.

20.2 Experiences with Translation to Bytecodes of the Java Platform

The adaptability of the UQBT framework was first tested in 1999 by our student Trent Waddington by supporting
translations to bytecodes, the assembly language of the Java virtual machine. We instantiated two new translators,
uqbtsb and uqbtpb , to translate from SPARC and Pentium architecture binaries to bytecodes. We reused the
specifications for the source machines and wrote a back end forgcc (the GNU C compiler) to generate bytecodes in
assembly files linkable byjasmin (Mey97) into Java class files.

In order to run bytecode binaries, an extra support environment was written to provide support for memory access and
pointers to memory, as well as translating some library calls.

The results of this experiment were good. The performance of the translated programs on non-memory intensive micro-
benchmarks were comparable to native C code compiled on the machine where the JVM was running. Memory intensive
programs showed a performance degradation due to our memory management support and to the lack of unsigned integral
types in the JVM.

The overall effort of this experiment was 0.5 person-years in the development of thegcc JVM back end, the JVM runtime
support environment, and testing of micro benchmarks.

20.3 Experiences in Instantiating a Palm Translator

One of the advantages of a retargetable framework is that it allows the framework to be used in unexpected ways. Our
experiments translating PDA applications illustrate this flexibility as the framework was not specifically designed for
translations of embedded systems software.

We experimented with translating CISC mc68328 Palm applications to a RISC processor, the ARM, as well as to
bytecodes for the Spotless (TBS99) virtual machine for the Java platform. Spotless is Sun Microsystems Laboratories’
virtual machine for small devices that runs on PalmOS. A commercial version of Spotless that is independent of PalmOS
is available as the K virtual machineTM(KVMTM). The KVM runs on multiple platforms including the Palm.

We instantiated two translators: one from the (mc68328,PalmOS) to the (ARM,PalmOS) and the other from
(mc68328,PalmOS) to the (Spotless,PalmOS). We use the term “instantiated” because the work of creating a new trans-
lator often consists of selecting among existing components rather than implementing an entirely new translator from
scratch. We also use a (processor,operating system) notation to describe more precisely a specific platform: a combina-
tion of a processor and an operating system. The first section below describes how we instantiated the mc68328-to-HRTL
front end shared by both translators. The next two sections describe the use of two UQBT back ends to generate, respec-
tively, ARM machine code and JVM bytecodes.

This experiment was run by Cristina and Mike in March-May 2000. We mainly worked on instantiating a new mc68328
frontend, which took some time due to lack of familiarity with the mc68328 architecture. We were familiar with the
SLED, SSL and PAL description languages, as well as how theUQBT framework works. In Feb 2001, Brian Lewis run
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experiments with existing backends, the low-level C and the JVM backends. A total of 3.5 man-months was spent in the
experiments reported herein.

20.3.1 Instantiating a UQBT front end for mc68328 Palm binaries

The first step in instantiating a new translator is to build a front end for the source platform. The front end translates source
binary files into the HRTL intermediate format. This requires writing, or reusing, SLED, SSL and PAL specifications for
the source platform. Also, an implementation of the binary file API for the source binary files must be available. If one
does not already exist, it will have to be written. This process is explained in detail elsewhere (Chapter 19). We give an
overview of the steps involved here as well as the effort involved for those steps when instantiating the (mc68328,PalmOS)
translators. In brief, the steps involved in instantiating the framework are:

� Write support for the binary file format: The PalmOS uses .PRC files, which were not yet supported by
UQBT, so we wrote aPalmBinaryFile class that satisfied theBinaryFile API exported by UQBT.
PalmBinaryFile was written and tested in five days. This was a little longer than usual because of the unusual
compression involved, and the difficulty finding details about the .PRC format at that time.

� Write and test the SLED (syntax) specification: Writing a SLED specification is usually the most time consuming
step because of the time needed to learn a new processor’s instruction set. For a machine as complex as the
mc68k, up to a couple of months can be spent writing its specification. We reused a mc68k specification that had
previously been written as part of the New Jersey Machine Code toolkit (RF97a). We only needed to simplify it
to support the mc68328 (which has, e.g., fewer addressing modes than some mc68k processors) and to fix some
bugs. The SLED specification describes 211 user and system level instructions. It took two weeks to test and
integrate the specification into the UQBT framework, resulting in the creation of a mc68328 decoder.

� Implement the control transfer API: Implementing this API is trivially done in one day, by extending the SLED
decoder from the previous step to support the mc68328’s control transfer instructions.

� Write and test the SSL (semantic) specification: Writing a new SSL specification is usually straightforward once
the SLED specification has been written, because by then the instruction set is familiar. We only specify the
user level mc68328 instructions for our translations, therefore 147 instructions were specified. Writing this SSL
specification required just one week for someone experienced in writing SSL specifications. An additional week
was needed for testing and making corrections.

� Write the PAL (procedure abstraction) specification: A PAL specification is based on an operating system’s ABI
(application binary interface) conventions for procedure calls, parameter passing, and the representation of call
stack frames. For mc68328 Palm code we identified five different caller prologues, five callee prologues, four
callee epilogues, and one caller epilogue. Parameters are passed on the stack aligned on 16 bit boundaries and
returned values are placed in thed0 register, except for addresses (which are placed ina0) and doubles (which
used0 andd1). Writing and testing the PAL specification for mc68328 Palm code took two weeks.

� Additional, machine-specific analyses: When instantiating a translator, it may be necessary to add additional
analyses to remove some remaining source platform peculiarities. In the case of the mc68328, the data section
has a global data pointer that acts much like the frame pointer. Even though this concept could be emulated in
the generated code, it is best to remove it all together. We transformed mc68328-RTL code into HRTL code that
does not use a global data pointer by extending the existing analysis that transforms a platform’s stack pointer
registers into an abstract stack frame pointer register (%afp ). In this way, we now support transformations of the
global data pointer into an abstract global pointer (%agp), which is a fixed reference location instead of a variable
address.

As an example for the rest of this section, we show the translation of the procedureStarterPilotMain from the
Palm example applicationStarter . The C code forStarterPilotMain appears in Figure 20.2. While short, this



20.3 Experiences in Instantiating a Palm Translator 285

static DWord StarterPilotMain(Word cmd, Ptr cmdPBP,
Word launchFlags)

{ Err error;
error = RomVersionCompatible(version20,

launchFlags);
if (error) return (error);
switch (cmd) {

case sysAppLaunchCmdNormalLaunch:
error = AppStart();
if (error)

return error;
FrmGotoForm(MainForm);
AppEventLoop();
AppStop();
break;

default:
break;

}
return 0;

}

Figure 20.2: Example translated: StarterPilotMain

procedure has moderately complex control flow, calls a number of procedures, some returning parameters, with arguments
of various sizes. The mc68328 assembly code forStarterPilotMain is shown in Figure 20.3.

