
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

New Insights from Old Programs
The Structure of The First ALGOL 60 System
van den Hove d'Ertsenryck, G.M.C.J.T.G.

Publication date
2019
Document Version
Other version
License
Other

Link to publication

Citation for published version (APA):
van den Hove d'Ertsenryck, G. M. C. J. T. G. (2019). New Insights from Old Programs: The
Structure of The First ALGOL 60 System. [Thesis, externally prepared, Universiteit van
Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Jun 2023

https://dare.uva.nl/personal/pure/en/publications/new-insights-from-old-programs(8ecd6e9b-767d-44ab-84a7-8eed35822da5).html

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

APPENDIX A

ALGOL: THE 1958, 1960 & 1962 REPORTS

ğ a.1 The 1958 Preliminary Report

Part I. Introduction .
Part II. Description of the reference language .

1. Structure of the language .
2. Basic symbols .
3. Expressions .

i) (Positive) Numbers N .
ii) Simple variables V .
iii) Subscripted variables V .
iv) Functions F .
v) Arithmetic expressions E .
vi) Boolean expressions B .

4. Statements ˚ .
i) Assignment statements .
ii) Go to statements .
iii) If statements .
iv) For statements .
v) Alternative statements .
vi) Do statements .
vii) Stop statements .
viii) Return statements .
ix) Procedure statements .

5. Declarations ´ .
i) Type declarations .
ii) Array declarations .
iii) Switch declarations .
iv) Function declarations .
v) Comment declarations .
vi) Procedure declarations .

Part III .
a) Basic symbols .
b) Syntactic skeleton .
c) Publication language .

Example .

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1958 PRELIMINARY REPORT a.

Preliminary Report — International Algebraic Language1

by

the ACM Committee on Programming Languages and
the GAMM Committee on Programming

edited by A. J. Perlis and K. Samelson

Note. In the interest of immediate circulation of the results of the ACM-GAMM committee
work on an algebraic programming language, this preliminary report is presented. The language
described naturally enough represents a compromise, but one based more upon differences of
taste than on content or fundamental ideas. Even so, it provides a natural and simple medium
for the expression of a large class of algorithms. This report has not been thoroughly examined
for errors and inconsistencies. It is anticipated that the committee will prepare a more complete
description of the language for later publication.
For all scientific purposes, reproduction of this report is explicitly permitted without any charge.
Acknowledgments. The members of the conference wish to express their appreciation to the
Association for Computing Machinery, the Deutsche Forschungsgemeinschaft, and the Eidgenös-
sische Technische Hochschule Zürich, for substantial help in making this conference and resultant
report possible.

Part I. Introduction

In 1955, as a result of the Darmstadt meeting on electronic computers, the GAMM (Gesellschaft
für Angewandte Mathemathik und Mechanik), Germany, set up a committee on programming
(Programmierungsausschuß). Later a subcommittee began to work on formula translation and
on the construction of a translator, and a considerable amount of work was done in this direction.
A conference attended by representatives of the USE, SHARE, and DUO organizations and
the ACM (Association for Computing Machinery) was held in Los Angeles on May 9 and 10,
1957 for the purpose of examining ways and means for facilitating exchange of all types of
computing information. Among other things, these conferees felt that a single universal computer
language would be very desirable. Indeed, the successful exchange of programs within various
organizations such as USE and SHARE had proved to be very valuable to computer installations.
They accordingly recommended that the ACM appoint a committee to study and recommend
action toward a universal programming language.
By October 1957 the GAMM group, aware of the existence of many programming languages,
concluded that rather than present still another formula language, an effort should be made
toward unification. Consequently, on October 19, 1957, a letter was written to Prof. John W.
Carr III, president of the ACM. The letter suggested that a joint conference of representatives
of the GAMM and ACM be held in order to fix upon a common formula language in the form
of a recommendation.
An ACM Ad-Hoc committee was then established by Dr. Carr, which represented computer
users, computer manufacturers, and universities. This committee held three meetings starting on
January 24, 1958 and discussed many technical details of programming language. The language
that evolved from these meetings was oriented more towards problem language than towards
computer language and was based on several existing programming systems. On April 18, 1958
the committee appointed a sub-committee to prepare a report giving the technical specifications
of a proposed language.
A comparison of the ACM committee proposal with a similar proposal prepared by the GAMM
group (presented at the above-mentioned ACM Ad-Hoc committee meeting of April 18, 1958)
indicated many common features. Indeed, the GAMM group had planned on its own initiative to

1. [Alternative title:] Report on the Algorithmic Language ALGOL

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1958 PRELIMINARY REPORT

use English words wherever needed. The GAMM proposal represented a great deal of work in its
planning and the proposed language was expected to find wide acceptance. On the other hand
the ACM proposal was based on experience with several successful, working problem oriented
languages.
Both the GAMM and ACM committees felt that because of the similarities of their proposals
there was an excellent opportunity for arriving at a unified language. They felt that a joint
working session would be very profitable and accordingly arranged for a conference in Switzerland
to be attended by four members from the GAMM group and four members from the ACM
committee. The meeting was held in Zürich, Switzerland, from May 27 to June 2, 1958 and
attended by F. L. Bauer, H. Bottenbruch, H. Rutishauser and K. Samelson from the GAMM com-
mittee and by J. W. Backus, C. Katz, A. J. Perlis, and J. H. Wegstein for the ACM committee.2

It was agreed that the contents of the two proposals should form the agenda of the meeting, and
the following objectives were agreed upon:
I. The new language should be as close as possible to standard mathematical notation and be

readable with little further explanation.
II. It should be possible to use it for the description of computing processes in publications.
III. The new language should be mechanically translatable into machine programs.
There are certain differences between the language used in publications and a language directly
usable by a computer. Indeed, there are many differences between the sets of characters usable
by various computers. Therefore, it was decided to focus attention on three different levels
of language, namely a Reference Language, a Publication Language and several Hardware
Representations.

Reference Language
1. It is the working language of the committee.
2. It is the defining language.
3. It has only one unique set of characters.
4. The characters are determined by ease of mutual understanding and not by any computer

limitations, coders notation, or pure mathematical notation.
5. It is the basic reference and guide for compiler builders.
6. It is the guide for all hardware representations.
7. It will not normally be used stating problems.
8. It is the guide for transliterating from publication language to any locally appropriate hardware

representations.
9. The main publications of the common language itself will use the reference representation.

Publication Language (see Part IIIc)
1. The description of this language is in the form of permissible variations of the reference

language (e. g., subscripts, spaces, exponents, Greek letters) according to usage of printing
and handwriting.

2. It is used for stating and communicating problems.
3. The characters to be used may be different in different countries but univocal correspondence

with reference representation must be secured.
Hardware Representations

1. Each one of these is a condensation of the reference language enforced by the limited number
of characters on standard input equipment.

2. Each one of these uses the character set of a particular computer and is the language accepted
by a translator for that computer.

3. Each one of these must be accompanied by a special set of rules for transliterating from
Publication language.

2. In addition to the members of the conference, the following people participated in the preliminary work of these committees:
GAMM: P. Graeff, P. Läuchli, M. Paul, F. Penzlin; ACM: D. Arden, J. McCarthy, R. Rich, R. Goodman, W. Turanski, S. Rosen,
P. Desilets, S. Gorn, H. Huskey, A. Orden, D. C. Evans.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1958 PRELIMINARY REPORT a.

