

PREFACE

This manual is intended to serve as an introduc tion

to the Atlas Autocode programming language, as implemented

on the Atlas Computer at Manchester Universitye. It
is partly based on courses of lectures given at Edinburgh
University.
No mathematical knowledge or previous experience
of computers is assumed, but for a complete beginner

we recommend the following programme for a first reading:-
pages 1-21, 24~-27, 30-39, L41-L3, 50-54, 60-65. We should

point out that our examples are chosen to illustrate
points of the language. iWe do not claim that the
techniques used are in any sense the best possible,

Certsin sections of the manual are marked (*+*);
these refer to facilities which are not yet available.,
Tn this connection, pages 28a., and LOa. have been
inserted in the manual to cover facilities introduced
since we prepared the original draft.

We understand that some of the (x*x) facilities may
now be deferred until a new and faster version of the
compiler is written, and that this new version will
exclude half-word operations. Helf-word operations
will, however, continue to be available to those who are
prepared to work with the present compiler,

We should be glad to hear from anyone who discovers
or suspects any errors in this manual.

We should like to express our thanks to Mr. Peter
Keeping who provided the basis of the material for the
section on job descriptions and fault finding, and also

provided the vital liason with the staff of the Manchester

University Computing Laboratory; &also to our colleagues
Mr., Sidney Michaelson and Mr, Harry Whitfield for their
~constructive criticism. Our debt to the authors of the
language, Mr. Brooker and Dr. Rohl, is obvious,

Finally, we should like to acknowledge the checrful
help given by Miss Susan Wake, who typed the bulk of the

manuscript.

P.D. SCHOFIELD M.R. OSBORNE

3rd March, 196L4.

Y s

emm————

s ey

(i1)

TABLE OF _CONTENTS

INTRODUCTION TQO PROGRAMMING

Planning a program, A
simplified view of the computer,

B4SIC ELEMENTS OF THE LANGUAGE

Names, Variable Declarations.
Simple instructions. Delimiters,
Simple blocks,

FURTHER_TYPES OF INSTRUCTIOQON

Integer and real expressions.
Standard functions. Assignments,.
Labels. Jumps. Conditional
Instructions. Cycles. Multi-way
Jumps.

ARRAYS AND BLOCKS

2-suffix arrays. Lddress
function. Array function. Block
structure. Global and local
variables,

ROUTINES AND FUNCTIONS

Routines without parameters,
Their indusion in blocks. Routines
with parameters. Arrays as
parameters, Functions. Routines
as parameters of routines. Recursive
routines, Store mep function,

INPUT AND OUTPUT

Input and output of nunbers,
Input and output of symbols.
Numerical equivalents.of symbols.

HALF-WORD OPERATIONS

Binary numbers. Half-word
variables, expressions and
instructionse. Use of left—hand
half-words.

DOCUMENTS, JOB DESCRIPTIONS AND FAULT FINDING

Single document Jjobs. Interpretation of
results. Fault prints, Pault finding.

FURTHER F4CILITIES

Complex number operations. List
processing. Library routines.

APPENDIX
Summary of instructions which can
be made conditional,

peges
4 -5
6 - 11
12 - 23
2l - 34
35 - L9
50 - 53
5l - 59
60 - 66
67 - 70
7

PROCRAIZTLC IN ATLAS .AUTOCODE.

These notes are intended for a complete beginner vho
wishes to learn to write programs to be run on the Atlas Cormmuter.
Such & program can be written irn one of several languages: the one
described here is ATLAS AUTOCCDE,

A propram consists of a detailed set of instructions to
the comnuter, explaining exactlyv how it is to solve a certain vroblem,
It therefore follows that the prosrammer must first:-

(a) Formulate the problem and decide on the method to be

used to outein & solution. Only then carn le

(b) VWrite a vnrogram describing the method alreadv chosen,

Although these notes are primarily cohcerned with nrocess
(v}, it must be emphasised that, in anv moderatelv large rroblem, it
is process (a) which contributes most to the success or failure of a
project. Before nassing on to describe the commuter and the Atlas
Autocode language, tvo general suggestions can be made about this
planning stare.

Firstly, the staff of the Comnuter Unit will be nleased
to give advice. Secondlv, it often mavs to draw a "flov diasgram”
to help plan the logical connections between different marts of the-
progrem. The customary lavout of a flow diapram is given overleaf,
where we show the stapes through whicl the humen vrograrmer must
rass. The same type of diapram is useful to describe the stages
of a computation.

llote the two sections marked %¥,

2e %

Fige 1. \

%brmulate the problem%

T
% y

J O B R i

Design a method
of solving problem

Pttt e g e s oo

nis method’ make™ \\ .

Fricient use of Atlas: =
. ~"and solve the problem //

e ¥‘: h im & practicable

lepgth aof

time

Cl;

Test program and/ or
parts of prgramn on
-ﬂf i*! speciael simple cases
7 whose solution is
known.,

are‘\
answerg\\\ No - Modify

\\\S?rrect yd 4 program

“~

1/Yes

Use program on
main problem

N
Store program * S ; 5 \\
for future use ; : top

THE COMPUTER.

The basic operation of the computer is most easilv

understood from the following simplified (and partlw fictitious)

diagramzf
. STORE
T o . FiB. 2.
;-‘ K4 §'_ | %
! , ~
! . T A ! MILL
§""”""’“'“"g"’“B"”"""' o -} (works out
} - ‘ expressiong!
R — ' |
| Ace of Spades: : e
| 202 OF PPRIRY ..
'King of Hearfs.
")gﬁhl "‘\\\.4
' L ‘
i....p-_.__—..i..,...,.~; i i ;
f s H
; Input | Output.:.’
LI

The STORE consists of a large number of locations
in which information can be devosited. Denending uvon the way
in which the machine is being used, this information mav be thought
of as numbers, values of plaving cards, letters etc. Some of the
store also contains instruction; vhich tell the computef what to do
next.

The MILL is a mlace into vhich the machine cories
pieces of information from the store and works out expressions
depending upon this information.

e.g.v (i) copy the first two numbers from the store and multinlv them.
(ii) copy the two cerds in locations 4 and 5, and find the
higher-ranking.
When an expression has been worked out, it can either be printed

out as an answer, or replaced in the stcre for use later.

Putting information in and out of the atore works in a
panner similar to that of a tape recorder., ‘hen withdraving, ve
meke .a conv of the contents of a location, so that the ori?inél
information is still there, and can be used again as often as
required. When inserting, the nrevious contents of that location
are destroyed.

Warning: If we read the contents of a location before outting
anything in, we shall obtain whatever was left behind at the end

of the previous progran.

Documents: When we wish to use the comnuter, we normally need
to feed in two "Zocuments" (1) Progren
(2) Data

The difference between the two is shown by the two examples below:-

Program . Deta
llethod for solvirg a set of ecuations Set of Zouations

Method for sorting words into dictionary order List of Vords

Most of the program consists of a series of instructions
telling the comnuter to carrv out verious omerations. These are
kept in the store in a code or "languvage" wvhich is not readilv
comprehensible to the human orogrammer, It is vossille, but tedious,
to write programs in this larguage (in the earlv davs of computers,
nothing else was available). Ilovadeys ve can write in a nore conven-
ient language, Atlas Autocode for exemple, and the computer is sunnlied

with a ccurmiler, a set of rules for translating into its own language.

instruc

tions

We can now give an imrroved version of Fig. 2:=-

(in machine

b L ———————— 4 1 SO 14 DA

e —— o o 7 @

STOR
inforaation

ne _language)

| ATLAS

SR

AUTOCLDE
COMFILER

(1) Read in

(2) Compile

(3) Execute

e e - g et e

g

Program

in Atlas

Fig.

3

B T RO,

OUTPRUT

e e ‘% :
s
e e v e e ‘
_____ i
¥
e |
e S ——— 4t 1) S A e 45 d ¢ i
i
: U p
s
i , \
| = \
E j \
i \'
] \
'E 1
i A\
i N
| A
PN 3
| ?
: }
‘-
; v :
; 1 *
A4 INPUT © {
IR] !
! NS |
ra .
T \\
R B
; i
4 N
i Data :
;

EAutocodej

s

The sequence of events will be:-

Program.

(i.e. translate) into machine instructions.

u.m(;..,.—.« o

;
|
i

Resultsé

‘\'\---.—- /

the comniled program which will contain instruections to

(a) Reed in Data

(b) Carry out Calculation/Processing

(¢) Print out Results.

5

/

”~

€.

ATLAS AUTOCODE.

The Atlas Autocode language is better equined for
dealing with numbers than other tvves of information, For this
reasorn, the basic principles of the language will be explained in

terms of vervy elementary calculations with numbers.

Before a nurber can be placed in 2 location of the
store, this location must be given a name. A name rust start with
e letter and consist of

(a) one or more letters (a, b, ... z Or 2, B, ... Z)
(b) vossibly followed by one or more disits (0, 1, 2, se. 9)
(c¢) possibly followed by one or more nrimes (', ", "' etc.)
Examplas %, a2", total 3, SUI', Sum
llotes. (i) aZ2c is not permitted as a letter follows a diprit.
(ii) The compiler completely disrsgards all svaces (and
underlined snaces) in the program. Spaces mav thus

be used to improve legibilityv of program.

DECLARATIONS.

Names are allocated to locations in the store bv means

of declarations such as:-

Declarstion Maaning
r:al a set aside the next unused locstion, call it

'a' and be prepared to nut & "real" number in
it later.

integer b, c3 set aside the next tvo unused locations, call
them 'b7 and 'e3' and bhe oremared to mut intererc
(whole numbers) in them later.

lo

Note (1) Generally speaking, a name alloceted to a location
will remain fixed throughout the program. However, the contents
will vary whenever a new nurber is placed in it.

(2) The word "variable" is used to describe locations
which have been set aside to contain numbers, either real or
integer.

(3) There are three distinctions between real variables
and integer variables:-

(a) An integer variable must be a whole number. A real
varisble may also be a number such as 73.L827, with up to 11
significant figures.

(b) There are certain purroses for which only integer
varigbles are allowed. (e.g. to give the number of times
a group of instructions is to be repeated: repeating 1.7
times would be impossible).

(¢) When we do multiplications and additions of integer
varisbles, the machine produces the exact answer. When doing
arithmetic on real verisbles, the answers are''rounded off"
to 41 significant figures,.

We can also declare a wholes array of varigbles, all
having the sane name, but distinguished from one another by
means of a "suffix" in brackets after it.

array a(1:l4) set zside L consecutive 4(1)
lonmations with names:- d(2
d$3
alk

array ¢(1:7), £, g (O:L) setvaside“§7 locations for'e§1) eé?%
o 5 " " £(0) to f(L
(5 (o L)

it 1 g

Be

Notes (1) The declaration array automatically prepares for
real numbers. If integers are intended, we must
write integer array «..

(2) Note tiedifference between this and the declaration

real dl which only gives one location:—

al |

These four types of declaration are normally written on
separate lines, but may instead be separated by a semi-colon,

either real a, b, x3'
integer array y (41:20)

or real a, b, x3' ; Ainteger array y (1:20)

Purther types of declaration, allocating names to functions,
routines, switches, 2-dimensional arrays and complex numbes
will be described later, Declarations are preparatory
in nature, and should be contrasted with "instructions" which,
when executed, bring about the transfer of information to
locations already prepared.