Figure 20.4 shows the HRTL code generated forStarterPilotMain . The code is too long to show in its entirety,
so we elided code after the first conditional branch (to L1) up to the basic block with the call toFrmGotoForm . The
procedure is calledproc1 since the .PRC binary format does not specify a standard way of storing names of procedures
in any of its sections. Addresses on the left of each RTL are those of the first corresponding source binary instruction.
Annotations of the form*16* andf16g indicate the size of assignments and expressions in RTLs. Basic blocks have
been identified and are labelled with the kind of control transfer at their end. Note how procedure calls and branches have
been recognized using PAL information and source machine-specific details eliminated.

20.3.2 Using UQBT back ends to translate mc68328 Palm binaries to the ARM

For several years, the standard UQBT back end has used a C compiler to optimize its intermediate code and produce
binary files for the target platform. This backend translates HRTL code to low-level C code, effectively using the C
compiler as an assembler. The following section (20.3.2) describes our use of this back end for the (mc68328,PalmOS)
to (ARM,PalmOS) translator. Section 20.3.2 describes our use of a second, experimental, back end that emits JVM
bytecodes.

We are currently extending UQBT to directly integrate with other retargetable optimizers at the HRTL level. HRTL
code will be translated to lower-level, target-specific Mt-RTL code and fed into an optimizer such as VPO. Figure 20.5
illustrates this new UQBT framework and its three back ends.

To generate Mt-RTL code we need to solve several problems that are not discussed in this paper:

� How to transform HRTL code to Mt-RTL code in a machine-independent way. This step requires a few extensions
to the PAL language to support retargetable code generation for procedure calls. That is, we want to use this
extended PAL language to automate the generation of code for calls and parameters, in much the same way that
PAL currently automates the recognition of standard call prologues and epilogues. The extended PAL language
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03C6: 4E56 0000 link a6, #0
03CA: 48E7 1C00 movem <1c00>, -(a7)
03CE: 3A2E 0008 movew.ex 8(a6), d5
03D2: 382E 000E movew.ex 14(a6), d4
03D6: 3F04 movew d4, -(a7)
03D8: 2F3C 0200 3000 movel.exl #33566720, -(a7)
03DE: 4EBA FCD0 jsr.ex RomVersionCompatible
03E2: 3600 movew d0, d3
03E4: 4A43 tstw d3
03E6: 5C4F addqw #6, a7
03E8: 6706 beq 03F0
03EA: 3043 movew d3, a0
03EC: 2008 movel a0, d0
03EE: 602A bra 041A
03F0: 3005 movew d5, d0
03F2: 6702 beq 03F6
03F4: 6022 bra 0418
03F6: 4EBA FF6E jsr.ex AppStart
03FA: 3600 movew d0, d3
03FC: 4A43 tstw d3
03FE: 6706 beq 0406
0400: 3043 movew d3, a0
0402: 2008 movel a0, d0
0404: 6014 bra 041A
0406: 3F3C 03E8 movew.ex #1000, -(a7)
040A: 4E4F trap sysTrapFrmGotoForm
040E: 4EBA FEEC jsr.ex AppEventLoop
0412: 4EBA FF86 jsr.ex AppStop
0416: 544F addqw #2, a7
0418: 7000 moveq #0, d0
041A: 4CDF 0038 movem (a7)+, <0038>
041E: 4E5E unlk a6
0420: 4E75 rts

Figure 20.3: mc68328 assembly code for StarterPilotMain

will emit code to use the specified call and parameter passing conventions for a target platform, as well as to set
up its stack frames.

� How to satisfy the Mt-RTL invariant that some optimizers such as VPO require. This invariant requires that each
RTL be at the level of a target machine instruction. This invariant allows retargetable optimizers to perform not
only machine-independent optimizations but also machine-dependent ones.

Translation to ARM using the Low-level C Backend

UQBT’s C back end generates low-level C code, in effect, using the C compiler as a macro assembler. Figure 20.6
shows the code generated by this back end for the procedureStarterPilotMain . As this code illustrates, type
casting is frequent and used to ensure that the C compiler does exactly what is required. In particular, there are frequent
casts between 16 bit and 32 bit integers and pointers to storage containing those integers to preserve the original 16 bit
computations of the source binary. We do not attempt to optimize our generated code since we expect the C compiler to
do this. The hexadecimal numbers in comments identify the start of basic blocks in the source binary.
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High level RTLs for procedure proc1(v0, v1, v2)
Call BB
000003c6
000003ce *16* r[5] := v0
000003d2 *16* r[4] := v2
000003d6 *16* r[temp1] := r[4]

*16* v5 := r[temp1]
000003d8 *32* v4 := 33566720
000003de v3 := CALL proc3(v4, v5)

Twoway BB
000003e2 *16* r[temp1] := v3

*16* r[3] := r[temp1]
000003e4 *16* r[tmp1] := r[3]{16}

*16* v6 := r[tmp1]
000003e8 JCOND (v6 = 0) 3f0
... ...

L5: Call BB
00000406 *16* v5 := 1000
0000040a CALL FrmGotoForm(v5)

Call BB
0000040e CALL proc4()

Call BB
00000412 CALL proc5()

Fall BB
00000416

L4: Fall BB
00000418 *32* v3 := 0

L2: Ret BB
0000041a RET

Figure 20.4: HRTL code for StarterPilotMain

We compiled this C code using a cross-compiler, a version of GNU gcc 2.95.2 that emits code for the ARM. We had gcc
generate code for the ARM V4 architecture, which is used by a number of ARM processors including the StrongARM
processor. Figure 20.7 shows a disassembly of the optimized ARM code generated using the flag-O4 .

The ARM is a RISC processor with 16 32-bit registers (in fact, there are 32 registers but only 16 are visible at any time).
Every data processing instruction can use a barrel shifter as well as the ALU, which allows compact code sequences in
many cases. Although the code of Figure 20.7 does not use this, the ARM allows each instruction to bepredicated–that is,
conditionally executed–which avoids the pipeline stalls that would result from the branches otherwise used to implement
conditional code. In the figure, the result register of most instructions is the first register after the opcode. The instruction
bl (branch and link) is used to call procedures. Arguments are passed in registersr0 , r1 , etc., and 32 bit or smaller
integer results are returned inr0 .