Part II. Description of the reference language

1. Structure of the language
As stated in the introduction, the algorithmic language has three different kinds of representa-
tions —reference, hardware, and publication— and the development described in the sequel is
in terms of the reference representation. This means that all objects defined within the language
are represented by a given set of symbols — and it is only in the choice of symbols that the other
two representations may differ. Structure and content must be the same for all representations.
The purpose of the algorithmic language is to describe computational processes. The basic
concept used for the description of calculating rules is the well known arithmetic expression
containing as constituents numbers, variables, and functions. From such expressions are com-
pounded, by applying rules of arithmetic composition, self-contained units of the language —
explicit formulæ— called arithmetic statements.
To show the flow of larger computational processes, certain non-arithmetic statements are added
which may describe e. g., alternatives, or recursive repetitions of computing statements.
Statements may be supported by declarations which are not themselves computing rules, but
inform the translator of certain properties of objects appearing in statements, such as the class
of numbers taken on as values by a variable, the dimension of an array of numbers or even the
set of rules defining a function.
Sequences of statements and declarations, when appropriately combined, are called programs.
However, whereas complete and rigid formal rules for constructing translatable statements are
described in the following, no such rules can be given in the case of programs. Consequently, the
notion of program must be considered to be informal and intuitive, and the question whether a
sequence of statements may be called a program should be decided on the basis of the operational
meaning of the sequence.
In the sequel explicit rules —and associated interpretations— will be given describing the syntax
of the language. Any sequence of symbols to which these rules do not assign a specific interpre-
tation will be considered to be undefined. Specific translators may give such sequences different
interpretations.

2. Basic symbols
The reference language is built up from the basic symbols listed in Part IIIa.
These are:
1. Letters λ (the standard alphabet of small and capital letters)
2. Figures ζ (arabic numerals 0, . . ., 9)
3. Delimiters δ consisting of

a) operators ω:
arithmetic operators + − × /

relational operators < 5 = = > 6=
logical operators ¬ ∨ ∧ ≡
sequential operators go to do return stop for if if either or if

b) separators σ: , : ; := =: → 10 .
c) brackets β: () [] ↑ ↓ begin end
d) declarators ϕ: procedure array switch type comment

Of these symbols, letters do not have individual meaning. Figures and delimiters have a fixed
meaning which for the most part is obvious, or else will be given at the appropriate place in the
sequel.
Strings of letters and figures enclosed by delimiters represent new entities. However, only two
types of such strings are admissible:
1. Strings consisting of figures ζ only represent the (positive) integers G (including 0) with the
conventional meaning.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1958 PRELIMINARY REPORT

2. Strings beginning with a letter λ followed by arbitrary letters λ and/or figures ζ are called
identifiers.
They have no inherent meaning, but serve for identifying purposes only.

3. Expressions
Arithmetic and logical processes (in the most general sense), which the algorithmic language
is primarily intended to describe, are given by arithmetic and logical expressions, respectively.
Constituents of these expressions, except for certain delimiters, are numbers, variables, elemen-
tary arithmetic operators and relations, and other operators called functions. Since the descrip-
tion of both variables and functions may contain expressions, the definition of expressions, and
their constituents, is necessarily recursive.
The following are the units from which expressions are constructed:

i) (Positive) Numbers N
Form: N ∼ G.G10±G
where each G is an integer as defined above.
G.G is a decimal number of conventional form. The scale factor 10±G is the power of ten given
by ±G. The following constituents of a number may be omitted in any occurrence:
the fractional part .00. . .0 of integer decimal numbers;
the integer 1 in front of a scale factor;
the + sign in the scale factor;
the scale factor 10±0.
Examples:
4711
137.06
2.99971010

10−12
310−12

ii) Simple variables V
Simple variables V are designations for arbitrary scalar quantities, e. g., numbers as in elemen-
tary arithmetic.
Form: V ∼ I
where I is an identifier as defined above.
Examples:
a
x11
PSI2
ALPHA

iii) Subscripted variables V
Subscripted variables V designate quantities which are components of multidimensional arrays.
Form: V ∼ I [‘]
where ‘ ∼ E, E, . . ., E
is a list of arithmetic expressions as defined below. Each expression E occupies one subscript
position of the subscripted variable, and is called a subscript. The complete list of subscripts is
enclosed in the subscript brackets [].
The array component referred to by a subscripted variable is specified by the actual numerical
value of its subscripts (cf. arithmetic expressions).
Subscripts, however, are intrinsically integer-valued, and whenever the value of a subscript
expression is not integral, it is replaced by the nearest integer (in the sense of proper round off).

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1958 PRELIMINARY REPORT a.

Variables (both simple and subscripted ones) designate arbitrary real numbers unless otherwise
specified. However, certain declarations (cf. type declarations) may specify them to be of a
special type, e. g., integral , or Boolean . Boolean (or logical) variables may assume only the two
values “true” and “false.”

iv) Functions F
Functions F represent single numbers (function values), which result through the application of
given sets of rules to fixed sets of parameters.
Form: F ∼ I (P, P, . . ., P)
where I is an identifier, and P, P, . . ., P is the ordered list of actual parameters specifying the
parameter values for which the function is to be evaluated. A syntactic definition of parameters
is given in the sections on function declarations and procedure declarations. If the function
is defined by a function declaration, the parameters employed in any use of the function are
expressions compatible with the type of variables contained in the corresponding parameter
positions in the function declaration heading (cf. function declaration). Admissible parameters
for functions defined by procedure declarations are the same as admissible input parameters of
procedures as listed in the section on procedure statements.
Identifiers designating functions, just as in the case of variables, may be chosen according to
taste. However, certain identifiers should be reserved for the standard functions of analysis. This
reserved list should contain:
abs (E) for the modulus (absolute value) of the value of the expression E
sign (E) for the sign of the value of E
entier (E) for the largest integer not greater than the value of E
sqrt (E) for the square root of the value of E
sin (E) for the sine of the value of E
and so on according to common mathematical notation.

v) Arithmetic expressions E
Arithmetic expressions E are defined as follows:
A number, a variable (other than Boolean), or a function is an expression.
Form: E ∼ N

∼ V
∼ F

If E1 and E2 are expressions, the first symbols of which are neither “+” nor “−”, then the
following are expressions:
1. E ∼ + E1

2. ∼ − E2

3. ∼ E1 + E2

4. ∼ E1 − E2

5. ∼ E1 × E2

6. ∼ E1 / E2

7. ∼ E1 ↑ E2 ↓
8. ∼ (E1)
The operators +, −, ×, / appearing above have the conventional meaning. The parentheses ↑ ↓
denote exponentiation, where the leading expression is the base and the expression enclosed in
parentheses is the exponent.
Examples:3

2 ↑ 2 ↑ n ↓ ↓ means 2(2
n)

2 ↑ 2 ↓ ↑ n ↓ means (22)n

3. [Third example:] a ↑ 2 ↑ b ↓ ↓ ↑ 2 ↓ means (a2b)2

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1958 PRELIMINARY REPORT

The proper interpretation of expressions can always be arranged by appropriate positioning of
parentheses.
An arithmetic expression is a rule for computing one real number by executing the indicated
arithmetic operations on the actual numerical values of the constituents of the expression. This
value is obvious in the case of numbers N. For variables V, it is the current value (assigned
last in the dynamic sense), and for functions F it is the value arising from the computing rules
defining the function (cf. function declaration) when applied to the current values of the function
parameters given in the expression.
The sequence of operations within one expression is generally from left to right, with the following
additional rules:
a) parentheses are evaluated separately
b) for operators, the conventional rule of precedence applies:
first: × /

second: + −
In order to avoid misunderstandings, redundant parentheses should be used to express, for
example, ab

c
in the form (a×b)/c or (a/c)×b rather than by a×b/c, or a/c×b respectively,

and to avoid constructions such as a/b/c.
Examples:
A
Alpha
Degree
A[1, 1]
A[j + k − 2, j − k]
A[mu [s]]
a × sin (omega × t)
0.5 × a [N × (N − 1)/2, 0]

vi) Boolean expressions B
Boolean expressions B are defined analogously to arithmetic expressions:
a) A truth value, a variable (Boolean by declaration), or a function (Boolean by declaration) is
an expression.
Form: B ∼ 0 (the truth value “false”)

∼ 1 (the truth value “true”)
∼ V
∼ F

b) If E1 and E2 are arithmetic expressions, then the following arithmetic relations are expres-
sions:
B ∼ (E1 < E2)
∼ (E1 5 E2)
∼ (E1 6= E2)
∼ (E1 = E2)
∼ (E1 > E2)
∼ (E1 = E2)

Such expressions take on the (current) value “true” whenever the corresponding relation is
satisfied for the expressions involved, otherwise “false.”
c) If B1 and B2 are expressions, the following are expressions:
B ∼ ¬B1

∼ B1 ∨ B2

∼ B1 ∧ B2

∼ B1 ≡ B2

∼ (B1)

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1958 PRELIMINARY REPORT a.