Note: 4 name cannot be used simultaneously for two different
purposes (e.g. real and array).

Instructions

"Some simple types are given below. They are written on
geparate lines or separated by semi-colons in the same manner
as declarations.

Input Instruction Meani

read (a) read in next number in the data and put it
in 'a'. ’
read (b, c3, a(L)) read in the next 3 numbers in the data and .

put them in b, ¢3 and d(L).

Cutput Instructions. l'eaning
print (x, 3, 1) ~ work out in the i1l tle value of the

print (2x + v + 7, 3, 1) first exoression in the brackets (i.z.
' ' xor 2x + v + 7) and print the auswer
with 3 figures before the decimal roint
and ore after, (The figures 3 encd 1
can, of course, be varied).

spaces (7) outfut teleprinter is to leave 7 blank
spaces, ' '
newline output telerrinter is to go to the start

of ¢ new lire.

ASSIGINMELT INSTRUCTIONS.

These look like mathematical equations but the meaning

is quite different.

Instruction Mearing
a=b+c vork out the expression on the ripht

(i.e. contents of 'b' plus contents of
'c') and then put it in the location
given on the left (i.e. 'a')

Thus
a . ‘_'Z_,j\%_,__f becomes - L e ———
b 100 ; b.10-0 1
c ...30 . ey 300
a=2a+1 copy contents of 'a', double it, add 1

and replace answer in 'a'
Notes. (1) b+ ¢ = a is not permitted since b + ¢ is not the name
of a variable.
(2) a =b 1is quite different from b = a.
(3) the use of more complicated expressions on the right will

e explained later.

10.

DELIMITERS

These are the punctuation signs of the language and
include: -

(a) The normal punctustion signs . , : 3 ()
(b) The mathematical symbols + = = z<<>> /*xF| |
(¢) The special underlined words:~ real if then array comment

caption and a few others

Note: (4) All underlined words are delimiters. It would
be possible, but highly confusing, to declare a name such as:i-
real (not underlined)

(2) Delimiters mostly ocour as part of either declarations
or instructions.

(3) The delimiters stop and return are complete
instructions and can therefore appear on lines by themselves.
(stop instructs the machine to terminate the calculation:
the use of return will be explained later).

(4L} A few other delimiters (begin end repeat
end of'program) also eppear on lines by themselves where

they are used to separate out groups of instructions or
declearations,

(5) As stated on page 8, sach declaration and instruction
is usually written on a line by itself. However, more than
one declaration or instruction can be written on the same
line provided they are separated by the delimiter ; . A
declaration or instruction can be made to extend over more than
one line by terminating all but the final line with the delimiter
c. ' ‘
(6) The delimiter comment, written at the beginning of
a line, causes the compilcr to ignore the rest of that line.
It is used to insert explanatory notes, which must not contain
o semi-colon, into the program, for the benefit of the human
reader.

Example read .(n)
comment n is the number of cases to be solved.

(7) The delimitsr caption written at the beginning of
a line, is used in & rathor similer manner to make the OUTPUT
more readable. It causes the output teleprinter to print out
the set of characters following caption.

Example caption answer =
print (answer, 3, 5)

Spaces are ignored by the compiler, and the delimiter
s marks the end of the ception instruction. Spaces and ;
can be inserted into a caption by writing £ and § respectively.

116

BLOCK

A program is normelly split up into a number of blocks.

In general s block consists of

e ———

declarations

o9 do 0

a9 e so e

|
.
|

o000 660

end

At the end of the last block of a program, _nd is

replaced by end of program.

Example begin
array a (133)
real b

read (a(1), a(2), a(3))
b=all) + a(2) + 8(3)

print (,2,3)

end of program

This causes the machine to read in three numbers, add them

and print out the total,

Note The machine automatically terminates the calculation on

reaching end of program, If it is required to stop the

caloulation at any other point, the instruction stop is used.

EXPRESS IONS

12

There are many places in a program where we have to write

an expression (e.g. on the right of an assignment instruction or in

a print instruction).

An expression consists of variables, constants

and functions, connected together by mathematical symbols,

(&)

The use of variables has already been described (pages 6~3).

(o)

constant

(c)

function
gin{x))
cos(x))
tan(x))
8q rt (x)
log (%)
exp (x)

nod {(x)

arctan(x,y)

radius (x,y)

frac pt (=)

int (x)

int pt GO

parity (n)

meaning

cbvious

3

1000(i.e. 1 x 107 }

0.01932

(i.e. 1.732 x 1072)

3.14159....

.5

neaning

as in
elementary

trigonometry

logarithm of x

3
e

modulus of

tan™! (y/x)

+.£2+yz »

- fractional

part of x

nearest integer to x

integral part of %

+1 if n is
~1 if n is

even,
odd.,

note

C.25 and .25 are
equally valid,

(i) This is called the
'floating point' form
for a2 constant.
(1i)The number after a
must be an integer.

% is one symbol.
Other fractions nust
be written as
quotients(i.e. 1/3)

note

X in radians

to base e.

Can be written [xl
In radians. Value is in

ist or 4th quadrant if x>0
Znd or 3rd gquadrant if x<C

frac pt(3.73)=C.73

frac pt(~3.73)=0.27

int(3.73)= 4

int pt{3.73)= 3
int pt(-3.73)= =4

n nust be an
integer variable,

13

Notes (1) The first group of functions (down to frac pt) all
produce a number of type real, which can only be assigned to
a real variable, The last three produce a number of type integer.

(2) The above functions are all understood by the
compiler before the program is read in. The method used to
define additional functions, if required, will be given later
(page W)

(3) As the names, sin, log, etc, are already in use, they
should not be used by the programmer in any of his declarations.

(d) Mathematical Symbol Meaning
+ addition
- subtraction
* multiplipation
/ division
1‘ raise to a power (&13 means a3)
2 squaring
fosoocssel modulus of. Alternative to

MOA (eeeess)

Notes (4) In normal mathematical notation we often omit the
multiplication sign (e.g. ab for a*b). In Atlas Autocode
we write the * sign, otherwise the compiler will look for a
varigble with the name "ab', The only caseé in which we can
omit the * is where a constant is followed by a Variable
(6.8 3.5¥)

(2) & and aT2 are alternative forms for a*a, All
other powers must be written withT,

PRECEDENCE OF OPERATORS

As a result of the rule in Note (1) above, there is
uncertainty sbout the"meaning‘of an expressioh such as a*b+c.
Do we carry out,theﬂ(fifst, giving (a*b)+c, or the addition
first, giving a*(bwe) o o

In Atlas Autocode we lay down the rule that, of two adjacent
operators (like * and + above), the one appeasing higher in
the table below is to be carried out first,

(1) 0

(i1) = or /

(iii) + or -

Where two adjacent operators are of equal precedence by the
above table, the one appearing to the left (in the expression
to be evaluated) is carried out first.

1.,

Notes (1) If we wish to over-ride the zbove rules, we
must use brackets as in normal mathenatical notation.

(2) When anhy doubt could arise, it is wise to
insert brackets for safety and clarity.

(3) The'left-hand precedence" between + and -
agrees with normal usage.

€.8. by a-b+c we mean(e=b)+c and not a~(b+c)

Examples Meaning
a/b*c ‘ % x c
a/(ox*c) _a_
be
aThb* ¢ J)X c
afT(bx* c) aPC

INTEGER AND REAL EXPRESSICNS

The difference between integer expressions and real
expressions lie not so much in the values of the
expressions as in how they are constructed and used.

(1) Any expression consisting entirely of integer
variables, integer constants and integer functions
(such as int (x) or parity (n)), is called an integer
expression, Any other expression is called = resl
expression.

| (2) We shall meet a number of places where an
integer expression is required, In these cases, a real
expression is not allowed, not even one whose value may
actually work out to be’én integer, On fhe other hand,
wherever a real expression is expscted, an integer
expression will do instead.

Example We can use an integer expression in pleace of
an integer when referring to an element of an array.
Heice if we write

integer i
real x

array d(1:10)
i=23
X=3

then d(i*i) refers to da(9)
but d(i*x) is illegal because i*x is a real expression.

15.
WARNING, Caution is neededwith expressions of the form
'%urb". (a and b may be replaced by expressions). If
b is an integer constant or integer variable, all is well
as the calculation is done by repeated multiplication.
In all other cases, the calculatiaon is performed by taking
‘the logarithm of a: it is therefore important to ensure
that ardoes not assume a negative value,

Example, Suppose that a is negative and that we wish to
evaluate a?tt where j is an integer. The instruction
y = a T(j+i) will be faulted for the reason given above.
The simplest solution is to declare another integer k

and wrlte-— X k = j+i ; y = atk
FURTHLR ASbIGNMEJL INS“RUOTIONS
. The general form of hal a381gnment is either

(1) assign an integer erre381on to an integer varisable or
(ii) assign a real or integer expression to a real variable,

waxamEles. Suppose we have deelared real a, b, c, X
o - ' integer i, j, k

then possible instructions are:— C :

x = {~b + sq vt (b*b -ua*@)&m)

int(j/k) + %3

a = log (1 + cos(27 x)) + 3. 7ub

X = i

1l

i

Notes (1) 4lthough x = 1 is permitted, i = x will cause a
fault signal, because x is real and i is an 1ntabcr. If
required, we can. wrltc'~ i = int(x) ¢

(2) On the other hand, we.eam, without a fault signal,
assign to an integer Qariable any integer expression, The
résponsibilityvfor ensuring that thé exﬁression will work
out to be an integer, lies with the prbgrammer. (division
or raising to a negative power sare possible causes of
non—-integer results)., See the seeond example above,

(3) It is possible to use expressions inside larger
expressions; in particular we can have a funcfion of =
funetien as in. the third example. '
LABELS

Any instruetion (or a delimiter whlch appears on a line
by itself) ean be labelled by writing a positive integer and
a colon on the left. (Example in next :section). |
JUMP _INSTRUCTIOES | t

Normally, instruetions are obeyed in the order in which
they are written. To make the maehine jump to a new position
in %he program, we write => followed by a label, giving the
plase to whigh wewish to jump. o |

Example
-3 10
10:a = b + ¢C

c

I

sin (x)
— 12

12:end of program

Notes., (1) By meking the machine jump back to an earlier peart of the
program, we can make it go round a loop of instructions many times.

(2) Labels are local to the block and we cannot jump outside
the block (i.e. before begin or after end). '

(3) The delimiter stop written on a line by itself instructs
the machine to stop the program, and is thus equivalent to the use
of "= 42" in the example above.

CONDITICNAL INSTRUCTIONS.
Assignment and jump instructions way be made subject to a
condition, using the delimiters if or unless.

Example ' ’ Meaning
‘a=b+cif x =0 Carry out the instruction if(or
— 27 unless a>b + 2 unless) the condition is satis-—

fied. Ctherwise skip and pass
on to the next instruction.

Ir preferred, instructions may be written with the condition first,
followed by then:

Example

if x = 0 then a = b +c

unless a> b + 2 then —»27

Note. (1) Note the different uses of "-" in the first example.
Tn x = 0 it has its normal mathematical significance. Ina=5b + ¢
it means an assignment.