Unlike earlier versions of the ARM architecture, ARM V4 includes halfword (16 bit) load and store instructions, which
improves the quality of the code generated for our translated 16 bit mc68328 operations.
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Figure 20.5: The 2001 UQBT framework for retargetable binary translation

This code assumes that the necessary Palm libraries are available. Notice the call to the library procedureFrmGotoForm ,
which is PalmOS-specific. We do not currently have access to Palm libraries for the ARM, and so we have not been able
to run the translated code. We expect this situation to change since Palm has announced that they are porting PalmOS to
the ARM.

Translation to JVM bytecodes using the JVM Backend

UQBT includes an experimental JVM backend that transforms HRTL code into bytecodes. These are written to.j files
that Jasmin (Mey97) assembles into Java class files. We have only tested this backend so far with integer programs. The
code the JVM backend generates makes use of acompatibility library that emulates the source platform’s libraries on
the target platform, the Java virtual machine. The backend includes only very limited support for C’s memory model.
For example, it implementsmalloc using a method that allocates memory from a pre-allocated array of bytes then
returns that memory’s offset. Support for translated programs to use the JVM memory model more directly will require
additional analysis by UQBT (or any other binary translation front end for that matter).

The Java virtual machine is stack oriented. Bytecodes that perform data processing operate on values already on the
stack. Both parameters in method calls and return values are passed on top of the stack. All integral types are signed.
Stack entries can hold a value of any type including adouble , which is 64 bits. However, a frame’s local variables are
32 bits (double andlong values occupy two consecutive local variables). Bytecodes that load and store local variables
operate on only 32 bits or 64 bits, so loads and stores of 16 bit integers sometimes require additional bytecodes to ensure
that the correct values are read or stored. Class fields may be either 8, 16, 32, or 64 bits, but these are not yet used by any
code currently generated by the JVM backend.
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#include "uqbt.h"
void proc1(int16 v0, int32 v1, int16 v2) {

int16 v3;
int32 v4;
int16 v5, v6, v7, v8;
int32 r3, r4, r5, r8;
int32 temp1, tmp1;

/* 3c6 */
*(int16*)&r5=v0;
*(int16*)&r4=v2;
temp1= *(int16*)&r4;
v5=temp1;
v4=33566720;
v3=proc3(v4,v5);
temp1=v3;
*(int16*)&r3=temp1;
tmp1=(unsigned int16)(*(unsigned int16*)&r3);
v6=tmp1;
if ((*(int32*)&v6)==(0)) goto L1;
...

L5: /* 406 */
v5=1000;
FrmGotoForm(v5);
proc4();
proc5();

L4: /* 418 */
*(int32*)&v3=0;

L2: /* 41a */
return;

}

Figure 20.6: Low-level C code for StarterPilotMain

Figure 20.8 shows part of the bytecodes generated forStarterPilotMain . This code shows thatStarterPilot-
Main and the procedures it calls have been translated intostatic class methods, which closely resemble C procedures.
Most bytecodes indicate the type of their operands, with the type given by the first letter of their name: e.g.,iload 19
loads a 32 bitint from local variable 19. The bytecodebipush sign-extends abyte to anint value, which it pushes
onto the stack. The bytecodeif icmpeq L1 is an example of a conditional control transfer; in this case, it pops two
int values from the stack, compares them for equality, and, if so, jumps to the bytecode at the offset specified by its
argument (here,L1).

The automatic translation of Palm binaries to the Spotless environment illustrates how complete automation of a
translation is not possible when the source and target platforms set up services in different ways. The way in which
event handling is set up in Spotless differs from that in PalmOS. In Spotless, theSpotlet class provides callbacks for
event handling. Applications extendSpotlet to override the appropriate event handling methods. For example:

public static void main(String[] args) {
(new myApp()).register(NO_EVENT_OPTIONS);

}

In contrast, PalmOS applications require explicit code to set up the event loop and event handling, whereas in the Spotless
system this is done implicitly by inheriting from theSpotlet class. These differences mean that translation can only
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proc1():
0: e1a0c00d mov r12, sp
4: e92dd800 stmdb sp!, {r11, r12, lr, pc}
8: e24cb004 sub r11, r12, #4 ; 0x4
c: e24dd014 sub sp, sp, #20 ; 0x14

10: e15bc1be ldrh r12, [r11, -#30]
14: e15b31b6 ldrh r3, [r11, -#22]
18: e18cc800 orr r12, r12, r0, lsl #16
1c: e3a00402 mov r0, #33566720 ; 0x2003000
20: e1833802 orr r3, r3, r2, lsl #16
24: e1a03863 mov r3, r3, ror #16
28: e50b3018 str r3, [r11, -#24]
2c: e2800a03 add r0, r0, #12288 ; 0x3000
30: e15b11f8 ldrsh r1, [r11, -#24]
34: e1a0c86c mov r12, r12, ror #16
38: e50bc020 str r12, [r11, -#32]
3c: ebfffffe bl proc3
40: e14b01b0 strh r0, [r11, -#16]
44: e15b31ba ldrh r3, [r11, -#26]
48: e15b21f0 ldrsh r2, [r11, -#16]
4c: e1833802 orr r3, r3, r2, lsl #16
50: e1a03863 mov r3, r3, ror #16
54: e50b301c str r3, [r11, -#28]
58: e15b31bc ldrh r3, [r11, -#28]
5c: e14b30be strh r3, [r11, -#14]
60: e51b300e ldr r3, [r11, -#14]
64: e3530000 cmp r3, #0 ; 0x0
68: 1a000026 bne 108 <proc1+0x108>

...
ac: e3a00ffa mov r0, #1000 ; 0x3e8
b0: ebfffffe bl FrmGotoForm
b4: ebfffffe bl proc4
b8: ebfffffe bl proc5
bc: e3a03000 mov r3, #0 ; 0x0
c0: e50b3010 str r3, [r11, -#16]
c4: e91ba800 ldmdb r11, {r11, sp, pc}

Figure 20.7: Generated ARM code for StarterPilotMain

be completed once an expert user determines which procedures should be modified, or removed entirely since their
functionality is already provided by Spotlet.

Another problem that prevents automatic translation is that the JVM backend does not support function pointers. This
is because the Java virtual machine does not allow taking the address of a method. Programs that use function pointers
themselves or pass them to libraries cannot be automatically translated. Unfortunately, several PalmOS library procedures
take function pointers, includingFrmSetEventHandler , which is used byStarter . To emulate these library
procedures, the corresponding methods of the compatibility library and the calling methods, must be modified to use
closures, instances of classes that may have a method invoked in much the same way as a function pointer is called.