The operators ¬, ∨, ∧, ≡ have the interpretations “not,” “or,” “and,” and “equivalent.”
Interpretation of the binary operators will be from left to right. The scope of ¬ is the first
expression to its right. Any other desired precedence must be indicated by the use of parentheses.
Examples:
(x = 0)
(X > 0) ∨ (y > 0)
(p ∧ q) ∨ (x 6= y)

4. Statements ˚
Closed and self-contained rules of operations are called statements ˚. They are defined recur-
sively in the following way:
a) Basic statements ˚ are those described in this section.
b) Strings of one or more statements4 may be combined into a single (compound) statement
by enclosing them within the “statement parentheses” begin and end. Single statements are
separated by the statement separator “;”.
Form: ˚ ∼ begin ˚; ˚; . . .; ˚ end
c) A statement may be made identifiable by attaching to it a label L, which is an identifier
I, or an integer G (with the meaning of identifier). The label precedes the attached statement
being labeled, and is separated from it by the separator colon (:). Label and statement together
constitute a statement called “labeled statement.”
Form: ˚ ∼ L: ˚
A labeled statement may not itself be labeled. In the case of labeled compound statements,
the closing parenthesis end may be followed by the statement label (followed by the statement
separator) in order to indicate the range of the compound statement:
Form: ˚ ∼ L: begin ˚; ˚; . . .; ˚ end L;

i) Assignment statements
Assignment statements serve for assigning the value of an expression to a variable.
Form a) ˚ ∼ V := E
If the expression on the right hand side of the assignment delimiter := is arithmetical, the variable
V on the left hand side must also be numerical, i. e., it must not be Boolean.
Generally, the arithmetic type of the expression E is determined by the constituents and opera-
tions of the expression E. However, V may be declared to be of a special type provided this
declaration is compatible with the possible values of the expression E.
Form b) ˚ ∼ V := B
If the expression on the right hand side of the assignment statement is Boolean, V may be any
variable. This means that the truth values “true” and “false” of the Boolean expression may be
interpreted arithmetically as integers “1 ” and “0 ”, which may then be assigned to a numerical
variable.

ii) Go to statements
Normally, the sequence of operations (described by the statement of a program) coincides with
the physical sequence of statements. This normal sequence of execution may be interrupted by
the use of go to statements.
Form: ˚ ∼ go to D
D is a designational expression specifying the label of the statement to be executed next. It is
either a label L or a switch variable I [E] (cf. switch declaration), where I is an identifier and E
a subscript expression. In the latter case, the numerical value of E (the value of the subscript) is
an ordinal which identifies the component of the switch I (named by declaration). This element

4. Declarations , which may be interspersed between statements, have no operational (dynamic) meaning. Therefore, they have
no significance in the definition of compound statements.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1958 PRELIMINARY REPORT

which is again a designational expression specifies the label to be used in the go to statement.
This label determination is obviously a recursive process, since the elements of the switch may
again be switch variables.
Examples:
go to hell
go to exit [(i ↑ 2 ↓ − j ↑ 2 ↓ + 1) / 2]
where exit refers to the declaration
switch exit := (D1, D2, . . ., Dn)

iii) If statements
The execution of a statement may be made to depend upon a certain condition which is imposed
by preceding the statement in question by an if statement.
Form: ˚ ∼ if B
where B is a Boolean expression.
If the value of B is “true,” the statement following the if statement will be executed. Otherwise,
it will be bypassed, and operation will be resumed with the next statement following.
Example: In the sequence of statements
if (a > 0); c := a ↑ 2 ↓ × b ↑ 2 ↓;
if (a < 0); c := a ↑ 2 ↓ + b ↑ 2 ↓;
if (a = 0); go to bed
one and only one of the three statements rightmost in each line will be executed.

iv) For statements
Recursive processes may be initiated by use of a for statement, which causes the following
statement to be executed several times, once for each of a series of values assigned to the recursing
variable contained in the for statement.
Form: a) ˚ ∼ for V := ‘

b) ˚ ∼ for V := E i1(Es1)Ee1, . . ., E ik(Esk)Eek

where ‘ is a list of k expressions E1, E2, . . ., Ek, and E ij, Esj, Eej are expressions.
In form a) the intent is to assign to V in succession the value of each expression of the list
(expressions taken in order of listing) and the statement following the for statement is executed
immediately following each such assignment.
In form b) each group of expressions E i(Es)Ee determines an arithmetic progression. The value
of E i is the initial value, Es gives the value of the increment (step), and Ee determines the end
value which is the last term of the progression contained in the interval [E i, Ee]. The intent is
to assign to V each value of every progression (these again taken in the order of listing from left
to right), and the statement following the for statement is executed immediately following each
such assignment.
The effect of a for statement may be precisely described in terms of “more elementary” statement
forms. Thus form (a) is precisely equivalent to:
V := E1; ˚; V := E2; ˚; . . . V := Ek; ˚
where ˚ is the statement following the for statement.
Form (b) is precisely equivalent to:
V := E i1; L1: ˚;5 V := E i1 + Es1; if (V 56 Ee1); go to L1;
...
V := E ik; Lk: ˚; V := E ik + Esk; if (V 5 Eek); go to Lk;
where ˚ is the statement following the for statement.

5. If ˚ is a labeled statement, L1 is that label. If not, the effect is as though it had a (unique) label L1. [Additional sentence:]
Lk (k 6= 1) are theoretically unique labels.

6. This relational form obtains if the progression is increasing; if decreasing, the relation = is understood to be employed.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1958 PRELIMINARY REPORT a.

Examples:
a) for I := 1 (1)n ; p := p × y + A[I]
b) for a := 1, 3, 5, 9.76, . . ., −13.75 ; begin . . . end

v) Alternative statements
An alternative statement is one which has the effect of selecting for execution one from a set
of given statements in accordance with certain conditions which exist when the statement is
encountered.
Form: ˚ ∼ if either B1; ˚1; or if B2; . . .; or if Bk; ˚k; end
where ˚ i is any statement other than a quantifier, i. e., if, for, or or if, and B i is any Boolean
expression.
The effect of an alternative statement may be precisely described in terms of “more elementary”
statement forms. Thus the above form is precisely equivalent to the sequence of statements:
if B1; begin ˚1; go to next end; if B2; begin ˚2; go to next end; . . .; if Bk; begin ˚k; go
to next end;
where “next ” is the label of the statement following the alternative statement.
Example:
if either (a > 0); y := a + 2 ; or if (a < 0); y := a/2 ; or if (a = 0); y := 0.57 end

vi) Do statements
A statement, or string of statements, once written down, may be entered again (in the sense of
copying) in any place of the same program by employing a do statement which during copying
permits substitution for certain constituents of the statements reused.
Form: ˚ ∼ do L1, L2 (S→ → I, . . ., S→ → I)
where L1 and L2 are labels, the S→ are strings of symbols not containing the separator → and
the I are identifiers, or labels, and the list enclosed by parentheses is a substitution list.
The do statement operates on the string of statements from, and including, the one labeled L1

through the one labeled L2, which statements constitute the range of the do statement. If L1 is
equal to L2, i. e., if the range is just the one statement L1, the characters “, L2” may be omitted.
The do statement causes itself to be replaced by a copy of the string of statements constituting
its range. However, in this copy all identifiers or labels, listed on the right-hand side of a separator
“→” in the substitution list of the do statement, (and which are utilized in these statements) are
replaced by the corresponding strings of symbols S→ on the left hand side of the separators “→”.
These strings S→ may be chosen freely with the one restriction that the substitutions produce
formally correct statements in the copy.7