(2) In the condition we may use any of the relations

= £ >> <<

(3) Stop can be made conditional,
e.g. if n >4100 then stop

17

MCRE CCMPLICATED CONDITICHNS.

These may be formed by

(1) Writing 3 expressions separated by 2 relations
.8, 1f C<x <1 théNiaceoes
or if a + b <3x <sin (y) then.......

(2) by the use of an unlimited number of and delimiters, with
the obvious significance.

e.ge if x50 and y = 0 and z = 2 theh.....
(3) by a similar use of a succession of or delimiters
e.8. if x50 or y = 0 or z = 2 then....

(4) by combining (2) and (3) provided and's and or's are separated
by brackets.

€.8. if (x>0 or y = 0) and z = 2 then...

EXAMPLE OF A SIMPLE FPRCGRAM

Suppose we want to read in a list of positive numbers and print
out their mean. Suppose we do not know in advance how many there
will be. In order to inform the computer when we have come to the
end of the list, we terminate it with the number -i.

We shall need the following variables:-
(1) a place in which to put the numbers as they are read in.
(2) a running total,

(3) a couht (integer n, say) of how many numbers have been read in,

Nete that (2) and (3) must be set to zero before starting.

A possible flow diagram is:

A

ipriut ou“
| total/n

R

i

4

e

and a program to implement this is:-

begin

integer n

real total, x

n =0; total =20
read (x)

- 11 if X = ~1
total = total +x
n = n+j

-2 10

newline

print (total/n, 3,5)
end of program

Add number

to “total

£dd 1

to n

CYCLE INSTRUCTIONS

cycle i =1, 3, 3n +1
a(i) =0

y =y + b(i)

repeat

Z =X + Yy

In the example, the group of instructions from"a(i) = 0
to 'y =y +b(i)" are traversed n times, i taking in succession
the values 4,4,7 eeees(3n #1). On reaching "repeat' the macihine
tests to see if i has reached its final value of (3n + 1).

Then (i) If i # 3n+i, it adds 3 to i and jumps back to "a(i) = oV

or (ii) If i = 3n#, it continues on with "z = x + y"

Notes (1) The L.H.S. of the cycle instruction must be a variable
declared to be of type integer. On the R.H.S. we must have three
integer expressions, of which simple integers like 1 and 3 are
special cases,

(2) TNote that the cycle integer i is used for two purposes
(a) to count the number of times round the cycle.

(p) to make the instructions act-on different array
elements each time round.

There is no obligation to make use of the purpose (b).

(3) The three integer expressions sre all evaluated on
reaching the cycle instwmction, and recorded as integers. Altering
the value of n during succesive traverses will not affect them.

(L) The three integer expressions must, of course, have
values such that the difference between the first and last is
an exact multiple (a positive integer or zero) of the second.

(5) Although "cycle i = 0.2, 0.1, 0.5" is illegal, the
required .effect is achievéd by
cycle i =2, 1, 5
X = 0.1 1

(6) Cycles may be nested to cycle i =14,1,10
. any depth. On the right, the cycle j = 11,1
first "repeat! refers back to cecss
‘cycle J =1, 1, 4 and the . ..;..
second to "eycle i =41, 1, 10" “”repeat

repeat

20.

(7) Each cycle instruction must have exactly one associated

"repeat! which must be in the saimne block.

Example Using a cycle instruction, write an alternative version
of the program for giving the mean of a list of numbers (pages 17-18).

Instead of using a =i to terminate $he list, we head the

list with an integer indicating how many nwibers are to follow.

*_/”"("'\
. »

Y

Start j

\M 4

t
O
ct
Y]
!..J
]
2

- ————— —————. AvSS——

read
next
{ number

Y

N ey

/!jz;:le

connle te

i Add to
i total

print
total/n

!

and the program iss:-
begin
integer n, i
real total, X

read (n)
total = 0O

cycle i =1, 1,
read (x)

total = total + x
repeat

newline

print (total/n, 3, 5)

end of program

MULTI-WAY JUMES

(a) Conditional Labels

The point of the following exauples 1is best made if we exclude
the case of a man with children, but no wife.

y

e

/i(s the

Austomer gingle
with or without

‘children
4?

with children _Single

&

N
Calculate}
Children'st
Allowance

caloulate alloﬁaﬂce“
for wife v/
% caléulate allowance

for man himsglf

.
&'fb

Jrepane.

224

Suppose we have previously placed the number of wives (presum=
ably O or 1) and children into variables names "wives" and "'children®,
We can programn the 3 way test as follows:-

test L, 5, 6
L4 case childrens0tevess

® o0 00

5 case wives > Ofesees
6:..0".

On reaching the test instruction, the machine tests in turn
_the conditions at the labels.listed (in tuis case three in number:
L, 5, 6) and jumps to the first one which is successful, | As we
have ¢mitted a condition at 6, this is taken as a success ful

condition and the machine juumps here if all other tests fail.

Notes. Crnlitional labels, like simple labels, are local to the
block.

The slight difference in the following case should be noted.

rriage

with children /T state of Single
customer
?
]
é
iiartied
e ;
o Chi}dren :
4
Y
. . i
iPrint list - Print 1i Stk : .
of 3-bed-— of flats Print list|
room houss : ‘ ' jof camping;
i . tequipment |
A ‘¥

-

test 7,8,9

7 case children >0:

8 case wivses s O3

101

(b)

Switch Labels

23

as e e
voses
eoavee
-3 01
eevos
o6 o900

—> 4109

® 6600
® o0 009

om0 ece

end

Another way of obtaining a multi-way jump

at the head of the block.

is to declare asyitch

The switch must be given a nane ("A" in the

case below) which must not clash with any name declared for any other

purpose within that block.

On raaching “"—3 A(i)", the

machine jumps %o one of the four

labels, depaending on the current

value of 1i.

it will print the value of y,
2 it will take the

but &f 1 =

For example if i =1

A(0)
A(—)

square root first, and then

print the answer,

A(2)
A(1)

switch A (—:2)

e oo e

L1

o0 o 00

®e s 8o

® e o0 0

—x A(1)
:y = sq rt (y)
: print (y, 3, L)

2L
2-SUEFTX ARRAYS

Cn page 7, we intrpduced declarations of arrays with one
suffix. In a similar manner we can declare arrays with two -
suffices.,

declaration - meaning
array A(4:2, 1:3) set aside 6 consecutive loca-

tions for real variables to be
known as follows:

A1)
A(1,2)
A(1,3)
A(2,7) .
A(292) : ¥
A(2,3)

integer array A(1:2, 1:3) as above, but giving integer
variebles,

Suppose we wish to form a table giving the number of
successes in 'A' level Mathematics, Physics, Latin and French,
sub-divided into boys and girls, Let us store the nuabers
in integer variables A(i,j) as follows:-—

Maths Physics ‘ Latin French
"Boys ; i A(" n/‘j A4 52) 3_ NG 93) Ad L) _
Girls A(2,4) {1 A(2,2) A(2,3) A(2,4) }

Here the first suffix gives the sex and the second the
sub ject. Although we think of them as a rectangular array
and also print them in this shape, the variables are stored
in the machine row by row in consecutive locations.

To set all the first row to zero initially, we could
write:

0;2018 J 31’ ﬁg LL
A(1sj) =0
repeat

and then for the second row

cycle J = 1,14
A(2,3) =0

repeat

It is easier to combine these two processes by means of a

25,

cycle within a cycle

cycle i =4, 1, 2
cycle J =1, 1, 4
A(i,3) =0
repeat

repeat

The same method will be used to print out the results

in a rectangular table.

Data Suppose the data is supplied as follows:-

(1)
(2)

An integer giving the nuanber of results to analyse.

Groups of thrce integers in which

the first indicates sex (4 for boy, 2 for girl)
the second " subject (1,2,3,4 @s before)
the third indicates success (0 for fail, 1 for pass)

For example:—

data meaning

999 999 results to follow
1 N | A boy has taken Maths
1 ' : and failed.

0]
1 - A boy has taken French
L and passed.
] |

2 A girl has taken Latin
3 _ and passed
.1

etc.

A possible flow diagram and program are given on the

following pages.

26,
I'/‘.\

¥
{ Start

N

set all eight
(i,3j) to zero

¥

read nuaber
of results

Start .
cycle 1

- F read sex, subjeet {-—r
> t and pass/fail

'if a pass add 1 tof._:
lappropriate total §

27

begin
integer i,j,k,1,n
integer array A(4:2. 1:4)

cycle i =1, 1, 2
cycle j =1, 1, L
A(i9j) = 0
repeat

repeat

read (n)

cycle 1 =14, 1, n
read (i,j,k)
if k =14 then A(i,3) = A(i,3) +1

newline

cycle i =41, 4, 2
929;2 j = 15 19 h
print (A(i,3), 3, 0)
spaces (5)

repeat
newline

repeat

end of program

Notes: (1) The inner cycles have been indented on the pages
for clarity. This is quite permissible as spaces in the
program are disregarded by the compiler.

(2) 1In order to achieve a rectangular layout of results,
spaces (5) are put in the inner cycle, and the newline in
the outer cycle.

ADDRESS RECOVERY FUNCTION

In the normal course of events, we do not know where in
the store any declared variable is situated. All locations
do, however, have a numerical address (1ike the house number in
any one long street) and in the next section we shall need to -
find out the address of certain variables.

28.

function meaning
addr (x) the numerical address of the

loCation allocated to the
variable X. (This is an
integer function).

ARRAY FUNCTION DECLARATIONS.

This is a method of renaming storeage locations which
have already been named by a declaration of type array or
integer array. The old and new na.ues cen then be used a synonyms.

Suppose, for example, that we have already made the
declaration "array A(41:1000)". Renaming is achieved by

declaration meaning
array_fn X(adar (A(500)), 3) starting with the location

given by "the address of A(500)",
rensme every third location
x%o;, x(1), X(2)... so_that

%(i) is at addr (Aa(500)) + 3i.
Note (1) The first parameter A(L99);
in the declaration gives the A(500) X(0)
address of the starting lboca- A(501)]
tioh, the second the increment, A(502)
Either may be an integer " . A(503)| ' X(1)
expression. A(50L)
A£(505)
A(506) x(2)

(2) Since the first parameter is an address, it usually
involves the use of the function "addr". '

(3) Array function declarations only rename locations
~ already allocated by an initial declaration such as "array
A(4:1000)". Hence, in the above example, X(166) corresponds
to "A(998), but the use.of X(167) may,produce,gnexpected
results and should be avoided.

o arzay A(131000) s 1x()
arvay £n X(addr (A(1)) -3, 3) A2
will oive rew nomes X(4).X(333), A(3)
wher © le firat X is X(4) and not X(0). A(L) -~ {x(2)
We have %o write "addr (A(1)) -3" AR
rather 4han "addr (A(-2))" bepause A(6) 7
A(-2) does not exist. A(7) 1 X(3)

28a,

2nd MARCH, 196k

A supplementary page has been inserted overleaf.

28Db.,

Since the date on which page 29 w s written, the
compiler has been modified to accept declarations
of arrays with an unlimited number of suffices.