At present, PalmOS system calls are not supported by the Spotless or KVM systems, therefore, we have not tested the
generated Java bytecode in a PalmOS environment.
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.method public static _proc1(III)V
.limit stack 10
.limit locals 130
iconst_0
istore 8
iload 0
istore 18
iload 2
istore 19
iload 19
istore 100
iload 100
istore 12
ldc 33566720
istore 11
iload 10
iload 11
invokestatic Starter/_proc3(II)I
istore 10
iload 10
istore 100
iload 100
istore 20
iload 20
ldc 65535
iand
istore 100
iload 100
istore 13
iload 13
bipush 0
if_icmpeq L1
...

L5: sipush 1000
istore 12
iload 10
invokestatic Starter/_FrmGotoForm(I)I
istore 10
invokestatic Starter/_proc4()V
invokestatic Starter/_proc5()V

L4: bipush 0
istore 10

L2: return
.end method

Figure 20.8: JVM bytecodes for StarterPilotMain
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Chapter 21

Debugging

Documentation: Cristina [Nov 2000], based on Mike’s content

The UQBT framework does not provide much support for debugging per se. Graphs are generated to determine the
flow of control of the program, and start of basic block virtual memory addresses are generated in the low-level C code.
These facilities help you to map the generated code to the original assembly code; however, one still needs to be able to
determine the source of a bug. In this chapter we present techniques that helps locate a bug. We use the gdb debugger.
All examples are in terms of SPARC code.

21.1 Simple debugging techniques

The most common debugging technique is to emit printf’s in the generated low-level C code as well as in the original
source program (if you can recompile it). This helps determine which area of the program needs to be looked at in more
detail.

You can also edit binaries themselves. This can allow you to, e.g., add a printf statement in the source binary (even
when you do not have the source code for it and therefore you cannot recompile it with the printf statement). There is
information in Mike’s page on how to do this (http://www.csee.uq.edu.au/ emmerik).

21.2 How to view the contents of a register transfer

Given a pointer to a register transfer (RT), pRT, we can view its address and its contents by emitting the following
commands:

p pRT /* Just look at the pointer and its type */
p *pRT /* Look at the whole object */

The complete contents of an RT can be viewed by casting the pointer to a pointer to the correct derived type of the RT. If,
for example, pRT is known to point to an assignment RT, then we can view the contents of all the fields of an assignment
RT by emitting the following command

293
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p *(RTAssgn*)pRT

The actual type of an object can often be found by noting the annotation of the virtual table, e.g., when usingp *pRT ,
one notes “RTAssgn virtual table”.

We can then view individual fields of that RT by using the “dot” notation. If the previous command provided the result
in statement 4, then we can use that reference in our command. In the following example, we want to see the left-hand
side field of the assignment RT returned in statement 4:

p $4.pLHS

which will display the address of the pointer pLHS as well as its type:

$7 = (SemStr*)0xabcd

We can then view the contents of this semantic string by using the print routine provided in the SemStr class:

call $7->print(cerr)

Most UQBT objects from BasicBLocks and SemStrs have a print method which can be used in this way. Note that
displaying the contents of RTlists requires the use of “print(cerr,0)”.

21.3 How to step through a binary with no debug symbols

The original binary that you are translating may not include debug symbols, however, a useful debugging technique is
to test the output of the source program at several points against that output of the generated program (e.g. the end of
known routines, to determine if the same result is being returned). You can easily remake your target program to include
symbols, but not your source program. The following are useful tips:

� On SPARC processors, code normally starts at address 0x10000 and the page size is 8 to 64Kb in size. If the code
starts at 0x10000, then most likely the read/write data starts at at least 0x20000.

� You can display the disassembly of the firstn instructions of a routine by using thex command. In the following
example we display the first 20 instructions of the routine ran2. Note that even though there are no debug symbols
in the binary, some of the routine names get stored in the dynamic symbol table, and hence the debugger has a way
to get at these names.

x/20i ran2

� You can set a breakpoint at any address by using the break command (b) with the address dereference operator. In
the following example, we set a breakpoint at address 0x12624:

b *0x12624

You can then step through the instructions by using the next instruction (ni ) and step instruction (si ) commands.
You will not see a disassembly of the instruction as you step, therefore first disassemble about 20 instructions to
know where you are.
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� You can also inspect the contents of a register by using theregi option of theinfo command, and specifying
the particular register of interest. For example, if we want to determine the contents of the floating point register
2, f2 , we would emit:

info regi f2

The debugger will display the contents of a float register in terms of its single precision, its raw value (i.e. the bits
interpreted as an integer, but displayed in hex) and its double precision, e.g:

f2 14.9999 (raw 0x41...) 1677215

The double precision value forf2 is the combination of registersf2 and f3 . If the register number is odd, the
double precision value is not displayed, as double floats should start at even-numbered registers.

21.4 Debugging in parallel - source and target binaries

In order to determine where the source and target programs diverge, one can run procedures and stop at the end of them
to determine what value gets returned from each. If you set a breakpoint on a procedure, you can then tell the debugger
to run until the end of the procedure and then display the contents of a particular register, e.g.

fini
info regi f0

You can also attach the previous series of commands to a particular breakpoint so that they get executed each time the
debugger breaks at that breakpoint. If we want to attach the previous two commands to the second breakpoint, we need
to emit the following code (note the lastend command):

command 2
> fini
> info regi f0
> end

You may want to use a temporary breakpoint in a particular routine; temporary breakpoints are only valid for one run (i.e.
they are deleted once hit):

tbreak *0x12578

When you have loops and you are looking for a particular value, you can set a conditional breakpoint. If you want to
have a breakpoint on line 54 (say this sets your fifth breakpoint) and you want to stop the execution when register r4 is
not zero, you could emit the following commands:

b 54
condition 5 r4!=0
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21.5 Other tips

There is nothing better than knowing the original source program, i.e. becoming familiar with the source program’s
source code and what it does, in order to determine where the translation can go wrong.

You can useobjdump to determine the address of the different sections in the source binary, e.g. to find out what section
a particular address belongs to. For example

objdump -h file

You can useobjdump to dump the contents of a section. For example, to disasemble the .rela.bss section of the program
compress95, you can do:

objdump -s -j .rela.bss compress95

If you want to look at the detailed contents in a given section, you can useelfdump . This prints Elf file information in
a symbolic form. For example, to look at the symbols of the compress95 program, we emit:

elfdump compress95 | less

If you are looking for patterns that require inspection, say in the generated code, you can usegrep . For example, if you
are looking for double precision floats being assigned (single precision) float values in the range 64 to 79, you can emit:

d[0-9][0-9]=(f

21.6 Current known problems

The following is a list of known problems, as at Nov 1st, 2000:

� Floating point values passed in integer registers for parameter passing purposes on SPARC code.

� Overlapping registers: doubles on SPARC and al/ax/eax on x86. Currently, these overlapping registers take
different indexes into the register pool, without the dependencies between them being taken into account.