Whenever a do statement contains in its range another do statement, the copying and substi-
tuting process for this second innermost do will be executed first. Therefore the (actual) copy
induced from a do statement never contains a do statement.
Declarations within the range of a do statement are not reproduced in the copy.
Examples:
do 5, 12 (x [i] → y, black label → red label , . . ., f (x, y) → g)
do 12A,ABC (x ↑ 2 ↓ + 3/y → A, . . .)
The range of a do statement should contain complete statements only, i. e., if the begin (end)
delimiter of a compound statement lies in the range of the do, then so should the matching end
(begin). If this rule is not complied with the result of the do statement may not be the one
desired.

vii) Stop statements
Stop is a delimiter which indicates an operational (dynamic) end of the program containing it.
Operationally, it has no successor statement.
Form: ˚ ∼ stop

7. Thus, in the copy produced, any designational expression whose range is a statement within the range of the do statement
must be transformed so that its range refers to the copy produced.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1958 PRELIMINARY REPORT

viii) Return statements
Return is a delimiter which indicates an operational end of a procedure. It may appear only in
a procedure declaration (cf. procedure declaration).
Form: ˚ ∼ return

ix) Procedure statements
A procedure statement serves to initiate (call for) the execution of a procedure, which is a closed
and self-contained process with a fixed ordered set of input and output parameters, permanently
defined by a procedure declaration (cf. procedure declaration).
Form: ˚ ∼ I (Pi, Pi, . . ., Pi) =: (Po, Po, . . ., Po)
Here I is an identifier which is the name of some procedure, i. e., it appears in the heading
of some procedure declaration (cf. procedure declaration). Pi, Pi, . . ., Pi is the ordered list of
actual input parameters specifying the input quantities to be processed by the procedure. Po,
Po, . . ., Po is the ordered list of actual output parameters specifying the variables to which the
results of the procedure will be assigned and alternate exits, if any.8 The procedure declaration
defining the called procedure contains, in its heading, a string of symbols identical in form to
the procedure statement, and the formal parameters occupying input and output parameter
positions there give complete information concerning the admissibility of parameters used in
any procedure call shown by the following replacement rules:

formal parameters in procedure declaration admissible parameters in procedure statement

input parameters:

single identifier (formal variable) any expression (compatible with the type of
the formal variable)

array, i. e., subscripted variable with k (= 1)
empty parameter positions

array with n (= k) parameter positions k of
which are empty

function with k empty parameter positions function with n (= k) parameter positions k
of which are empty

procedure with k empty parameter positions procedure with k empty parameter positions

parameter occurring in a procedure (added as
a primitive to the language)9

every string of symbols S , which does not con-
tain the symbol “,” (comma)

output parameters:

single identifier (formal variable) simple or subscripted variable

array (as above for input parameters) array (as above for input parameters)

(formal) label label

If a parameter is at the same time an input and output parameter this parameter must obviously
meet the requirements of both input and output parameters.
Within a program, a procedure statement causes execution of the procedure called by the state-
ment. The execution, however, is effected as though all formal parameters listed in the procedure
declaration heading were replaced, throughout the procedure, by the actual parameters listed,
in the corresponding position, in the procedure statement.
This replacement may be considered to be a replacement of every occurrence within the procedure
of the symbols, or sets of symbols, listed as formal parameters, by the symbols, or sets of symbols,
listed as actual parameters in the corresponding positions of the procedure statement, after

8. [Alternative wording:] The list of actual output parameters Po, Po, . . ., Po specifies the variables to which the results of
the procedure will be assigned, and alternate exits if any.

9. Within a program certain procedures may be called which are themselves not defined by procedure declarations in the
program, e. g., input-output procedures. These procedures may require as parameters quantities outside the language, e. g., a
string of characters providing input-output format information.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1958 PRELIMINARY REPORT a.

enclosing in parentheses every expression not enclosed completely in parentheses already.
Furthermore, any return statement is to be replaced by a go to statement referring, by its label,
to the statement following the procedure statement, which, if originally unlabeled, is treated as
having been assigned a (unique) label during the replacement process.
The values assignable to,10 or computable by, the actual input parameters must be compatible
with type declarations concerning the corresponding formal parameters which appear in the
procedure.
For actual output parameters, only type declarations duplicating given type declarations for the
corresponding formal parameters may be made.
Array declarations concerning actual parameters must duplicate, in corresponding subscript
positions, array declarations referring to the corresponding formal parameters.

5. Declarations ´
Declarations serve to state certain facts about entities referred to within the program. They have
no operational meaning, and within a given program their order of appearance is immaterial.
They pertain to the entire program (or procedure) in which they occur, and their effect is not
alterable by the running history of the program.

i) Type declarations
Type declarations serve to declare certain variables, or functions, to represent quantities of a
given class, such as the class of integers, or class of Boolean values.
Form: ´ ∼ type (I, I, . . ., I, I [], . . ., I [,], . . ., I [, ,], . . .)
where type is a symbolic representative of some type declarator such as integer or boolean,
and the I are identifiers.
Throughout the program, the variables, or functions named by the identifiers I, are constrained
to refer only to quantities of the type indicated by the declaration.11 On the other hand, all
variables, or functions which are to represent other than arbitrary real numbers must be so
declared.

ii) Array declarations
Array declarations give the dimensions of multidimensional arrays of quantities.
Form: ´ ∼ array (I, I, . . ., I [‘:‘’], I, I, . . ., I [‘:‘’], . . .)
where array is the array declarator, the I are identifiers, and the “‘ ” and “‘’ ” are lists of integers
separated by commas.
Within each pair of brackets, the number of positions of ‘ must be the same as the number of
positions of ‘’.
Each pair of lists enclosed in brackets [‘:‘’] indicates that the identifiers contained in the list I,
I, . . ., I immediately preceding it are the names of arrays with the following common properties:
a) the number of positions of ‘ is the number of dimensions of every array.
b) the values of ‘ and ‘’ are the lower and upper bounds of values of the corresponding subscripts
of every array.
An array is defined only when all upper subscript bounds are not smaller than the corresponding
lower bounds.

iii) Switch declarations
A switch declaration specifies the set of designational expressions represented by a switch vari-
able. If used in a go to statement, its value specifies the label of the statement called by the go
to statement (cf. go to statement).
Form: ´ ∼ switch I := (D1, D2, . . ., Dn)

10. [Alternative wording:] The values assigned to,

11. [Alternative wording:] indicated by the declarator.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1958 PRELIMINARY REPORT

where switch is the switch declarator, I is an identifier, and the D i are designational expressions
(cf. go to statement).
The switch declaration declares the list D1, D2, . . ., Dn to be a symbolic vector (the “switch”),
the designational expression Dk being the k th component. Reference is made to the switch by
the switch variable I [E], where I is the switch identifier and E is a subscript expression. The
switch variable, when used in go to statements, selects by the actual value of its subscript that
component of the switch determining the label called for by the go to statement. A switch
variable, being a designational expression, may appear as a component of a switch.