Example
array A(O:n, O:n, O:n)
integer array B(1:5, 1:5, 1:20, 4:30)

Note It happens to be more economical in storage
space if suffices with the smaller range of possible
values are written first (as in the second example).

29.

It is permissible to declare array functions having more
than one increment parameter, For example

array fn X (s,p,9,r)

Here X (i,j,k) is the varisble in location with address
s+ip+jag+kr. Again X(0,0,0) is the variable stored in location
with address s. If it is required to refer to this variable
as X(1,1,1) then the appropriate declaration is o

array fn X(S-—p-q—I‘, ps(-].9r)

, If the locations renamed by means of the array functions
are to hold quantities of type integer, then the declaration
is prefixed by integer in the usual way. Por example

integer array fn X(s,p,q,T)

It must be stressed that the array function is a device
for ronaaing .locetions in the store, It is important that
all locations being renamed have already been declared.

This ensures that storage allocated for other purposes is not
overwritten.

The array function is the only method at present available
for generating arrays with an arbitrary number of suffices.
The following example indicates the menner of allocating
storage for such an array. Consider the array with elements
X(i,3,k) as in the~last section, and assume that the maximum
values assumed by i,j,k are u,v,w respectively. Then the
address of the lastlocation in the store used by the array will
be s+up+vQg+wr, In this case the appropriste declarations are

array A(O:up+vg+wr)
array fn X(addr (A(0)); p,qa,r)

ARRAY AND ARRAY FKUNCTION DECLARATIONS

As we have seen, there are two methods of declaring two-
suffix arrays (commonly known as matrices). For example,

(A) by direct decleration (B) by renaming
array mat (1:10,1:10) array A(43:100)

array fn mat(addr(A(1))-10- ,4054)

However, to declare arrays with three or more suffices, the
renaming method is the only one permitted at present,

30,

The array function often offers a convenient means of
manipulating the elements of two-suffix arrays. For example,
if we follow the declaration in either (A) or (B) sbove by

array fn matT(addr(mat(4 ,1))—10-1,1,10)
we produce an array, normally called the transpose of the
matrix "mat" with the property that

matT(i,j) = mat(j,i)
BLOCK STRUCTURE OF PROGRAMS

In many cases the exact storage requirements for the array
declarations in the program are not known at the time of writing
the program,

Suppose that we wish to write
read (n)

array A(4:n), B(41:20)

In order to bring the array declaration to its rightful
place at the head of a block, whilst still ensuring that the
value of n is read in beforehand, we use an inner and an outer
blocks=-

begin

integer n

read (n)

begin
arvay A(4:n), B(1:20)

end
end.

Here the suffix bound for the array A in the inner block
is obtained by mesns of the read instruction in the outer block.

It is sometimes convenient to regard a whole block as one
compound instruction. With this view of the above inner block
we see that the outer block has, indeed, the basic structure
given on page 11, viz:

begin

41 declaration-
2 instructions
end

3.

Note (1) Blocks may pe nested within one another to any depth.

(2) Blocks may not be made conditional.

GLOBAL _AND LOCAL VARIABLES

It is important to appreciate the sphere of influence of
the various declarations. '

A declaration appears at the head of a block and hormally
remains valid throughout that block until cancelled by the
end at the bottem of the blocks It also remains in force
upon descent to an inner block, UNLESS the same name is
declared at the head of the inner blocke. In the latter case,
the variable is held in abeyance while the machine is executing

the inner block, coming into force again when the end of the
inner block is reached.

Within any particular block the term local variable is
used when referring to variables declared at the head of this
block, and the term global variables when referring to
variables declared in any exterior block, These points are
illustrated by the following examples.

(i) begin (ii) begin
real A : real A
begin begin
real A,B,C ' real B,C
'EEER] A - B+C
end end
print (A,2,2) . print (4,2,2)
end ‘ end
Here the name A refers to Here A is global to the inner
quite distinct variables block sinece this time A has
in the inner block and the not been re-declared.

outer block. The print
instruction will print
the A of the outer blocke.

Notes (1) To communicate between blocks, global variables
must be used, since local varisbles are cancelled upon exit
from a blocke

(2) Labels, unlike variables, are always local to a
blocke. It is thus impossible to enter a.block except thpough

32.

the head of the block (which is just as well as the local

declarations are written there).

from one block to another.

EXAMPLE OF A COMELETE PRCGREM

It is impossible‘to Jjump

Read in 1lists of positive integers and print them out

with each list sorted into increasing order of magnitude.
Insert 2 blank lines to separate one 1list from the next.

On input of data, each list will be headed by an integer

giving the number of elements in the list.

After the last

list, a single zero will be fed in, indicating an imaginary

1list of zero length.

read number of

elemen%s in list

\\...,/i

¥

."'

7N

~ ,
<i::\\\§ié:§::::>' Yes > f Stop
0 .

4No

read list
of elements

find largest
from first i

members of list

interchange last
with largest

rint ordeped}—

flist followed _
y 2 nevlines YOS N

cl\

'reduce

iby1}

N o S W N (&

0

io

33

EXAMPLE OF 4 PROGRAM

begin

comment to arrange lists of positive integers in

comment increasing order of magnitude

integer p

1:read(p)
Af p<0 then stop
integer i,J,AMAX, JMAX

integer array A{l:p)

cyele i=1,1,p
read(£{i))
repeat
-> 3 if p=1
cycle i=p,-1,2
EMAX=0
cycle j= 1,1,i
if AMAX > A(J) then -> 2
RMEZ= A3 3 IMAX=J
Zsrepeat
A{MAX)Y=A(1)
A{1)=AMEX

repeat

3:gyele i=1,1,p
newline
print(a(i),5,0)
repeat
end
newline
newline

-> 1

end of program

3l

Notes (i) p is declared in the outer block, but can still be
used in the inner block where it is a global variable. (Eines
8, 9, 12, 13, 22).

(1) The lsbel 4 is in the outer block, so the instruction
"es 4" must also be in the outer block.

(iii) The line numbers given on the left are not printed
with a normal program, and should not appear on the program
sheet, but the compiler does in fact count lines in this way
and will print out the line number of any fault found in a
program. In this connection, note that a line may contain
more than one declaration or instruction. (e.g. line 17).

(iv) It is often convenient to label delimiters which
appear on their own. (e.g. line 18).

OWN__VARIABLES

Sometimes a block is entered several times in the same
program, All local variables are cancelled upon exit from
a block,

Upon re-entry, the same names will be declared again,
but their previous contents will have been lost. If it is
required to resurrect the old variasbles, togeéther-with their
contents, the declarations must be prefixed with the delimiter
own

e.g. own real a,b,c
own integer array X(4:10)

In own array declarations, the suffix bounds must be integer
constants (not the more general integer expressions which are
permitted in ordinary array declarations).

(**4) Note Own array declarations are not yet awailable

35

ROUTILwS AND FUNCTIONS

There are many occasions on which it is necessary to
perform an- operation several pimes in different contexts
within a program, or even in different programs (perhars
written by different people). A possible method of prog-
ramming this operation as a unit is to write it as a block.

ROUTINES WITHOUT PARAMETLRS

On page 38we explained that a block can be regarded as one
compound instruction. Instecad of writing out the block in full
every time it is required, we can:give the block a name.

We then simply write down this name (as a single instruction)
every time we wish the block to be carried out. A whole block
descrfibed by a name is called a RCUTINE.

There are three operations involved in incorporating a
routine into a program (1) Declaration
(2) Calling
(3) Description

As an example, we use a routine to interchange the values
of two variables x and y.

(1) Declaration ~ meaning
routine spec interchange the name "interchange" is

to be the short title for

a routine (a block of
declarations and instructions)
which will be described

later
>(2) Call - meaning
interchange carry out the routine which

has the short title
"interchange.

(3) Description megnin
routine interchange the routine "interchange"
integer =z consists of the one
Z=X declaration and three
X=y instructions given opposite.

y=2

end

36.

Notes (4) A routine description has the same structure as
a block except that begin is replaced by routine followed by
its namne,

(2) In the routine description, x and y are global
b 9
variables,

(3) The first line of the description is always the
same as the declaration, but with the delimiter spec omitted.

(L4) A routine may be called in any block interior to
the one inm which it is declared (and describesd). In this
way we can think of local/and global routines, in just the .
same way as local and global variables.

(5) A routine call is en instruction and may be made
conditional: v
e.g. if p ¥ 410 then interchange

(6) TNormally, instructions in the routine are obeyed
in sequence until reaching end. If it is desired to stop the
routine at any other point, the delimiter return may be used.
This is eguivalent to a jump to end. (Compare with stop
which is equivalent to a jump to end of program). return,
like sto , may be made conditional.

Example Interchange x and y and square them if they are both
positive. ‘
| routine interchenge and square

integer 2z

Z2 =X} X=Y; ¥ =2

if x{0 or y{O then return

X = x*%; ¥ = ¥'¥

end ,

Note A second return could be written immediately bsfore end,
but would be redundant.

37.

STRUCTURE OF BLCCKS CCNTAINING RCUTINES

Routine descriptions are placed at the end of the block
in which they are declared. The general structure pf a block
can now be extended to :-

begin A
eseee declarations, including
cocee .) declaratiors of routines.
eo0o 000 '

ceeee) instructions, including
ceeee routine calls

cnnoe

routine) |

cecavee) routine descriptions, each
end having a block-like structure
routine of its owne.

essases

end

end

38.

ROUTINES WITH PARAMETERS

The previously described routine "interchange™ will exchange
the values of x and y, but will be of no use if we wish to
interchange any other pair of variables.

In Atlas Autocode; to facilitate the use of the same routine
in different contexts within a program, the user is permitted
to write the routine using formal (or dummy) names for some or
all of the variables global to it,. In each call of the
routine, these formal names are replaced by the appropriate
actual names.,

If formal names are used in the writing of a Yroutine,
then the following modifications must be made to the procedures
for declaring, describing, and calling the routine.

(a) In declaring and in describing the routine its name
must be followed by a bracketed list of the formml parameters
used, together with a statement of their type.

(b) In calling the routine the name must be followed by a
"bracketed list of the actual parameters which are-%o. replace
the formal parameters on this cccasione

The designation?parameteﬁfhas.been used above in anticipation
of facilities Whibh permit quantities other than names (for
example elements of arrays and arithmetic expressions) to

be passed on to routines,

Example 1

integer a,b
integer array A(1:10)

routine spec interchange (integer name X,¥) Declaration
interchange (a,b) - - Call 1
interchange (A(1) , A(2)) Call 2
routine interchange (integer name x,y) - .Description
integer z

Z2 =X; X =Y; ¥ =32

end

39.

Note (1) Here x and y are the formal parameters.

(2) The actual parameters must be placed in the same
order as the formal parameters to which they correspohd.
In call 41, x is replaced by a and y by b. In call 2, x is
replaced by A(1) and y by A(2). :

(3) The statement of parameter type is omitted in
calling the routine, but the compiler chetks to see that the
actual parameters listed are of the type indicated in the
declaration. ' '

The following example illustrates the use of a different
kind of formal parameter. ’

Example 2

routine spec FACT (integer name ¥y, integer n)

FACT (shriek, 10)

ee o@D OSEONS

routine FACT (integer name y, integer n)
integer 1

y =1

if n =1 then return

cycle 1 = n, -1, 2
y=1i*y

repeat

end

The difference in usage between the formal parameter types

integer amd integer name is profound'and'must be carefully noted.