� If a _locals-k type of code is emitted in the generated code, it means that there was a push statement in the
source assembly code that was not transformed/removed through analysis. Typically, pushes on x86 code are used
for parameter passing, setting up the stack frame, spilling of registers, and copying registers to the stack as a handy
temporary location. The first two cases are supported at present.

� Alignment of doubles for x86 code (doubles are aligned on 4-byte boundaries on x86 whereas they are aligned on
8-byte boundaries on SPARC code).

� Setting a register to 0 through the use of an xor instruction should not appear as a use of a register, i.e.

xor r,r

should be replaced by

r = 0
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� Endianness differences and passing parameters to library functions that are pointers to data. In this case, the data
may not be swapped as needed.

� The code that implements pointers to functions has not been fully tested.

� The passing of doubles to varargs routines in the presence of endianness differences from a source SPARC binary,
will pass two 32-bit values that are individually swapped, but for which the two halves have not been swapped.
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Chapter 22

Interpreter

Design Ian; Documentation: Ian; Implementation; Ian [Feb 99]

This chapter has not been updated to include Ian’s work during 1999 on the interpreter, which was based on the ideas
described herein. In early 2001, Nathan Keynes implemented a new interpreter based on the SLED and SSL specifications
we had for existing machines. The interpreter was automatically generated from such specs and run quite well.

One of the problems when doing binary translation is identifying what parts of the program are code, as opposed to data.
This is important as the code needs to be translated, but translating the data will cause incorrect destination code as tables
used by the program will be damaged and the data may translate into nonsense.

Identifying code difficult when a register jump is encountered. Other kinds of control transfer will aid in giving entry
points into code, but some jumps will go to a destination indicated in a register, and the possible contents of that register
may not be easily determined by analysis. Because of this there is no way to ensure that all the code has been translated
when statically translating.

A solution to this problem is to include an interpreter so that when control transfers to some code that has not been
translated the interpreter can handle the semantic actions that need to take place in the program until control transfers
back to translated code.

22.1 Interpreter Design

The main considerations in the design of the interpreter was retargetability and to take advantage of existing code from
the rest of the project. The result of these considerations lead to the interpreter working with Medium level RTL’s as
provided in the static translation code.

Interpreting medium level RTL’s results in a more simplified Virtual machine requirement while still avoiding attempting
to optimise the code, or try and match the instructions to the target machine. The downside is that there is still a lot of
computation/analysis in getting the RTLs to the Medium stage. It requires the decoding of the instructions, the creation of
the Basic blocks and possible re-ordering of instructions due to delay slots and the elimination of special registers, such
as the sparc’s “Current Window Pointer”. It may be possible to interpret Low Level RTLs however this would mean a far
more complicated virtual machine, and may be too difficult to implement the required re-targetability into such a design.
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22.1.1 Virtual Machine Design

The Structure of the virtual machine is currently a set of four flags including Carry, Zero, Negative and ?? v, I am not
sure what this one is ??. For the register set of the machine a space in memory is allocated and a map of registers contain
address pointers which point to the memory allocated for the contents of the register. This is done so that the Virtual
machine can handle overlapping registers such as “ax, al, ah” and the sparc’s floating point registers.

The initialisation of the interpreter takes three passes over the map of registers. The first pass is to calculate the amount
of memory that will be required. The second pass is to set registers with no explicit sharing information. This includes
registers that share values with other registers, but are the first register declared for the address. The last iteration over the
register map sets up the pointers for the registers with explicit sharing information.

To handle temporary register the virtual machine allocates space for each temporary register in encounters as it encounters
them.

22.1.2 Class Interface

Interpreter: ! Interpreter . Default constructor for the Interpreter classs.

init: (RTInstDict) ! nil . Initialisation routine for the Interpreter. MUST initialise the Interpreter object before any
other operations are applied to it. Cannot “re-initialise” the interpreter until after the destructor has been called..
The RTInstDict should already be parsed and initialised with the information from the relevant SSL file. The
constructor allocates the space needed for the Virtual Machine and initialises the Virtual Registers to contain 0.

Interpreter: ! nil . This is the destructor for the Interpreter class. It frees memory allocated in the constructor.

apply: (RTList) ! int . This function will apply the RTList to the state of the virtual machine. The integer returned
will indicate control flow information, however this is yet to be implemented

evaluate: (SemStr *x, int *y) ! void * . This function will evaluate the semantic string, performing operations and
retrieving register values, and place the result at the memory location pointed to by the returned void pointer. If
the string evaluates to the contents of a register, the function will return a pointer to the registers value, and not
copy

22.1.3 Remaining Work

Some aspects of the interpreter remain incomplete for various reasons. These aspects include floating point operations,
control flow transfers and integration into translated code.

The floating point operations should be easily integrateded, however due inate differences between working with floats
and integers, it may be prudent to implment them in an evaluatefloat function rather than within the existing evaluate
function.

Control flow transfers will be done through special RTLs, to hopefully reduce the amount of processing for flag operations.

The integration of the interpreter should only be done after static interpretation test have been completed. Issues involved
are defining a standard process for specifiying register mappings at interpreter entry points, and also catering for easy
transition out of the interpreter. Entry points into the intepreter are well defined and easily spotted. Any register jump
that eludes analysis will be a point when the interpreter will be launched. Hence leading up to theses points it is a rather
simple matter of implementing the standard mapping so that the interpreter will be able to easisly absorb the current
state of the machine. However the interpreter could re-enter translated code at almost any point. Futher more if any
worthwhile optomisation is applied to the translated code the register mapping is not necissaraly intact. The interpreter
should in these cases continue interpreting through translated code until it reaches a point where register mappings would
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be known. This is most likely to be easily implemented at a return from the proceedure as many of the registers have
standard uses at this time.

22.1.4 Other Approaches

There are other approaches that could have been taken to handle untranslated code at run time. Two alturnatives
considered include a variation on the interpreter and “Guess” translation.

One variation of the interpreter involves placing the effort of retargetablility away from the interpretation of the code and
onto the creation of the Virtual machine. This would involve setting up a process which would create a virtual machine
based on the specification for the machine, mirroring every aspect of that machine from constant value registers to delay
instructions. Benifits of this approach would be a basic increase in the speed of the interpreter as less work would go
into translating instructions, but rather creating a virtual machine (ONCE) that could handle the instruction in there initial
state. The shortfall comes in implementing a retargetable Virtaual machine generator. While there are complete machine
specifications, creating a process to handle some of the featurs of the machine automatacly is by no means a simple task.
If this type of interpreter is investigated, I would suggest a section in the ssl file that gave a “between instructions action”
so that the more difficult or strange aspects of the virtual machine could be specified as a set of instructions to be executed
between interpreting instructions to maintain the state of the machine.