iv) Function declarations
A function declaration declares a given expression to be a function of certain of its variables.
Thereby, the declaration gives (for certain simple functions) the computing rule for assigning
values to the function (cf. functions) whenever this function appears in an expression.
Form: ´ ∼ IN (I, I, . . ., I) := E
where the I are identifiers and E is an expression which, among its constituents, may contain
simple variables named by identifiers appearing in the parentheses.
The identifier IN is the function name. The identifiers in parentheses designate the formal
parameters of the function.
Whenever the function IN (P, P, . . ., P) appears in an expression (a function call) the value
assigned to the function in actual computation is the computed value of the defining expression E.
For the evaluation, every variable V which is listed as a parameter I in the function declaration,
is assigned the current value of the actual parameter P in the corresponding position of the
parameter list of the function in the function call. The (formal) variables V in E which are listed
as parameters in the declaration bear no relationship to variables possessing the same identifier,
but appearing elsewhere in the program. All variables other than parameters appearing in E
have values as currently assigned in the program.
Example:
I (Z) := Z + 3 × y
. . .

alpha := q + I (h + 9 × mu)
In the statement assigning a value to alpha the computation is:
alpha := q + ((h + 9 × mu) + 3 × y)

v) Comment declarations
Comment declarations are used to add to a program informal comments, possibly in a natural
language, which have no meaning whatsoever in the algorithmic language, no effect on the
program, and are intended only as additional information for the reader.
Form: ´ ∼ comment S ;

where comment is the comment declarator, and S ; is any string of symbols not containing the
symbol “;”.

vi) Procedure declarations
A procedure declaration declares a program to be a closed unit (a procedure) which may be
regarded as a single compound operation (in the sense of a generalized function) depending
on a certain fixed set of input parameters, yielding a fixed set of results designated by output
parameters, and having a fixed set of possible exits defining possible successors.
Execution of the procedure operation is initiated by a procedure statement which furnishes
values for the input parameters, assigns the results to certain variables as output parameters,
and assigns labels to the exits.
Form: ´ ∼ procedure I (Pi) =: (Po), I (Pi) =: (Po), . . ., I (Pi) =: (Po)

´; ´; . . .; ´; begin ˚; ˚; . . .; ´; ´; . . .; ˚; ˚ end

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1958 PRELIMINARY REPORT a.

Here, the I are identifiers giving the names of the different procedures contained in the procedure
declaration. Each Pi represents an ordered list of formal input parameters, each Po a list of formal
output parameters which include any exits required by the corresponding procedures.
Some of the strings “=: (Po)” defining outputs and exits may be missing, in which case the
corresponding symbols “I (Pi)” define a procedure that may be called within expressions.
The ´’s in front of the delimiter begin are declarations concerning only input and output
parameters. The entire string of symbols from the declarator procedure (inclusive) up to the
delimiter begin (exclusive) is the procedure heading. Among the statements enclosed by the
parentheses begin and end there must be, for each identifier I listed in the heading as a
procedure name, exactly one statement labeled with this identifier, which then serves as the
entry to the procedure. For each “single output” procedure I (Pi) listed in the heading, a value
must be assigned within the procedure by an assignment statement “I := E ”, where I is the
identifier naming that procedure.
To each procedure listed in the heading, at least one return statement must correspond within
the procedure. Some of these return statements may however be identical for different procedures
listed in the heading.
Since a procedure is a self-contained program (except for parameters), the defining rules for
statements and declarations within procedures are those already given. A formal input parameter
may be
a) a single identifier I (formal variable),
b) an array I [, , . . .,] with k (k = 1, 2, . . .) empty subscript positions,
c) a function F (, , . . .,) with k (k = 1, 2, . . .) empty parameter positions,
d) a procedure P (, , . . .,) with k (k = 1, 2, . . .) empty parameter positions,
e) an identifier occurring in a procedure which is added as a primitive to the language.
A formal output parameter may be
a) a single identifier (formal variable),
b) an array with k (k = 1, 2, . . .) empty subscript positions.
A formal (exit) label may only be a label.
A label is an admissible formal exit label if, within the procedure, it appears in go to statements
or switch declarations.
An array declaration contained in the heading of the procedure declaration, and referring to a
formal parameter, may contain expressions in its lists defining subscript ranges. These expressions
may contain
a) numbers,
b) formal input variables, arrays, and functions.
All identifiers and all labels contained in the procedure have identity only within the proce-
dure, and have no relationship to identical identifiers or labels outside the procedure, with the
exception of the labels identical to the different procedure names contained in the heading.
A procedure declaration, once made, is permanent, and the only identifiable constituents of the
declaration are the procedure declaration heading, and the entrance labels. All rules of operations
and declarations contained within the procedure may be considered to be in a language different
from the algorithmic language. For this reason, a procedure may even initially be composed of
statements given in a language other than the algorithmic language, e. g., a machine language
may be required for expressing input-output procedures.
A tagging system may be required to identify the language form in which procedures are
expressed. The specific nature of such a system is not in the scope of this report.
Thus by using procedure declarations, new primitive elements may be added to the algorithmic
language at will.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1958 PRELIMINARY REPORT

Part III

a) Basic symbols (α)
Delimiters δ:

Operators ω ∼ + − × / ¬ ∨ ∧ ≡ = 6= > = 5 <
∼ go to do return stop for if or if if either

Separators σ ∼ , ; . : := =: → 10

Brackets β ∼ () [] ↑ ↓ begin end
Declarators ϕ ∼ procedure switch array type12 comment

Non-delimiters µ:

Letters λ ∼ A through Z ∼ a through z
Digits ζ ∼ 0 through 9

b) Syntactic skeleton
Syllables:

List ‘ ∼ E, E, . . ., E
Simple variable V ∼ I
Subscripted variable V ∼ I [E, E, . . ., E]
Function F ∼ I (R) where R ∼ P, P, . . ., P
Expression E (see the appropriate sections in Part II for the com-
Boolean expression B position rules)
Statement label L ∼ I

∼ G
Designational expression D ∼ L

∼ I [E]
Parameters P (see the appropriate sections in Part II for the com-

position rules)
Identifier I ∼ λµµµ. . .µ

Integer G ∼ ζζζ. . .ζ

N ∼ G.G10±G
may be empty

may be empty
Number

String of symbols S δ ∼ ααα . . .α where α is not the particular delimiter
δ given in the subscript

Statements ˚:
Assignment statement ˚ ∼ V := E

∼ V := B
˚ ∼ begin ˚; ˚; . . .; ˚ end

at least one ˚

Compound statement

Labeled statement ˚ ∼ L: ˚ where ˚ is unlabeled
Go to statement ˚ ∼ go to D

˚ ∼ do L, L (S→ → I, S→ → I, . . ., S→ → I)

may be empty may be empty

Do statement

Quantifier statements ˚ ∼ if B
∼ for V := ‘

∼ for V := E(E)E, E(E)E, . . ., E(E)E
Alternative statement ˚ ∼ if either B1; ˚1; or if B2; ˚2; . . .; or if Bk; ˚k end
Stop and return statements ˚ ∼ stop ∼ return
Procedure statement ˚ ∼ I (R) =: (R) where R ∼ P, P, . . ., P

12. Representant

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1958 PRELIMINARY REPORT a.