(a) integer name. When a routine call is made the first

action is to replace the formal integer name paramneter

at every place where it occurs within the routine
body by the corresponding actual parameter given at
the time of the call. This must have been declared
in the usual way either as an integer varisble or
as an element of an integer array (see the two routine
calls in example 1 above). '

(b) integer. In this case the firstection is the decla-
ration of a new variable of type integer local to
the routine, This variable is now filled_with the
value of the actual parameter which may be a general
integer expression. This new local variable is now
inserted at each occurence of the formal parameter in
the routine body. As it is a local variable, its

Lo,
contents are lost on leaving the routine.

~~ The parameter types real name and real are used in
a similar manner. The actual parameter corresponding
to the parameter type real name must have been declared
as a real variable or as an element of an array. The
actual parameter corresponding to the parameter type
realmaybe a general {i.e. integer or real) arithmetic
exXpression.

Parameters of type integer name and real name are.
said to be CALLED BY NAME.

Parameters of type integer or real are said to be
CALLED BY VALUE, '

PASSING ON ARRAYS TO ROUTINES

A parameﬁer of type array néme or integer array name

is used in the same manner as those of type resl name
and integer name. We can describe a routine in terms
of elements of an array with a formal(or dummy) name,

In each call, we give the actual name of the array
which is to be used in place of the dummy array on

that particular occasion. The actual array must be one
which has been declared directly by writing:-—

aI‘I’a& 0008 0o)
or integer arrayeeeee ; and not one formed

by means of the array function or store map function,.

Example The following routine will double the first 10
elements of any one—-suffix array (assumed to start with
suffix 4).

routine double (array name X)
integer i

cycle 1 =1,1,10
X%i?‘: 2 X(i)
repeat

end

The routine is called by instructions such as:-

double (4)
\ double (B)
which will double A(1), A(2)es..A(10) and B(1),....B(10).
Note The routine and the two arrays would, of course,
have been previously declared in the usual manner,

Example In the next example it is assumed that a nuiber
of square arrays have been declared and a routine is
required to print out certain sums of consecutive
diagonal elements such as A(5,5) + A(6,6) + «..+A(10,10).

LOa,

routine trace (array name X, integer m,n)

integer 1
real z

2 =0

cycle i = my4i,n
Z = % + X(i,is
repeat -
newline

print (z, 5, 5)

end

and instructions to call this routine might be
tracevéA s 5, 10)
trace (B, 41, 50)

PASSING ON ARRAYS GENERATED BY ARRAY FUNCTIONS
(or Store Mapping Functions)

An array formed by renaming the elements of an array
(as on pages 28 and148) cannot be passed on as an array name
parameter. Instead, we give, as actual parameters, the
value of the address of the first element of the array and
the values of the increments. These can be passed on as
type integer. This information permits the array to be
re—constituted within the routine by means of the array

function.

Example
routine Form (integer p,q,r,s)

array fn V(p,q,r,s)

which might be called by:-
Form (2ddr(A(1,1))s 10, L, 1)

An slternative method of passing on the address is by
use of the type addr in the routine heading. In this case,
the mctual parameter is the name of the first element of
the array. .

Example _
routine Form (addr p, integer q,r,s)

L 3 A B

array f£n V(p,q,r,s)

which might be called by:-
Form (A(1,1), 10, L, 1)
Note (1) The array function declaration is unaffected
by the method used for passing on the address.
(2) These two methods are also available as
alternatives to the array name method, whenever that
methdd is allowed.

ITH N

EUICTIONS

" The function facilities are closely related to the routine
facilities. However, the result of a function call is a
nunber (real or integer) and function calls occur in arithmetic
~expressions. The declaration, call and description of
routines and functions are compared in the following teble:-

{ Routine ! Function

Declaration ?'routine SPECews a. real fn SpeCaesses

3 b. integer fn specC...

b

Result of gallj execution of a. real nunber
‘ an instruction ' b. integer
Description routinG.... , a. real fn,..

b. integer fn ...

1

In place of return the delimiter result is used to
terminate the evaluation of a function. However, the use
of result is obligatory.

- Example The routine FACT can be rewritten as an ihteger
function which we rename FACT'

integer shriek
integer fn spec FACT' (integer n)

shriek = FACT'(40)

integer fn FACT'(integer n)
integer prod,i |

prod = 1

if n =4 then result = prod
cycle i = ny=1, 2

prod = i*prod

repeat

result = prod

end

Note (1) the assignment of the value of the function to result.

(2) Both the routine call FACT(shriek, 410), and the
assignment shriek = FACT'(410) produce identical results.

L2,

Like routines, functions have the property of being
global to any block interior to the one in which they have
been declared and descrihed. In particular, the functions
listed on page 12 have the property of being global to
the user's program so thatneither declaration nor description
is required.

Example .)
The specimen program for ordering listsof positive

integers can be rewritten to illustrate the use of the
routine and function facilities., A function MAX will be
defined which finds the suffix of the largest element in
the list. In terms of these, the cycle which achieves
the ordering is written

cycle i=p,-1,2

J = MAX(A,1)

interchange (A(3), A(1))

repeat -
with a considerable gain in legibility.

The full program is given on the next page.

Note (1) The integer array A is passed on to the function
MAX in exactly the same manner as was indicated previously
for routines.

(2) The function MAX could have been written in terms
of elements of the global array A. To give the function
a more general application, we write it in terms of a
(formal) local array V, When calling the function, we
pass on the name A as the actual parameter to replace V,

(3) The instruction=-> 4 in the outer block refers to
label 1 of the outer block. The same instruction in the
integer function MAX refers to label 4 of that function.

43

begin

.comment to order lists of positive integers:
.integér'p |
12 read(p)

if pfp theh stop

integer 1i,j
intéger array A(1:p)

integer fn spec MAX(integer array name V, integer k)

routine spec interchange (integer name a,b)

cycle i =v1,1,p

read (A(i))

repeat

~>2ifp=1

cycle i = p,-1,2

j = MAX(A,i)
interchange (A(j), A(1))

repeat

2

2: cycle i 1,1,p

newline § print (A(i),5,0)

repeat

integer fn MAX(integer array name V, integer k)
integer D,q,r
r=0
cycle p = 1,1,k
if r > v(p) then -> 1
r=V(p) 3 4q=0p
1% repeat
result = g
end

routine interchange (integer name a,b)
integer z °

z=a § azb §j b=z
end

end 3 comment end of inner block

newline § newline § -> 1

end of program

L.

ROUTINES AND FUNCTIONS_ AS FARAMETERS

It is possibhle 3o include routines and functions
among the formal parameters df a routine or function by

means of the type statements routine, real fn, and

integer fn, When calling the routine or function the
actual parameters must be the nanes of routines or functions
declared either at the head of the block in which the call
is;made or in any exterior block. Note, however, that

all quantities, other than the formal parameters, used in

a routine or function description must be global to this
description, It is not sufficient for them to be global

at the time of call.

Example

Calculate approximately the area under the graph of y=f(x)
between x = x4 and x = X2 using the trapezoidal rule.
This is illustrated in the accompanying diagrams The

£f2 + 1
area of the shaded part of the panel is h(” 3).

The calculation is performed by dividing the area under the
graph into a number of such panels, applying the formula
to each panel and summing the results.

The program opposite carries out the approximate
calculation five times, with the area divided into, 10, 20
30, 4O and 50 panels. The curve used is a quarter circle

given by y = ,A -x~, fromx =0 tox =1. The exact area
is 7 /i = 0.785398163.

begin
integer i

real fn spec TRAP SUM(real x1,x2, integer n, real fn f)

real fn spec circle(real x)

cyele i=1,1,5
newlinex
print(10i,2,0); spaces(2)

print (TRAP SUM(0,1,101,circle),1,9)

regéat

--real fn»TRAP'SUM(real x1,x2, integer n, real fn £)

real fn spec f(real y)

real h,SUM
integer i
h=(x2-x1)/n; SUM=f(x1)
cyele i=1,1,n-1
SUM=SUM+2£ (x1+1%*h)
repeat
SUM=SUM+£ (x2)
result =h*SUM/2

end

real fn circle(real x)
result =sq rt{i-x*x)
end

end of program

Notes (1) The print-out from the program was:-

10 0.776129582
20 0.782116220
30 0.78361078¢g
40 0.784236934
50 0.784567128

(slowly approaching the true value of 0,7853938163).
(2) Because of anomalies in the compilerg-—

(a) The standard functions (page 12) cannot be used as actual
parameters to replace formal parameters of type real fn or integer fn.
(They can, of course, appear in expressions used to replace formal
parameters -of type real or integer).

(b) It is necessary to declare the formal function parameter I,
as on line 2 of the description of routine TRAPSUM,

Le.

RECURSIVE USE OF RCUTINLS AND FUNCTIONS

Routines snd functions have the property of being
global to any block interior to the one in which they
are declared, 4s any call of a routine or a function-
involves the execution of & blocky, & routine or function
is global to itself, In particular a routine or
function can call itself recursively,

Example ' The function FAQT' can be defined recursively
as n(n-1)(n-2)...2 1 = n}(n=1)(n-2)...2.1)|

integer fn RECFACT (integer n)

if n =1 then result = 1
result = n*RECFACT(n-1)
end '

Note (1) Although the description of RECFACT is consid-
erably shorter than that of FACT' (given on page l{) the
latter is more efficient as it takes less time to execute
the steps of a cycle than to make an equivalent numper

of function calls, |

Example = The program to order lists of positive integers
can be made recursive,}for, if a program can order a

list of (n—1) integers, then it can order a list of n
integers by taking the largest into the nth place, and
then calling itself to order the remaining (n-1),.

begin v

comment to order lists of positive integers in
comment increasing order of magnitude

integer p

isread(p)

if p<0 then stop

begin

integer i ’

integer array A{l:p)

routine spec ORDER{addr 3, integer k)

czcle i=1’11p
read(a(i))
repeat
ORDER(A(1)Y,p)
cycle i=1,1,p
newline
print(4{i),5,0)
repeat

4
routine ORDER{addr s, integer k)

integer j
inteper fn spec MAX(addr s, integer k)

routine spec interchange(integer name a;q)
integer array fn V(s-1,1) .

if k=1 then return
F=MAX(V(1),k)
“interchange(V{(j),V(k))
ORDER(V{(1) ,k~1)

integer fn MAX(addr s, integer k)
integer p,d,r v

integer array fn V(s-1,1)
Cr=0 .

cycle p=1,1,k

if r>V(p) then->1
r=V(p); q=p
itrepeat

result =q

end

routine interchange(integer name a,b)
integer Z

=a3; a=bi b=Z
end

end j comment end of routine ORDER

end 3 comment end of inner block

->1
end of program

ﬁgﬁg (1) The comments made qoncerning the efficiency of
RECFACT apply also to ORDER.

(2) The routine ORDER has the general structure
described on page 35.