The other approach is to translate all of the program space as if it was code. When not sure if a segment of data is really
code or not, the un-translated data is placed in the translated program but the data is translated as if it was code and placed
elsewhere. If during execution this saved translated code could then be used instead of having to translate the source. This
approach however is impractical as not all instruction sets are open to this approach, (x86’s variable length instructions)
and many of the same problems with register mapping would still exist. If these problems could be overcome this may
represent a fast and efficient way of solving the untranslated code problem.
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Appendix A

Configuring UQBT

This chapter contains notes on how to configure the UQBT framework for a given platform. It also states what compiles
we use to compile the code base.

A.1 Compilers and Tools Needed to build UQBT

We have used gcc 2.8.1 and gcc 2.95-2 over the years, we are currently using gcc 2.95.3, however, we do not make use
of any of the new classes that are not available in 2.95-2, such as sstream. Note that we make use of namespaces sparsely
in the code and these are not supported by the gcc 2.8.1 version of the compiler.

For debugging, gdb 5.0 works well with gcc 2.95.3.

It is not recommended that the casual user attempts to use gcc version 3 to make UQBT. Although this has been tried, and
dozens of small changes have been booked in to satisfy gcc3’s stricter compliance with the C++ standard, it is very easy
for small errors (e.g. forgetting to specify a namespace) to slip into the code, and we don’t check regularly with gcc3 to
find all of these. Experienced programmers will not have much trouble using gcc3, however. The main issues when using
gcc v3 are:

� Gcc3 strictly enforces namespaces.

� Some of the more obscure include files are at different paths.

� Gcc3 will not allow the use of pointers where iterators are expected.

� Gcc3 is more strict on const correctness, and the use ofconst_cast .

A.1.1 Special tools needed to build UQBT

UQBT has many source files that are generated from other source files, or from specifications. It is possible to make
UQBT without installing these tools, but if you want to make significant changes to UQBT, you will need those tools.

To make UQBT without the special tools, use the--enable-remote configuration script (see above).

The special tools are as follows.
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� The New Jersey Machine Code Toolkit, ML version. This tool reads machine specifications, and in
association with a matcher (.m) file, generates binary decoders. For details and downloading, see
http://www.eecs.harvard.edu/ nr/toolkit/ml.html .

� Bison++ and Flex++, C++ versions. Note that the GNU tool bison++ isnot suitable; UQBT needs
the special versions from France, which are C++ aware. If you get lots of errors from running bi-
son++, you have probably got the wrong version! Download these tools fromftp://ftp.th-
darmstadt.de/pub/programming/languages/C++/tools/flex++bison++/LATEST/ or mir-
ror sites such as
http://sunsite.bilkent.edu.tr/pub/languages/c++/tools/flex++bison++/LATEST/ .
To test if you have the correct version, you should get results similar to:

% bison++ --version
bison++ Version 1.21-7, adapted from GNU bison by coetmeur@icdc.fr

If searching the web for these tooks, include the author’s name (”coetmeur”) as a keyword.

� The Tcl shell (tclsh ). This tool is only needed to run the regression testscript (test/regression.test ).
This is part of the common Tcl/tk system; you may well find that tclsh is already installed on your Linux or other
Unix system. Otherwise, see web pages such ashttp://www.sco.com/Technology/tcl/Tcl.html .

A.2 Configuration Notes

In order to instantiate a translator out of the UQBT framework, you need to configure UQBT to run on your host machine
by instantiating a set of source and target machines. Figure A.1 lists the names used within UQBT to describe machine
specs, and the associated version of the instruction set which is specified. The 1-letter column refers to the letter used to
refer to this machine in the instantiated translator. For example, a SPARC to Pentium translator would get the name uqbtsp
(source machine is SPARC and target machine is Pentium). Figure A.2 lists the source and target machines currently
supported (Aug 2001), note that not all combinations of machines have been currently tested in any detail/thoroughly.

Name 1-letter Description
sparc s SPARC V8 (integers and floats)
pent p 80386 (integers and floats)
mc68k m mc68328
hppa h PA-RISC V1.1
jvm JVM
arm ARM
286 2 80286 realmode (wildly experimental)

Figure A.1: Names of Machines and Versions Supported by the UQBT Framework

You can get help from the configure program at any point in time by emitting the following command:

./configure --help

Figure A.3 shows the options used by UQBT from theconfigure program.
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Source Machine Target Machine
sparc sparc
pent pent

mc68k mc68k
hppa jvm
286 arm

Figure A.2: Source and Target Machines Supported by the UQBT Framework

Option Description
–enable-uqbt-only only build the uqbt translator
–enable-remote don’t try to regenerate generated files
–enable-debug[=<what >] enable debugging suport,< what > is one of

ANALYSIS, DECODER, CSR, SWITCH, SSSIMP, SSLPARSER
–with-source=< arch > translate from< arch > architecture, one of sparc, pent, mc68k, hppa, 286
–with-target=< arch > translate to< arch > architecture, either arm or one of above architectures
–with-instrm=< dir > add instrumentation to emulator using files in< dir >

–disable-jvm disable JVM backend
–disable-po disable post-optimizer backend (sparc only)
–disable-vpo disable vpo backend (sparc only)

Figure A.3: Configure Options

A.2.1 Instantiating Translators out of the UQBT Framework

To instantiate translators, we recommend users to use the “remote” option as this option does not require them to have
different types of tools installed in their system, it only requires a C++ compiler and an assembler to be available.
Users using the JVM backend will need to have the Jasmin assembler and a Java virtual machine. Note that the UQBT
distribution does not contain files relating to the integration with the VPO optimizer, hence, all translators that have
SPARC as a target architecture should disable the VPO option. The following notes are for the 5 translators that were
used for experimentation purposes.

Instantiating a SPARC to SPARC Translator

To instantiate a SPARC to SPARC translator,uqbtss , configure UQBT in the following way:

./configure --with-source=sparc --with-target=sparc --enable-remote --disable-
vpo

make

Instantiating a SPARC to Pentium Translator

To instantiate a SPARC to Pentium translator,uqbtsp , configure UQBT in the following way:
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./configure --with-source=sparc --with-target=pentium --enable-remote
make

Instantiating a Pentium to SPARC Translator

To instantiate a Pentium to SPARC translator,uqbtps , configure UQBT in the following way:

./configure --with-source=pentium --with-target=sparc --enable-remote --
disable-vpo

make

Instantiating a Pentium to Pentium Translator

To instantiate a Pentium to Pentium translator,uqbtpp , configure UQBT in the following way:

./configure --with-source=pentium --with-target=pentium --enable-remote
make

Instantiating the SPARC to JVM Translator

Translations to JVM are included in theuqbtss translator, a runtime switch needs to be activated, as described inxA.4.1.