Declarations ´:
Function declaration ´ ∼ I (R) := E where R ∼ P, P, . . ., P

´ ∼ procedure I (R) =: (R), I (R) =: (R), . . .,
I (R) =: (R)

may be empty

may be empty may be empty

Procedure declaration

´; ´; . . .; ´; begin ˚; ˚; . . .; ´; ´; . . .; ˚; ˚ end
where R ∼ P, P, . . ., P

Switch declaration ´ ∼ switch := (D, D, . . ., D)
Array declaration ´ ∼ array (I, I, . . ., I [‘:‘], I, I, . . ., I [‘:‘], . . .)
Symbol classification declaration ´ ∼ type (I, I, . . ., I)
Comment declaration ´ ∼ comment S ;

c) Publication language
As stated in the introduction, the reference language is a link between hardware languages
and handwritten, typed or printed documentation. For transliteration between the reference
language and a language suitable for publications (for example, lectures in numerical analysis),
the following transliteration rules may be used:

Reference Language Publication Language
subscript brackets [] lowering of the line between the brackets
exponentiation parentheses ↑↓ raising of the line between the arrows
parentheses () any form of parentheses, brackets, braces
basis of ten 10 raising of the ten and of the following integral number, inser-

ting of the intended multiplication sign
statement separator ; line convention : each statement on a separate linemay be used

Furthermore, if line convention is used, the following changes may be simultaneously used:
multiplication cross × multiplication dot .
decimal point . decimal comma ,
separation mark , any common non-ambiguous separation mark

Example

Integration of a function F (x) by Simpson’s Rule. The values of F (x) are supplied by an assumed
existent function routine. The mesh size is halved until two successive Simpson sums agree to
within a prescribed error. During the mesh reduction F (x) is evaluated at most once for any x.
A value V greater than the maximum absolute value attained by the function on the interval
is required for initializing. (abs (absolute value) is the name of a standard procedure always
available to the programmer so that it need not be supplied as an input parameter.)

procedure Simps (F (), a, b, delta, V)
comment a , b are the min. and max. resp. of the points def. interval of integ. F () is the function
to be integrated. delta is the permissible difference between two successive Simpson sums. V is
greater than the maximum absolute value of F on a , b;
begin
Simps : Ibar := V × (b − a)

n := 1
h := (b − a) / 2
J := h × (F (a) + F (b))

Jl : S := 0
for k := 1 (1)n
S := S + F (a + (2 × k − 1) × h)

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

I := J + 4 × h × S
if (delta < abs (I − Ibar))
begin

Ibar := I
J := (I + J) / 4
n := 2 × n
h := h / 2
go to Jl

end
Simps := I / 3
return
integer (k, n)

end Simps

ğ a.2 The 1960 Report & 1962 Revised Report

Summary [only in the Revised Report] .
Introduction .
Description of the reference language .

1. Structure of the language .
1.1. Formalism for syntactic description .

2. Basic symbols, identifiers, numbers, and strings. Basic concepts
2.1. Letters .
2.2.1. Digits .
2.2.2. Logical values .
2.3. Delimiters .
2.4. Identifiers .
2.5. Numbers .
2.6. Strings .
2.7. Quantities, kinds and scopes .
2.8. Values and types .

3. Expressions .
3.1. Variables .
3.2. Function designators .
3.3. Arithmetic expressions .
3.4. Boolean expressions .
3.5. Designational expressions .

4. Statements .
4.1. Compound statements and blocks .
4.2. Assignment statements .
4.3. Go to statements .
4.4. Dummy statements .
4.5. Conditional statements .
4.6. For statements .
4.7. Procedure statements .

5. Declarations .
5.1. Type declarations .
5.2. Array declarations .
5.3. Switch declarations .
5.4. Procedure declarations .

Examples of procedure declarations .
Alphabetic index of definitions of concepts and syntactic units .

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

Report13 on the Algorithmic Language ALGOL 60

by

J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy,
P. Naur (editor), A. J. Perlis, H. Rutishauser, K. Samelson,

B. Vauquois, J. H. Wegstein, A. van Wijngaarden, M. Woodger

Dedicated to the memory of William Turanski

Introduction14

Background. After the publication15,16 of a preliminary report on the algorithmic language
ALGOL, as prepared at a conference in Zürich in 1958, much interest in the ALGOL language
developed.
As a result of an informal meeting held at Mainz in November 1958, about forty interested persons
from several European countries held an ALGOL implementation conference in Copenhagen in
February 1959. A “hardware group” was formed for working cooperatively right down to the
level of the paper tape code. This conference also led to the publication by Regnecentralen,
Copenhagen, of an ALGOL Bulletin, edited by Peter Naur, which served as a forum for further
discussion. During the June 1959 ICIP Conference in Paris several meetings, both formal and
informal ones, were held. These meetings revealed some misunderstandings as to the intent of the
group which was primarily responsible for the formulation of the language, but at the same time
made it clear that there exists a wide appreciation of the effort involved. As a result of the discus-
sions it was decided to hold an international meeting in January 1960 for improving the ALGOL
language and preparing a final report. At a European ALGOL Conference in Paris in November
1959 which was attended by about fifty people, seven European representatives were selected to
attend the January 1960 Conference, and they represent the following organizations: Association
Française de Calcul, British Computer Society, Gesellschaft für Angewandte Mathematik und
Mechanik, and Nederlands Rekenmachine Genootschap. The seven representatives held a final
preparatory meeting at Mainz in December 1959.

13. [Revised Report :] Revised Report

14. [In the Revised Report, a new section precedes the Introduction:]

Summary

The report gives a complete defining description of the international algorithmic language ALGOL 60. This is a language
suitable for expressing a large class of numerical processes in a form sufficiently concise for direct automatic translation into
the language of programmed automatic computers. The introduction contains an account of the preparatory work leading up
to the final conference, where the language was defined. In addition the notions reference language, publication language, and
hardware representations are explained.

In the first chapter a survey of the basic constituents and features of the language is given, and the formal notation, by which
the syntactic structure is defined, is explained.

The second chapter lists all the basic symbols, and the syntactic units known as identifiers, numbers, and strings are defined.
Further some important notions such as quantity and value are defined.

The third chapter explains the rules for forming expressions and the meaning of these expressions. Three different types of
expressions exist: arithmetic, Boolean (logical), and designational.

The fourth chapter describes the operational units of the language, known as statements. The basic statements are: assignment
statements (evaluation of a formula), go to statements (explicit break of the sequence of execution of statements), dummy
statements, and procedure statements (call for execution of a closed process, defined by a procedure declaration). The formation
of more complex structures, having statement character, is explained. These include: conditional statements, for statements,
compound statements, and blocks.

In the fifth chapter the units known as declarations, serving for defining permanent properties of the units entering into a
process described in the language, are defined.

The report ends with two detailed examples of the use of the language and an alphabetic index of definitions.

15. Preliminary Report — International Algebraic Language, Comm. Assoc. Comp. Mach. 1, No. 12 (1958), 8.

16. Report on the Algorithmic Language ALGOL by the ACM Committee on Programming Languages and the GAMM Com-
mittee on Programming, edited by A. J. Perlis and K. Samelson, Numerische Mathematik Bd. 1, S. 41–60 (1959).

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

Meanwhile, in the United States, anyone who wished to suggest changes or corrections to
ALGOL was requested to send his comments to the ACM Communications where they were
published. These comments then became the basis of consideration for changes in the ALGOL
language. Both the SHARE and USE organizations established ALGOL working groups and both
organizations were represented on the ACM Committee on Programming Languages. The ACM
Committee met in Washington in November 1959 and considered all comments on ALGOL that
had been sent to the ACM Communications. Also, seven representatives were selected to attend
the January 1960 international conference. These seven representatives held a final preparatory
meeting in Boston in December 1959.
January 1960 Conference. The thirteen representatives,17 from Denmark, England, France,
Germany, Holland, Switzerland, and the United States, conferred in Paris from January 11 to
16, 1960.
Prior to this meeting a completely new draft report was worked out from the preliminary report
and the recommendations of the preparatory meetings by Peter Naur and the Conference adopted
this new form as the basis for its report. The Conference then proceeded to work for agreement
on each item of the report. The present report represents the union of the committee’s concepts
and the intersection of its agreements.18

17. William Turanski of the American group was killed by an automobile just prior to the January 1960 Conference.

18. [In the Revised Report, this paragraph is followed by a new section:]

April 1962 Conference (Edited by M. Woodger). A meeting of some of the authors of ALGOL 60 was held on 2nd–3rd April
1962 in Rome, Italy, through the facilities and courtesy of the International Computation Center. The following were present:
Authors Advisers Observer
F. L. Bauer M. Paul W. L. van der Poel (Chairman,
J. Green R. Franciotti IFIP TC 2.1 Working Group ALGOL)
C. Katz P. Z. Ingerman
R. Kogon (representing J. W. Backus)
P. Naur
K. Samelson G. Seegmüller
J. H. Wegstein R. E. Utman
A. van Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known errors in, attempt to eliminate apparent ambiguities in, and otherwise clarify
the ALGOL 60 Report. Extensions to the language were not considered at the meeting. Various proposals for correction and
clarification that were submitted by interested parties in response to the Questionnaire in ALGOL Bulletin No. 14 were used
as a guide.