Example The game of HANOI. In the two previous examples it
is easy to avoid writing the program recursively. This is
not true of this example. In this game one is given three
pegs, and on one of the pegs are a number of eircular discs
of different sigzes, graded so that the largest is at the bot tom
and the smallest at the top. The aim of the game is to
transfer the discs to one of the cther pegs (making use of
the third as required) in such a way that there is never
a larger disc on a smaller ons. Only one disc at a time
may be moved. ,

If the solution to the game for (n-1) discs is known,
then the solution for n can readily be obtained. Let the pegs
be labelled 1,2 and 3 and let 1t be required that the n discs
on 1 be transferred to 3. This can be done by transferring
the first (n-1) to 2, the last to 3, and then the first (n-1)
from 2 to 3. In the following program n 1is the number of
discs which have to be moved from peg i to peg J. The moves
are printed out as pairs of integers. :

L8

PROGRAM FOR GAME CF HANOI

begin

integer n,i,k

routine spec hanoi(integer n,i,k)
read(n,iz k)

hanoi(n,i,k)

newline
stop

routine henoi(integer n,i,k)

if n=0 then ->1

hanoi(n=1 ¢i,6-i-k)

newline

print(i,1,0); space; print(k,1,0)
hanoi(n-1 ,6-i-k,k)

1:end
end of program

STORE _MAPPING FUNCTIONS

The store mapping function provides the user with the
possibility of renaming storage locations in a more general
‘manner than is possible with array functions. ‘

The mapping function must be declared by either
real map spec or integer map spec depending on the nature
of the variables to be renamed. The mapping function

can appear in an arithmetic expression, but, as the result
of the store map is the name of a variable, it can also
be written on the left hand side of an assignment,

Example

real x

real map spec W(integer i,J)
WH,2) =1 + xT3

® 9@ @8 O® 00 00 ¢ 8 a0

Note This illustrates the use of the store map both on the
left and the right hand sides of an assignment.

L9.

The description of the store mspping function has the
form

real mep W(integer i,j)
result = addr(X) + ("integer expression involving i and j")
end

Here X is an element of the array to be renamed. X must
be global to the description of the mapping function.

Exaﬁple

array A(4:1000)
real map spec W(integer i)

e e 8 e 0 0 00 0

real map W(integer i)
result = addr(A(1)) =1 + 1.1
end ' {

Note (1) 1In this example W(i) and A(ix1i) are eguivalent,
For example W(10) and A(4100) are both valid titles
for the same storage location.

Example To store a triangular array of numbers

array A(1:90; 1:10)

real map spec .X (integer i,j) A(1,1) 1X(1)
A(1,2) _lxe
A(153) X(2,2)
O a(LW T %)
eyele 1 =1, 1,13 | A(,5) X(3,2)
eyele j =1, 1, 1 .
read {x (1,3)) A(1,6)) X(3,3)
repeat A(1,7) 1X(Ly1)
repeat A4 98) X(LHZ)
RN A4 ’9) X(LI-,B)

ceveae | A(/l’J‘O) N X(LI-,LI-)
real map X {integer i,j) 4

result = addr(A(1,1)) + ix(i-1)/2 + j~
end '

Note The diagram illustrates the storing of the first four
rows of the triangular arrvay.

50.

INPUT AND OUTPUT

Input and output of numbers and symbols is achieved by
permanent routines whose descriptions are held in the
machine. These routines are global to the whole program

"and may therefore be called without further declaration and
description,

A distinction must be drawn between numbers and symbols.

(a) A NUMBER usually occupies more than one space on
the printed page, and consists of certain permitted sequences
of the symbols 0 4 2 3 L 5 6 7 8 9 .+ 4+ - 4
‘as given on page 12.

(p) A SYMBOL eccupies one space on the
printed page.
5 Examples of basic symbols are;- A a & = 7
" Compound symbols consist of two or three basic symbols,

superimposed upon one another by means of the backspace
on the teleprinter. Examples of compound symbols are:-

a (the 2 symbols a and _ superimppsed)
£ (the 2 symbols = and / superimposed)
Z (the 3 symbols = / and _ superimposed)

Some of the following foutines have already been explained
but are included here for the sake of completeness,

 INPUT OF NUMBERS

read (a) Read the next number on the data
tape into location a, and move the
ape on, ready for the next number.,
(Parameter called by name).

read (a,b,c,d) . Read the next four numbers into
a,b,c and 4. There is no limit
to the number of parameters allowed,
and each one may be either real or
- integer, or an element of either
an array or an integer array.

QUTPUT _OF NUMBERS

print ((a+b+e)/n, 1+, 3)

print £1 ((a+b+c)/n, 3)

INPUT OF SYMBOLS

read symbol (a)

skip symbol

a = next symbol

OUTPUT OF SYMBOLS

print symbol (a+b+7)

caption answer

newline

spaces 6)

space

5.

Print out the value of the first

expression, with G+1) figures before
and j figures after the decimal point,
Parameters are called by value, and
so may be an expressid.on. The last
two must be integer expressions.

Print out the value of the first
expression in floating point form.
One figure. is printed .pefore and

j after the decimal point, additional
powers of -40 being-indicated by the
symbol @ , as on page 12.

Read the next. symbol (simple or

-compound) on the data tape and place

its numerical equivalent (as given
on the next page) in location a.
Note (4) unlike read, only one
parameter is allowed.

Note (2) a must be an integer or
an element of an integer arraye.

Move the data tape on one symbol,

. without reading anything into the

machine.

Read the next symbol into integer
location without moving the data -
tape on. (%0 the same symbol can

be read in a second time),

- Print the symbol whose value 1is
-given by the integer expression in

brackets.

Pﬁint the string of symbols followling
the delimiter caption, as far as the
next semi-colon or "newline"
character, (Spaces- and ; are
indicated by £ and j§ respectively).

This causes the teleprinter to go
to the start of a fresh line,

Print out 5 blank spaces.

Equivalent to spaces (1)

Noté At the moment, compound_syMbols printed out via peper
“tepe will not appear correctly superimposed,

For example,
will cause a print—out

caption x £0 and y # O
x=0andy =0/ /

Compound symbols are reproduced correctly when the
" LINE PRINTER 1s used for output.

52.

TABLE _OF NUMERICAL EQUIVALENTS

0 32 ! [Sn 96

1 33 A b 65 space & 97 a)
2 3 B ! 66 , 98 b
3 35 C 67 - 99 ¢
L, newline & 3 D 68 100 d
5 37 E 69 101 e
6 38 F 70 102 f
7 39 G 74 103 g
8 (o L0 H 72 104 h
9) 0 I 73 5;; ff’ 105 1
10 o L2 J 7L ’ 106
11 7 L3 K 75 ’ 107 k
12 % LWy L 76 stop 108 1
13 & L5 M 77 109 m
14 = o U6 N 78 110 n
15 / ! 47 © 79 o 114 o
16 0) L8 P 80 ’ 112 p
17 4 ! L9 Q 8 I o 13 q
18 2 ’ 50 R 82 1 o 114 1
19 3 | 5 8 83 115 s
20 L v 52 T 8L 116
21 5 ! 53 U 85 117 u
22 6 / 54V 86 _(underline)ai18 v
23 7 ' 55 W 87 1 119 w
oL 8 } 56 X 88 120 x
25 9) 57 Y 89 124y
26 < o 58 72 ! N a | 122 =z o
27 > o 59 N 8 123

28 = o 60 92 % 124
29 + j 61 93 125

30 - | 62 ol 126
. | 63 95 127

Note To find the numsrical equivalent of a compound symbol

let the numerical equivalents of its 2(or. 3) constituents be

a,b (or a,b,c) arranged in increasing order of magnitude.

Then the value of the compound symbol is a + b.27 (or a + b.27 + c.ﬂ5
Example a has thevvalue~86m*_97.27 = 1216

while £ has the value 15 + 28.27 #'86b21& = 1118623

53

Notes (1) Although spaces in & program are disregarded,
this is not true on a data tape, where spaces can be used to
separate numbers from one another, Numbers written in
floating point form may heave spaces between o and the
exponent, but in all other cases a space or a newline

character indicates the end of a number.

(2) When using the print and print f1 routines, a
negative number is preceded by - and a positive number by
a space (to give correct vertical alignment of a column).

(3) To print a space followed by the symbol 7,
we could use one of three methods:-

(a) print (7, 1, 0)
(b) caption £ 7
(c) print symbol (65); print symbol (23)

(M)' caption' is usaally eésier than print symbol if
the symbol is known in advance. But if, for example, we
wish to print B or b depending upon whether an integer n is
even or odd, the simplest method is

print symbol (66 - 32 * parity (n))
(5) A maximum of 420 characters can be printed on

any one line of outpute.

(6) Programmers should note that theyare charged
for each line of output, irrespective of the number of
characters in it.
(3% +) BINARY INPUT/OUTPUT
Routines for the. input and output of binary information

will be available later.

BINARY REPRESENTATION OF NUMBERS

In normal usage, numbers are constructed from the ten
1gitS Oy1,.0009. L703 means (4 x 10°)+(7 x 10°)+(0 x 10)+3x10°)

In the Tbinary notation used in the machine, numbers are
constructed from the two binary digits (or "bits") O and 1.
Eere 10441 means(4 x 2”)+(O‘x 23)+(1 X 22)+(1 b4 21)+(1 X 20)
(i.€. 23 in normal notation).

A location in the store contains 48 bits, but for the
present purposes we only consider locations declsred of type
integer, For the moment we may disregard the left hand
8 bits and the right hand 3 bits. Cf the remaining 37,
the left hand bit indicates the sign of the integer
(0 for positive, 1 for negative),

The value of the integer is calculated by giving the

sign bit a weight of -236_and the remaining 36 weights of
+235 3k 2O | |

9 +27 eeset
Hence 111.000111 means —236 + 235 -+ 231'1'.."4_21 + 20 = ""1

If we now add -1 and 41 we get

111 ® 6 090 00 Jlll/l
000 seeesses OO1

(1) 000 veeeeees 000 and as the. left hand 1 is spilt

over the end, we get the result O as required. (Note that
in binary arithmetic 4 + 4 gives O "and carry one"),

As described above, integers are stored in 37 bits,
and the last 3 bits are normslly O. However, these last
three bits may be regarded as of weights 2—4, 2~2§ 2_3, that
is %+, 1, &, and so numbers with whole multiples of ¥ may
be stored in so-called "integer" varisbles,

In an integer location, the left hand 8 bits are
normally fixed as 00004100, (These represent the
"exponent', not required for the present purpose, but
called into. play when an integer is copied into & real
location)s -

55

HALF WORD VARIABLES

It is sometimes convenient to store information in, and carry

out certain operations upon, 24-bit locations, known as
The declaration intcger a

allocates the name 'a' to a 48-bit location.

At the same time, without further declaration,

the right~hand half of a becomes known as aa.

HALF-WORDS.