A.3 How the Configuration Process Works

A complete description of the autoconfigure process is beyond the scope of this document; the interested reader can read
any of the publicly available documentation, such ashttp://www.gnu.org/manual/autoconf/index.html .

In brief, the developer writes a file calledconfigure.in . The programautoconf processes this file, and produces
a script file calledconfigure that users can run to configure their system. We have already done that, so unless you
need to change the configuration, you only need to run./configure . If you do make a change toconfigure.in ,
then you should run

autoconf; autoheader

When ./configure is run, various files are read, including a file specific to the source machine. For example, if
you configure with--with-source=sparc , the filemachine/sparc/sparc.rules is read for sparc specific
information. It also reads the fileMakefile.in , and from it and the configuration information, it creates the
Makefile . As a result, theMakefile isn’t even booked in. That’s the main reason you need to run./configure
as the very first thing, before evenmake. It also means that you should not make changes (at least, changes that are
meant to be permanent) toMakefile ; they should be made toMakefile.in .

Another important file created by./configure is include/config.h . This file is included by
include/global.h , which in turn is included by almost every source file. Therefore,configure goes to some
trouble not to touchinclude/config.h if there is no change to it (and it says so at the end of theconfigure
run). A significant change to the configuration (e.g. choosing a new source or target machine) will cause a change to
include/config.h , and therefore almost everything will have to be recompiled.
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A note about the version ofautoconf ; we have found that version 2.9 does not work well but version 2.13 works fine
with our configure files.

A.3.1 Dependencies and “make depend ”

The first time youmake UQBT, there won’t be a file called.depend . This file will contain the dependencies for the
whole project. For example, there will be an entry similar to this:

coverage.o: ./coverage.cc include/coverage.h include/global.h \
include/config.h

which says that thecoverage.o file depends on the files./coverage.cc , include/coverage.h , and so on.
There can be dozens of dependencies; the above is one of the very smallest. This information takes a minute or two to
generate, and so is only generated (a) bymake itself if .depend does not exist, and (b) if the user typesmake depend .

It is possible to change the dependencies quite readily, e.g. by adding a#include line to a source file. If you do
this, and forget to runmake depend , then you can end up with very subtle make problems that are very hard to track
down. For example, suppose you add “#include "foo.h" ” to the worker.cc source file, so thatworker.cc
can use the last virtual method in classfoo . Everything compiles and works fine. A week later, you add a virtual method
to the middle ofclass foo . The .depend file doesn’t have the dependency forworker.cc on foo.h , and so
worker.o isn’t remade. Your code inworker.o is then calling the second last method inclass foo , instead of the
last method as it used to! However, you are not thinking aboutworker.cc now, since your latest changes are elsewhere.
This sort of problem can take a long time to fix.

One solution is to “make clean ” as soon as you get unexpected results. However, you can save a lot of time if
instead you justmake depend; make instead. In fact, it’s a good idea to runmake depend regularly, or after any
significant change to the source files.

A.3.2 Warnings from the make

During the making of UQBT, it is normal to see quite a lot of output. We try to ensure that ordinary warnings from gcc
are prevented, but some warnings are much harder to suppress, and some warnings are quite normal. For example:

typeAnalysis/typeAnalysis.y contains 2 shift/reduce conflicts.

These are normal, and the bison++ parser automatically resolves these conflicts in a sensible way.

A.4 Running the Translator

Once you have a translator, you can run it by giving the translator the source (input) binary file and the translator will
create a directory with C and possibly JVM files to be compiled. For example, if you have the translatoruqbtsp and
you have a SPARC Solarishello binary, you can emit the following command:

uqbtsp test/sparc/hello

and the translator will create the directoryuqbtsp.hello with the following files:
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_globals.s link.sed rodata.s
Makefile _globals.s hello.map main.c rwdata.s
_globals.chg changerel link.sed rodata.s uqbt.h

The translator currently generates for you both C and JVM files (for any target). These files need to be compiled by using
your C compiler. To compile:

make

and the following files should be generated:

Makefile _globals.s hello.map main.o rwdata.o
_globals.chg changerel link.sed rodata.o rwdata.s
_globals.o hello main.c rodata.s uqbt.h

Note that thehello program in this directory is the one generated by the translator.

The Makefile sets up the path for the C, assembler, linker, Jasmin, and VPO tools, as well as the GNUhead utility.
These can be overwritten in a make script of your own. For example, the Makefile’s content may be this:

CC = /proj/uqbt/bin/gcc -w -O4
AS = /proj/uqbt/bin/as
LD = /proj/uqbt/bin/gcc
OBJCOPY = /proj/uqbt/bin/objcopy
JASMIN = /proj/uqbt/bin/jasmin
HEAD = head #make sure you use GNU’s head
VPO = /proj/uqbt/bin/vpo
OBJS = main.o rodata.o rwdata.o _globals.o

all: hello

hello: ${OBJS}
${CC} -Wl,-Mhello.map -o hello ${OBJS}
changerel hello -f _globals.chg

clean:
rm -f hello ${OBJS} hello.class Uqbt.j rodata rwdata *.dec

rodata: rodata.o rwdata.o
${OBJCOPY} rodata.o rodata -O binary -R .text -R .data -R .bss
${OBJCOPY} rwdata.o rwdata -O binary -R .text -R .data -R .bss
${HEAD} -c 32 /dev/zero > bssdata

java: hello.class rodata rwdata bssdata

hello.class: Uqbt.j
${JASMIN} -g Uqbt.j

Uqbt.j: hello.j readData.j
cat hello.j readData.j > Uqbt.j
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and a “makeas” script can overwrite the assembler and head programs like this:

make AS="/usr/local/bin/as"
make HEAD="/usr/local/bin/head"

In this case, if you have a makeas script, you do amakeas instead of amake.

In order to remove all object files and associated generated files, you can emit the following command:

make clean

A.4.1 Generating JVM files

The JVM backend is integrated into the UQBT system in a different way to other machine-code backends. Instead of
instantiating a “uqbtxj” translator, generated translators will support a “-j” option to generate JVM code in the form of
Java bytecode assembler files (.j files). Note that this translator is experimental at best, it has only been tested with
integer-based programs in a SPARC environment. There are some issues that have not been addressed for x86 (their
addresses are too high and so lots of memory needs to be reserved, which makes JVMs run out of memory).