This report* constitutes a supplement to the ALGOL 60 Report which should resolve a number of difficulties therein. Not
all of the questions raised concerning the original report could be resolved. Rather than risk hastily drawn conclusions on a
number of subtle points, which might create new ambiguities, the committee decided to report only those points which they
unanimously felt could be stated in clear and unambiguous fashion.

Questions concerned with the following areas are left for further consideration by Working Group 2.1 of IFIP, in the expectation
that current work on advanced programming languages will lead to better resolution:
1. Side effects of functions.
2. The call by name concept.
3. own: static or dynamic.
4. For statement: static or dynamic.
5. Conflict between specification and declaration.

The authors of the ALGOL 60 Report present at the Rome Conference, being aware of the formation of a Working Group
on ALGOL by IFIP, accepted that any collective responsibility which they might have with respect to the development,
specification, and refinement of the ALGOL language will from now on be transferred to that body.

This report has been reviewed by IFIP TC 2 on Programming Languages in August 1962 and has been approved by the Council
of the International Federation for Information Processing.
* The present edition follows the text which was approved by the Council of IFIP. Although it is not clear from the Introduction,
the present version is the original report of the January 1960 conference modified according to the agreements reached during
the April 1962 conference. Thus the report mentioned here is incorporated in the present version. The modifications touch
the original report in the following sections: Changes of text: 1 with footnote; 2.1 footnote; 2.3; 2.7; 3.3.3; 3.3.4.2; 4.1.3;
4.2.3; 4.2.4; 4.3.4; 4.7.3; 4.7.3.1; 4.7.3.3; 4.7.5.1; 4.7.5.4; 4.7.6; 5; 5.3.3; 5.3.5; 5.4.3; 5.4.4; 5.4.5. Changes of syntax: 3.4.1; 4.1.1;
4.2.1; 4.5.1.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

As with the preliminary ALGOL report, three different levels of language are recognized, namely
a Reference Language, a Publication Language and several Hardware Representations.

Reference Language

1. It is the working language of the committee.
2. It is the defining language.
3. The characters are determined by ease of mutual understanding and not by any computer

limitations, coders notation, or pure mathematical notation.
4. It is the basic reference and guide for compiler builders.
5. It is the guide for all hardware representations.
6. It is the guide for transliterating from publication language to any locally appropriate hardware

representations.
7. The main publications of the ALGOL language itself will use the reference representation.

Publication Language

1. The publication language admits variations of the reference language according to usage of
printing and handwriting (e. g., subscripts, spaces, exponents, Greek letters).

2. It is used for stating and communicating processes.
3. The characters to be used may be different in different countries, but univocal correspondence

with reference representation must be secured.

Hardware Representations

1. Each one of these is a condensation of the reference language enforced by the limited number
of characters on standard input equipment.

2. Each one of these uses the character set of a particular computer and is the language accepted
by a translator for that computer.

3. Each one of these must be accompanied by a special set of rules for transliterating from
publication or reference language.

For transliteration between the reference language and a language suitable for publications,
among others, the following rules are recommended.

Reference Language Publication Language
Subscript brackets [] Lowering of the line between the brackets and removal of the brackets.
Exponentiation ↑ Raising of the exponent.
Parentheses () Any form of parentheses, brackets, braces.
Basis of ten 10 Raising of the ten and of the following integral number, inserting of the

intended multiplication sign.

Description of the reference language

Was sich überhaupt sagen laßt, laßt sich klar sagen;
und wovon man nicht reden kann, darüber muß man schweigen.

Ludwig Wittgenstein

1. Structure of the language
As stated in the introduction, the algorithmic language has three different kinds of representa-
tions —reference, hardware, and publication— and the development described in the sequel is
in terms of the reference representation. This means that all objects defined within the language
are represented by a given set of symbols — and it is only in the choice of symbols that the other
two representations may differ. Structure and content must be the same for all representations.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

The purpose of the algorithmic language is to describe computational processes. The basic
concept used for the description of calculating rules is the well known arithmetic expression
containing as constituents numbers, variables, and functions. From such expressions are com-
pounded, by applying rules of arithmetic composition, self-contained units of the language —
explicit formulæ— called assignment statements.
To show the flow of computational processes, certain non-arithmetic statements and statement
clauses are added which may describe e. g., alternatives, or iterative repetitions of computing
statements. Since it is necessary for the function of these statements that one statement refers
to another, statements may be provided with labels. Sequences of statements may be combined
into compound statements by insertion of statement brackets.19

Statements are supported by declarations which are not themselves computing instructions, but
inform the translator of the existence and certain properties of objects appearing in statements,
such as the class of numbers taken on as values by a variable, the dimension of an array of
numbers or even the set of rules defining a function. Each declaration is attached to and valid
for one compound statement. A compound statement which includes declarations is called a
block.20

A program is a self-contained compound statement, i. e. a compound statement which is not
contained within another compound statement and which makes no use of other compound
statements not contained within it.21

In the sequel the syntax and semantics of the language will be given.22

1.1. Formalism for syntactic description
The syntax will be described with the aid of metalinguistic formulæ.23 Their interpretation is
best explained by an example:
〈ab 〉 ::= (| [| 〈ab 〉(| 〈ab 〉 〈d 〉
Sequences of characters enclosed in the bracket 〈〉 represent metalinguistic variables whose
values are sequences of symbols. The marks ::= and | (the latter with the meaning of or) are
metalinguistic connectives. Any mark in a formula, which is not a variable or a connective,
denotes itself (or the class of marks which are similar to it). Juxtaposition of marks and/or
variables in a formula signifies juxtaposition of the sequences denoted. Thus the formula above
gives a recursive rule for the formation of values of the variable 〈ab 〉. It indicates that 〈ab 〉 may
have the value (or [or that given some legitimate value of 〈ab 〉, another may be formed by
following it with the character (or by following it with some value of the variable 〈d 〉. If the
values of 〈d 〉 are the decimal digits, some values of 〈ab 〉 are:
[(((1 (37 (
(12345 (
(((
[86

19. [In the Revised Report, this sentence becomes:] A sequence of statements may be enclosed between the statement brackets
begin and end to form a compound statement.

20. [In the Revised Report, these two last sentences become:] A sequence of declarations followed by a sequence of statements
and enclosed between begin and end constitutes a block. Every declaration appears in a block in this way and is valid only
for that block.

21. [In the Revised Report, this sentence becomes:] A program is a block or compound statement which is not contained within
another statement and which makes no use of other statements not contained within it.

22. Whenever the precision of arithmetic is stated as being in general not specified, or the outcome of a certain process is
[Revised Report : left undefined or] said to be undefined, this is to be interpreted in the sense that a program only fully defines
a computational process if the accompanying information specifies the precision assumed, the kind of arithmetic assumed, and
the course of action to be taken in all such cases as may occur during the execution of the computation.

23. Cf. J. W. Backus, The syntax and semantics of the proposed international algebraic language of the Zürich ACM-GAMM
conference. ICIP Paris, June 1959.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

In order to facilitate the study the symbols used for distinguishing the metalinguistic variables
(i. e. the sequences of characters appearing within the brackets 〈〉 as ab in the above example)
have been chosen to be words describing approximately the nature of the corresponding variable.
Where words which have appeared in this manner are used elsewhere in the text they will refer
to the corresponding syntactic definition. In addition some formulæ have been given in more
than one place.
Definition:
〈empty 〉 ::=
(i. e. the null string of symbols).