(Notes This has no connection with the use of

a in floating point numbers). Provided the

current value of a lies in the range
-2%0 < a < 220 | all the significant infor-

nation lies in ca. The left~hand half-

word merely contains the fixed exponent 00001100 followed by 16 bits

aa

which are all the same as the left-hand bit of ca., (0 if a>0, 1 if a<0),

When dealing with half~words, the left-hand bit

becones

the sign bit with a weight. of -220 . In this way, the numerical

value of aa is the same as that of a whenever a lies in

range quoted above,

Notes (1) The half-word variable ca is local to the block in which

the

a is declared, and may be used, as usual, in any interior block,

(2) Elements of integer arrays cannot be used in
way., (e.g. oa is permitted, @A(l) is not). A device t
this difficulty will be given on page 590.
CONSTANTS FOR USE IN HALF WORDS
These can be written into a program in either
or octal form, To distinguish one from the other, octal

numbers are preceded by *, Whichever form is used, the

resulting bit pattern in the half-word is the samc.

the same
o avoid

decimal

Examples
Decinal Fornm Octal Form Resulting bit pattern
17 *00000210 0000000C0000000010001 OOO.-
17.5 *00000214 000000000000000010001 100
17.625 *Q0000215 000000000000000010001 101

Notes (1) 17.5 is expressed as (1 x 2%) + 1 x2%) +

1

ax2).

@) The octzl form is cobtained by grouping the 24 bits into
eight groups of three, and working out each group as a number in

the range 0=7. (e.g. 100 becomes 4, 101 becomes 5).

-2

56

HALF WORD EXPRESSIONS

These are formed from half-word variables and

constants, connected by half-word operators, which arest-

operator exanple neaning
+ - %/ aa + ob normal meaning but acting on

only 24 bits,.

& ca & ob AND., Compare ca and ab bit by
bit, and put a 1 in the
answer whenever «a AND cb have
a 1, Otherwise O,

<

ca V 7 OR, Compare aa and 7, and put
a 1 in the answer whenever
aa OR 7 has a 1. Otherwise O.

£ 13 # ac , NOT EQUIVALENT, Compare 13
and ac, and put a2 1 in the
answer if, and only if, they
have NOT EQUIVALENT bits.
(i.e. one O and one 1),

» ' ad > 5 ' SHIFT RIGHT. Copy ad and shift
all bits 5 places right. Bits
lost at the right hand end

“.ye-appear on the left.
(Note: The symbol consists of
> and - superimposed).

s ca € on SHIFT LEFT. Copy ca and shift
all bits cyclicly n places
to the left,

-) (=) ob ~ NEGATE. Copy cb and turn all
o's into 1, and vice versa.
Notegz(=) and - are not the sane,

Example (of an & operation). 000000111111000000111 111
& 0000000000001111113111 143

give 000000000000000000111 111

Precedence of Cperators.
The preccdence rules given on page 13 do not apply in

half word expressions, All half word operators except (~) have equal
precedence, but are carried out in sequence £rdm‘the left, unless
brackets are inserted to over-ride this rule.

i.e. aa V cb + ac neans (ca ¥V aob) + ac

The operator (=) has higher precedence than the rest,
_and is slightly different as it has only one operand.

i.e. aa & (=) ac means aa & ((=) cac)

57

HALF WORD INSTRUCTIONS

(1) Half-word expressiouns way be assigned to half-word

variables, Such instructions may be made conditional,

Celo ox ay & o=
ax = ay 2 az if a>b
(2) Half-word expressions may be used anywhere where an integer
(or real) expression is expected.
Coefe print(ex V ap, 5, 0
a=b-cif ax & ay #0
(3) If a half-word expression is assigned to an integer variable,
24 bits are added onto the left, The first & are 00001100 (the exponent)
and the remaining 16 are the same as the sign bit of the half-
word being expanded into a full word(c if positive, 1 if negative).

This ensures that the numerical value of the half word is preserved,

Cefa a=ax&oty

Example

Take the integer n and reduce it modulo 16 (i.e. add or subtract
multiples of 16 until the result is in the range 0-15).

Allvexcept the last 7 bits of the integer represent multiples
of 16, The last 3 bits rcpresent the fractional part (as n is a true
integer, they are all 0). The required bits are therefore 4 in number
and we can extract them b& means of the 'mask?:-

000000000000000001111 000 (i.e. 15),

The required instruction is

n=o & 15 or in octal n = & *00000170

This method is suitable for reducing integers modulo 2,4,8
or ény power of 2. In particular, on & 1 will give 1 or O for odd or
even values of n, réspectively,

The next example has been designed to make use of all the

half-word operators.

58

Example

There.are 20 roads, numbered O,1,...0.4+10 all
leading to a traffic bottleneck area J. The state of each road is
to be kept in an appropriate bit of the integer J. (0 if road is
clear, 1 if blocked). Reports are being received from many sources,
stating that a given road has become bloéked, or clear, or even that
the previcus situation has been reversed, Allowance must be made for
the possibility of receiving the same information twice or more.

Solution
The half-word expression

{1 % en) has a 1 in the bit

representing road n, and a O
in all 23 other bits. N\\
- : road 19
milarl the s
Similarly, the expression oad 1

(=)L ¢ on has O in the bit road

representing road n, and 1 elsewherc. Hence suitable instructiocns

aret-

situation declaration/instruction
Initial situation. integer J,n,i,p
All roads clear. J=0
Road n is blocked - J=1<¢om ¥V al
Road n is clear _ J=(=)1 4 m & aJ
State of road n changed J=1<cm oS
All roads blocked J = ~1
Roads 0-5 all blocked J=al ¥ 63
Request to print out state p=4dJ
of all roads, cycle i = 0,1,19
print symbol(31+3*(ap & 1))
space
p=oap>1
repeat

Notes (1) print symbol(34) procduces a B (for blocked road),
print symbol(31l) produces a full stop (for clear road).
Hence the output will take. the formse~ .

BB.BBB..B...B.B BBB.

{2) The renzining details of the example ‘are left as an
exercise for the reader, - :

road O

59

FURTHER HALF-WORD VARIABLES

Immediate access to right-hand hali-words by means of the
symbol « is possible for locations declared to be of type integer,
but not for clements of integer arrays (c.g., ca is permitted, but .
an(i,d) is not). To obtaih the left~hand half of an 1ntegef 1océtion,
or cither half of an integer array element, it is necessary to make
use of the address function. The address of the left~hand half
of a is the same as addr{a): that of the right~hand half is addr{a)+i.

In the following, it is important to notice the two distinct
uses of ai-

(i) a(*half-word expression’)
(ii) «a followed by a name.

a means The 48-bit word stored at addr(a).
aa neans The 24-bit word stored at addr(a)+d.
alees) means The 24-bit word stored at the address given by

the bracketed HALF-WORD expression,

If we writet-
integer a,y

y = addr(a)
then as all addresses lie in the range -2%29< y < 220, oy is a
. half-word variable with value equal to addr{a)., Hence
alay) nmeans The 24-bit word stored at addr(a).

(i.e. the left-hand half of a),

This can be used anywhere where a half-word variable is allowed.

Example

“Peclare 2C half-word variables, and place the numbers O0-1G into them,

integer array a{1:10)
integer v,1i

y = addr{a(1})

cycle i = 0,1,19
ofai/2 + ay) = 1
repeat

6o

DOCUMENTS AND JOB DESCRIPTIONS

To make efficient use of the high speed of Atlas, it
is controlled by a master program called the supervisor.'
Each complete task the computer handles is called a "job" and
may be presented to the computer in several parts, each(of
which is called a "document". Each document must start
with certain information so that the supervisor may associate
it with the eppropriate Jjob.

SINGLE DOCUMENT JOBS

These are the simplest and the most common form of job.
Example The program given on pages L6-7 was transmitted
to Atlas as follows:-

meaning

JOB Start of a new job.

U EDIN, COU OSBORNE, T..L/401 ORDER INTS
Department: Computer Unit
Author: Osborne
Transmission Nos 101 of 196L
Brief Description: ORDER INTS

OUTPUT Details of output to follow

O SEVEN-HOLE PUNCH 4100 LINES Channel no. O, 7-Hole paper
: tape. Printed output not

to exceed 100 1ines..

COMPUTING 500 INSTRUCTIONS Computing is not to exceed 500
instruction interrupts (of
2048 machine code instructions
each).

STORE 415 BLOCKS Total store nsed is not to
exceed 15 blocks (each of
5412 locations)

COHMPILER AA Program below is written in
Atlas Autocode..

begin ﬁgogram as explained on pagses
Uo=7.

e o @

end of program

15

12 3 L7219 59 123 67 253 Data
97 82478 97 0 23 1 2 3 -

sk B Marke®* for end of document

61

Notes (1) The second line of the document (U EDIN.....INTS)
. ig known as the TITLE. The title is limited to a total of

80 characters none of which must be a backspace,

(2) The most convenient medium for large quantities of output
is the fast line printer. To make use of this, LINE PRINTER is
written in the job heading in place of SEVIN~HOLE PUNCH. The
results are printed out directly (tcp and one carbon) and
posted to Edinburgh. However, output required as data for a

subsequent job must be on paper tape {normally 7-hole punch),

(3 It may be more convenient to specify maximum output in

blocks (each of 4096 characters).
e.g. OUTRUT
O LINE PRINTER 11 BLOCKS

(4) Execution of the job ceases immediately if the maximum
. specified output, instruction interrupts or store is.exceeded. This
is largely a precaution against faulty programs running on and
incurring vast expense. If these maxima are not specified in the
job heading, the supervisor automatically allows 1 block of output,

3000 interrupts. and 20 blocks of store.

62

RESULTS FROM SINGLE DOCUMENT JOBS
The complete print-out of results from the ORDER INTS

program is given below, with an explanation on the following page.

00,00,03 / 17.,02,64 21.52.05
OUTPUT ©
U EDIN, COU OSBORNE, T.4/101 ORDER INTS

ATLAS AUTOCODE WITH FINAL SUPERVISOR QTH JAN 19€4

o] BEGIN M/C ADDRESS = 2240

6 BEGIN
18 BEGIN ROUTINE ORDER = 47 M/C ADDRESS = 2305
27 . BEGIN ROUTINE MAX = 48 M/C ADDRESS = 2445
36 END OF 48 OCCUPIES 69 M/C INSTRUCTIONS
37 BEGIN ROUTINE interchange = 49 M/C ADDRESS = 2517
40 END OF 49 OCCUPIES 20 M/C INSTRUCTIONS .
41 END OF 47 OCCUPIES 175 1M/C INSTRUCTIONS

NON~LOCAL VARIABLES ORDER

42 END
NON-LOCAL VARIABLES p

44 END OF PROGRAM OCCUPIES 305 M/C INSTRUCTIONS

PROGRAM ENTERED

INSTRUCTION 20Q 196

STORE 15 / 14
INPUT O 1 BLOCKS
OUTPUT © TT PUNCH 1 BLOCKS

END OUTPUT 1 BLOCKS

63

INTERPRETATION OF RESULT PRINT-OUT

(a) Heading ' Meaning

00.00.03 / 17.02.64 21.52.05 Supervisor No., Date. Time.
OUTPUT O Output channel No. O.
U EDIN, COU OSBORNE, T.4/101 ORDER INTS Title of job.

ATLAS AUTOCODE WITH FINAL SUPERVISOR QTH JAN 1964
Details of compiler
~and supervisor used,
with date of latest
amendment to conmpiler,

(b) Program Map

The program map gives the line numbers of the begining and the
end of each block and routine (functions and store maps are treated
as routines, and are called ' ROUTINE.ese00o! in the print-out).