If you have built a uqbtss translator, use the -j option:

uqbtss -j test/sparc/hello

which will create several .j files as well as the standard .cc files generated by this command:

Makefile changerel link.sed rodata.s
_globals.chg hello.j main.c rwdata.s
_globals.s hello.map readData.j uqbt.h

To build a Java executable file (.class) you emit the following make command (make sure the “head” program is the GNU
version of this program):

make java

If you cannot setup your paths to have the right tools in the path, you can use a script to overwrite some of the paths of
tools given in the generated Makefile. For example, if I want to overwrite the path to thehead program, but leave the
paths for the C compiler, the assembler and jasmin as is, I can have the followingmakej script:

#!/bin/sh
cc1=c++
jas=jasmin
as=as
head="/proj/uqbt/bin/head"
make CCONE=$cc1 JASMIN=$jas AS=$as HEAD=$head $*

and I would invoke such as script instead ofmake using the same arguments as before, i.e.

makej java



314 Configuring UQBT

After you emit the make command, you will have a Hello.class file which is a Java executable:

Hello.class _globals.s hello.map rodata rwdata.s
Makefile bssdata link.sed rodata.o uqbt.h
Uqbt.j changerel main.c rodata.s
_globals.chg hello main.o rwdata
_globals.o hello.j readData.j rwdata.o

To run the generated file, you need to make use of the runtime library that UQBT has for Java programs; this library is
located in the uqbt/backend/jvm/runtime directory. For the above program, you would emit the following command:

java -cp /path-to-uqbt/backend/jvm/runtime:. Hello

In a similar way, you can translate the banner program. If you execute the following commands:

uqbtss -j banner6
cd uqbtss.banner6/
makej java

you generate theBanner6.class JVM binary. You can run this binary:

java -cp ../../../backend/jvm/runtime:. Banner6
Usage: banner "up to 10 char arg string" . . .

or give it arguments as the program expects, e.g.:

java -cp ../../../backend/jvm/runtime:. Banner6 31 Dec 2001
##### #

# # ##
# # #

##### #
# #

# # #
##### #####

######
# # ###### ####
# # # # #
# # ##### #
# # # #
# # # # #
###### ###### ####

##### ### ### #
# # # # # # ##

# # # # # # #
##### # # # # #

# # # # # #
# # # # # #
####### ### ### #####
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A.5 UQBT Options

The UQBT framework provides a series of options for each instantiated translator, these options are listed in Figure A.4
for theuqbtss translator, other translators will show the same options.

Usage: uqbtss {-<option>} binFileName
-D: generate .dot file for all procedures
-G: generate call Graph (.cg.dot) including library calls
-h: this Help file
-o dir: put Output files into <dir> (default is ./uqbtss.<binFileName>)
-q: Quiet (no display of each procedure name)
-r: display RTLs as decoded (.rtl)
-R: display High Level RTLs after decoding (.hrtl)
-T: perform type analysis and output type info to a .type file
-A: display Advanced options (useful for debug-

ging of the translator)

Figure A.4: UQBT Translator Options

These general options allow you to:

� display graphs about the program (call graph or control flow graphs) using the AT&T dotty format (.dot files),

� change the output directory where generated files are placed in (by default, a new directory is created with the
name of the translator you are running, followed by a full stop and the name of the program you are translating.
For example, for if running theuqbtss translator and translating the filetest/fibo , the generated directory
will be uqbtss.fibo relative to the directory where the translator was invoked from),

� dump textual RTL information for each procedure processed, in a.rtl file,

� dump textual HRTL information in a.hrtl file, and

� dump type analysis information into a.type file.

The UQBT framework provides several advanced options which are not recommended for normal users, they are mainly
used by developers of the framework for display of extra information or to constrain the tool to only process one
procedure. These options are:

Usage: uqbtss {-<switch>} binFileName
-b: no Backend
-Bx: use Binary file format x (e.g. h=HP PA/Risc SOM format)
-c: print Coverage of text section, no analysis or backend
-C: copy the Code section to the target binary
-d: generate .one.dot file for main or procedure selected with -S
-e: don’t generate Endianness swaps even if required
-Ex: use the expander backend (e.g. c=C j=JVM n=NJMCTK v=VPO)
-f: use Fast but not as exact instruction mapping
-H: emit High level C using structuring algorithms
-j: emit Java bytecodes (JVM classfiles)
-lLibString: use dollar separated list of libraries, e.g. -lm$dl
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-L: no Library functions in runtime address map
-m: Make the output file immediately after translation
-O: use the VPO optimizer backend
-s Symbol: use symbol instead of main as entry point
-S Symbol: as above, but only parse Single procedure
-t: print a Trace of basic blocks and procedures visited
-v: Verbose
-V: Very Verbose: detailed dump of input binary file
-y: Suppress dYnamic global processing, if there is only 1 entry

A.6 Regression Testing

TheUQBT framework provides for a set of regression tests for some of its instantiated translators. We commonly test
with the Sparc to Sparc (uqbtss), the Pentium to Sparc (uqbtps) and the Sparc to JVM (uqbtss using the jvm configure
option) options.

The script that is used for regression testing is calledtest/regression.test . This is a Tcl/Tk script that can be
customized to have more/different tests. The script has a name for each test, it runs the test and compares it against an
expected result, if not the same, it reports on its findings. At the end of all the tests, there is a 1-line report on the number
of tests run, the number passed, skilled and failed.

To run the Sparc to Sparc test:

cd test
tclsh regression.test sparc sparc

To run the Pentium to Sparc test:

cd test
tclsh regression.test pentium sparc

To run the Sparc to JVM test:

cd test
tclsh regression.test sparc jvm

A.7 Generating and Running Disassemblers

Disassemblers are a useful tool on their own and they can be generated out of the UQBT framework when going through
the instantiation process (see Chapter 19). The following notes explain how to generate a disassembler using the C or the
Java programming languages.

C-based Version

To generate a C-version of a disassembler:

./configure --with-source=sparc --enable-remote
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make disasm

The disassembler is placed in the./disasm directory. For SPARC, thesparcDis program is created.

To run:

cd disasm
sparcDis ../test/sparc/hello

Java-based Disassemblers Using the Unsafe Class

For a Java-based disassembler using methods of Java’sUnsafe class: Ensure that your path points to Java JDK 1.4; if it
does not, you must fix your path, then rerun configure.

make sparcdisj

The disassembler is placed in the./disasm directory. For SPARC and other platforms, thedisasm.class file is
generated; this file invokes the machine-specific disassembler (e.g.,sparcdis.class in the case of SPARC).

To run the disassembler, the classpath needs to point to the./disasm directory. For help, run:

cd disasm
java -cp . disasm

To run:

java -cp . disasm ../test/sparc/hello
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