The first begin is line O,

Each routine is given a serial number. After each block
and routine, the number of machine instructions involved is printed
out, followed by a list of non-local (i.e. global) names used in
that block or routine. This list includes the names of global
routines as well as variables, An unusual feature of the example
given is that the routine ORDER is called recursively, and so the

name ORDER appears as a non-local name used in routine CORDER.

(c) Results of the computation,

{(d) Terminal information Meaning

INSTRUCTION 209 196 Instruction interrupts used.
(a) Total (b) For compiling.

STORE 15 / 14 Store requested., Store used.

INPUT O 1 BLOCKS Amount of input on channel O,

OUTPUT O TT PUNCH 1 BLOCKS Amount of output on channel O,

END OUTPUT 1 BLOCKS Amount of output on all channels.

el

ESTIMATES OF OUTPUT, COMPUTING AND STORE

(a) QUTPUT It is normally easy to estimate the number of
lines of output required for results. To this must be

added an allowance to cover the program map, whose size depends
largely upon the‘number of blocks and routines. Unfortunately,
each line of program map counts as approximately five lines

of outpute.

(b) COMPUTING

Tor the first run of a program, it is necessary to make
a cautious over—estimate based upon experience. Subsequently,
the totel instructions used in the first run will give a
better guids,

(c) STORE
The total storage required consists of blocks for
(1) The compiled program. (Total M/C INSTRUCTIONS/51 2)
(2) Variables. (Total locations/512)
~(3) Certain permanent routines (including print, read)
(9 blocks). '

Note One 35 x 35 array occupies 4225 locations, which is
more than 2 blocks.

(##5) MULTIPLE DOCUMENT JOBS

At a later date it will be possible to run jobs using
several channels of input and/or geveral channels of outputs

FAULTY PROGRAMS (a) Compiler Time Faults

' The program map has an asterisk against the line
nurber of any illegal instruction or declaration, and
indicates the nature of the fault. Note that one faulty
line can easily cause subseQuent correct lines to be
gignalled as faulty.

Example begin

integer N
N =0
Here the declaration will not be understood, as the

delimiter integer must be completely underlined. The
instruction N = 0 will then be faulted as N has not been
geclared correctly. The print-out will appear:i-

0 BEGIN
4 * INSTRUCTION NOT RECOGNISED
integerN

2 * NAME N NOT SET

65,

Notes (1) The indication of type of fault is usually
self-evident, AP-FAULT (or FP-FAULT) indicates that the
actual parameter (or formal parameter) used is of a’ type
inconsistant with the declaration.

(2) As spaces are disregarded by the compiler, the
print out from any instruction not recognised will be |
devoid of spaces. (See integerN4above). Also, for
the moment, compound symbols will not be correctly
superimposed if paper tape output is used. (See note
on page 51).

(3) If a fault is recorded in the program map,
then PROGRAM ENTERED is replaced by PROGRAM FAULTY,
immediately followed by the terminal information about
the number of instructions and blocks used.

FAULTY PROGRAMS (p) Execution Time Faults

A fault occuring during the running of the program
(i.e. after PROGRAM ENTERED) also produces a fault print.
The execution of the program is terminated, Common
faults, generally caused by an attempt to divide by
Zero, args-—

DIV OVERFLOW
EXP OVERFLOW

The serial number of the routine and the line number
of failume are printed. Again most of the faults are
self-explanatory.

FAULT FINDING FACILITES

Some programming errors only show their presence
by producing incorrect results. The following facilities
are of use in tracing errors.

(1) QUERY PRINTING

A question mark written on the right of an assignment

instruction will cause the machine to print out the value
of the number assigned. The number is printed in
floating point form, with one figure before and ten after
the decimal point.

Eo e a=>b+c ?

Query printing is possible with assignments to
integer, real and complex variables but not half-word
variables,

@’

66,

Query printing can be suppressed in two waysi-
(2) During Execution The following machine instructions
are available,

instruction meaning
127,8L4,0,-1.425 No more gquery printing

until further orders,
167,8L,0,L4 Switch on query prints again,
With the above instructions, we can, for example,

execute a loop of instructions many times, but only
query print the first time round.

(b) During Compilation By inserting the following
delimiters, we can effectively erase query prints from

a part or the whole program without having to re-punch
the tape.

DELIMITER Meaning
ignore queries Subsequent query print

symbols are to be ignored
by the compiler.

compile queries This cancels the effect of

the previous delimiter.

(2) ROUTINE AND LABEL TRACING

DELIMITER Meaning
compile routine trace In the following section of

program, print out the
routine number every time
a routine is entered oy left.

compile jump trace In the following section of
program, print out details
of every jump instruction
obeyed., (simple jumps, test
" and switech)e .

stop routine trace These‘cancel the effects of

the previous two.

stop jump trace

Example In a part of the program where both routine
and jump traces were in force, the print-out might be:-

- 2 Rh4y7 = 3 —~» 5 END L7 ~i 1
CASE 3 switch 1

67

(#*x) COMPLEX ARITHMETIC FACILITIES

The following facilities for carrying out calculatidns
which involve complex quantities will be available shortly.

Declapations Varisbles may be declared as type complex.

In this case two consecutive locations are set aside for
each name, The first location holds the real and the second
the imaginary part. Complex arrays may be used. They
must be declared by compleX 8rrayesee.

Examples

complex Z:
complex array z (4:10)

Renaming locations is possible by means of the complex
array function:- '

Example » - N
complex array fa X{:2w(:x(1,1))- 2n-2,n,1)
renames the complex array A(1:n,1:n) so that

x(i,3) = £(1,3)

Notes (1) The address recovery function can have a complex
argument, The result is the address of the real part.

(2) 1In calculating the origin for the array function,
it must be remembered that each element occupies two locations.

(3) Apart from the exception mentioned in (2) above,
the complex array function is used in exactly the same manner as
the array function.

Complex Arithmetic Expressions

These consist of constants, varisbles and functions
connected by delimiters.

(a) Constants. Real or integer constants can be used in
complex expressions. In forming complex constants the role
of { -1 is played by the delimiter i.

Examples 5

| 1

| 1.75 + 10.573
Note The delimiter i is written to the left of the number,

(b) Variables. Complex, real and integer variables may
all be used in complex expressions.

g

G8

(c) Functions. The standard functions which produce eomplex
results when they have complex arguments are available,.
However, in this case they are preceded by c.

Examples gccos, cexp, clog

Complex Assignment Instructions

Complex, real or integer expressions can be assigned to
complex variables. If a resl or integer expression is
assigned, the imaginary part is, of course, set to zero,

Examples integer j,k
real X,y

complex z,7Z
complex array X(4:10)

Z = ccos(z) + i esin(z)

X (1) = cos(x) + i sin(x)
X (2) =x + 2y
X(3) =j+k

Complex functions in real expressions

Complex functions may not appear in real expressions.
However, the functions '

re(Z), im(z), mod(z), arg(Z)

convert from complex to real. ' Note that re(2) and im(Z)
are g pair of actual locations in the store and so may appear
on the left hand side of real assignments.

Conditions. Only real or integer expressions can appear in

conditional expressions.

Examples
-3 3 unless im(Z)> 0
if arg(z)2wr /2 then —» 5

Routines and Functions

The routines types are to be expanded to include types
complex function and complex map.

The parameter types complex name and complex are to be

defined in a manner analgous to that of the previously
considered parameter types. It is hoped that the type

complex array name will also be available.

69

Data

Complex numbers are punched on the data taps observing
conventions similar to those for real numbers.

Examples 3+ i
i |
1e17.¢3 + 1213 ly
Within +the number, spaces may only appear immediately
before or immediately after + i or -i. They may be read

by the usual read instrustion.

(%%x) LIST PROCESSING

A number of list processing facilities will be available
later, No details are given here, since the currently
planned instructions may be withdrawn and replaced by
new instructions written irn the form of routines.

LIBRARY ROUTINES

A number of lihrary routines and functions have
been collected at Manchester. For the time being,
copies of these on paper tape can be obtained from the
Computcr Unit, and included in a program exactly as 1f
written by the user, '

A list of library routines available on 418th February,
1964, is given on the next page. |

(***) TLIBRARY ROUTINES ON MAGNETIC TLiPE

Eventually, the library routines will be stored on
magnetic tape on Atlas, and then the programmer will only .
need to declare and call the routine, the description
being unnocessarye. The declaration will then take the form:-—

library routine SPECeesccssssseses -

L]

LIST

70,
OF LIBRARY ROUTINES AVAILABLE ON 48th FEBRUARY, 1964

from

(Further details of the use of these routines can be dbtalned
the Computer Unit).

real fn spec erf (real x)

Computes the error function,

real fn spec random (real name x, integer n)

Generates successive numbers rectangularly distributed
in (0,1) or normally distributed in(—i,1)

routine spec ber and bei (real x, real name ber, bei, integer n)

Computes the Bessel functions bernx and bein;

. routine spec householder (array name a,w, integer n,k)

(1)
(2)
(3)
(L)

Householder's method for eigenvalues and eigenvectors
of real symmetric matrix. Ly Components of this routine
are also available:- '

routine spec householder tridiagonalisation (e..e;..)

routine spec back transformation (ceeeeces)

routine spec tridibisection (eeeecececs)

poutine spec tridiinverse iteration (ceeececescs)

routine spec sym pos def mat inV (ececesccesss)

Solves AX = B by Choleski method, where A is symmetric
positive definate matrix stored as upper triangle,

'routlne spec int step (array name y, real x,h, integer n,

routine aux

routine spec int step 2 (array name y,e, real x,h, integer n,
routine aux

Single step of kutta-merson method for system of first-
order equations,

routine spec kutta-merson (array name y, real xO, x1,
real nLame e, integer n,k, routine aux)

Integration system of first-order equations,from\xo to xq.

real fn spec GAUSS 5 (real fn f, real a,b)

real fn spec GAUSS 6 (real fn f, real a,b)

real fn spec GAUSS N (real fn f, real a,b, integer n)
(5, 6 and N-point GAUSS guadrature for 2¢{n{ 9)

7

APPENDIX

Summary of instructions which can be made conditional

Any unconditional instruction can be made conditional by
writing an if or an unless clause either before or after ite
It is convenient to list all possible types of unconditional
ingtructions,

(1) ASSIGNMENTS to (a) real varisebles
(v) integer varisbles
(¢) half word varisbles
(d) result (in a function)
(e) complex varigbles (¥**)

(2) JUMP INSTRUCTICNS (a) to a simple label (e.gc —> 9)
(b) to switch lebel (e.g. —> A(ix]J)
(¢) to conditional label (e.g test 1,2, 3)
(a) return (i.e. jump to end of block)

(e) stop (i.e. jump to end of program)

(3) ROUTINE CALLS (a) permanent routines (e.g. print, read)
(b) routines declared in program .
(¢) library routines

(l4) caption INSTRUCTIONS

(5) LIST PROCESSING INSTRUCTIONS (sxx)

Notes (1) As assignment to result is also a jump instruction
(to end of function) and so might elso have been placed in the
ond group. ' '

(2) A conditional clause placed after a caption will be
indistinguishable from the test of the ception, and so will be
disregarded by the machine except that it will print out

"if‘.iio. Y

(3) cycle eeseas)
do not appear on the list of
repsat
repeas)

unconditional instructions, and so cannot be made conditional.

LK