2. Basic symbols, identifiers, numbers, and strings. Basic concepts
The reference language is built up from the following basic symbols:
〈basic symbol 〉 ::= 〈letter 〉 | 〈digit 〉 | 〈logical value 〉 | 〈delimiter 〉

2.1. Letters
〈letter 〉 ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W
| X | Y | Z

This alphabet may arbitrarily be restricted, or extended with any other distinctive character
(i. e. character not coinciding with any digit, logical value or delimiter).
Letters do not have individual meaning. They are used for forming identifiers and strings24

(cf. sections 2.4. Identifiers, 2.6. Strings).

2.2.1. Digits
〈digit 〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Digits are used for forming numbers, identifiers, and strings.

2.2.2. Logical values
〈logical value 〉 ::= true | false
The logical values have a fixed obvious meaning.

2.3. Delimiters
〈delimiter 〉 ::= 〈operator 〉 | 〈separator 〉 | 〈bracket 〉 | 〈declarator 〉 | 〈specificator 〉
〈operator 〉 ::= 〈arithmetic operator 〉 | 〈relational operator 〉 | 〈logical operator 〉

| 〈sequential operator 〉
〈arithmetic operator 〉 ::= + | − | × | / | −: | ↑
〈relational operator 〉 ::= < | 5 | = | = | > | 6=
〈logical operator 〉 ::= ≡ | ⊃ | ∨ | ∧ | ¬
〈sequential operator 〉 ::= go to | if | then | else | for | do25
〈separator 〉 ::= , | . | 10 | : | ; | := | §† | step | until | while | comment
〈bracket 〉 ::= (|) | [|] | ‘ | ’ | begin | end
〈declarator 〉 ::= own | Boolean | integer | real | array | switch | procedure
〈specificator 〉 ::= string | label | value
Delimiters have a fixed meaning which for the most part is obvious, or else will be given at the
appropriate place in the sequel.
Typographical features such as blank space or change to a new line have no significance in the
reference language. They may, however, be used freely for facilitating reading.

24. It should be particularly noted that throughout the reference language underlining [boldface] is used for defining independent
basic symbols (see sections 2.2.2 and 2.3). These are understood to have no relation to the individual letters of which they are
composed. [Added in the Revised Report :] Within the present report [not including headings and section numbers] underlining
[boldface] will be used for no other purposes.

25. do is used in for statements. It has no relation whatsoever to the do of the preliminary report, which is not included in
ALGOL 60.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

For the purpose of including text among the symbols of a program the following “comment”
conventions hold:

The sequence of basic symbols: is equivalent with26

; comment 〈any sequence not containing ;〉 ; ;
begin comment 〈any sequence not containing ;〉 ; begin
end 〈any sequence not containing end or ; or else〉 end
By equivalence is here meant that any of the three symbols shown in the right hand column may,
in any occurrence outside of strings, be replaced by any sequence of symbols of the structure
shown in the same line of the left hand column without any effect on the action of the program.27

2.4. Identifiers

2.4.1. Syntax
〈identifier 〉 ::= 〈letter 〉 | 〈identifier 〉 〈letter 〉 | 〈identifier 〉 〈digit 〉
2.4.2. Examples
q
Soup
V17a
a34kTMNs
MARILYN
2.4.3. Semantics. Identifiers have no inherent meaning, but serve for the identification of simple
variables, arrays, labels, switches, and procedures. They may be chosen freely (cf. however section
3.2.4. Standard functions).
The same identifier cannot be used to denote two different quantities except when these quantities
have disjoint scopes as defined by the declarations of the program (cf. section 2.7. Quantities,
kinds and scopes and section 5. Declarations).

2.5. Numbers

2.5.1. Syntax
〈unsigned integer 〉 ::= 〈digit 〉 | 〈unsigned integer 〉 〈digit 〉
〈integer 〉 ::= 〈unsigned integer 〉 | + 〈unsigned integer 〉 | − 〈unsigned integer 〉
〈decimal fraction 〉 ::= . 〈unsigned integer 〉
〈exponent part 〉 ::= 10 〈integer 〉
〈decimal number 〉 ::= 〈unsigned integer 〉 | 〈decimal fraction 〉
| 〈unsigned integer 〉 〈decimal fraction 〉

〈unsigned number 〉 ::= 〈decimal number 〉 | 〈exponent part 〉
| 〈decimal number 〉 〈exponent part 〉

〈number 〉 ::= 〈unsigned number 〉 | + 〈unsigned number 〉 | − 〈unsigned number 〉
2.5.2. Examples
0 −200.084 −.08310−02
177 +07.43108 −107
.5384 9.3410+10 10−4
+0.7300 210−4 +10+5

2.5.3. Semantics. Decimal numbers have their conventional meaning. The exponent part is a
scale factor expressed as an integral power of 10.
2.5.4. Types. Integers are of type integer. All other numbers are of type real (cf. section
5.1. Type declarations).

26. [Revised Report :] is equivalent to

27. [In the Revised Report, this sentence becomes:] By equivalence is here meant that any of the three structures shown in the
left hand column may be replaced, in any occurrence outside of strings, by the symbol shown on the same line in the right hand
column without any effect on the action of the program. It is further understood that the comment structure encountered first
in the text when reading from left to right has precedence in being replaced over later structures contained in the sequence.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

2.6. Strings
2.6.1. Syntax
〈proper string 〉 ::= 〈any sequence of basic symbols not containing ‘or ’〉 | 〈empty 〉
〈open string 〉 ::= 〈proper string 〉 | ‘ 〈open string 〉 ’ | 〈open string 〉 〈open string 〉
〈string 〉 ::= ‘ 〈open string 〉 ’
2.6.2. Examples
‘5k ,,−‘[[[‘∧=/:’Tt ”
‘..This §† is §† a §† ‘string ”
2.6.3. Semantics. In order to enable the language to handle arbitrary sequences of basic symbols
the string quotes ‘ and ’ are introduced. The symbol §† denotes a space. It has no significance
outside strings.
Strings are used as actual parameters of procedures (cf. sections 3.2. Function designators and
4.7. Procedure statements).

2.7. Quantities, kinds and scopes
The following kinds of quantities are distinguished: simple variables, arrays, labels, switches, and
procedures.
The scope of a quantity is the set of statements in which the declaration for the identifier
associated with that quantity is valid, or, for labels, the set of statements which may have the
statement in which the label occurs as their successor.28

2.8. Values and types
A value is an ordered set of numbers (special case: a single number), an ordered set of logical
values (special case: a single logical value), or a label.
Certain of the syntactic units are said to possess values. These values will in general change during
the execution of the program. The values of expressions and their constituents are defined in
section 3. The value of an array identifier is the ordered set of values of the corresponding array
of subscripted variables (cf. section 3.1.4.1).
The various “types” (integer, real, Boolean) basically denote properties of values. The types
associated with syntactic units refer to the values of these units.

3. Expressions
In the language the primary constituents of the programs describing algorithmic processes are
arithmetic, Boolean, and designational expressions. Constituents of these expressions, except for
certain delimiters, are logical values, numbers, variables, function designators, and elementary
arithmetic, relational, logical, and sequential operators. Since the syntactic definition of both
variables and function designators contains expressions, the definition of expressions, and their
constituents, is necessarily recursive.
〈expression 〉 ::= 〈arithmetic expression 〉 | 〈Boolean expression 〉 | 〈designational expression 〉

3.1. Variables
3.1.1. Syntax
〈variable identifier 〉 ::= 〈identifier 〉
〈simple variable 〉 ::= 〈variable identifier 〉
〈subscript expression 〉 ::= 〈arithmetic expression 〉
〈subscript list 〉 ::= 〈subscript expression 〉 | 〈subscript list 〉 , 〈subscript expression 〉
〈array identifier 〉 ::= 〈identifier 〉
〈subscripted variable 〉 ::= 〈array identifier 〉 [〈subscript list 〉]
〈variable 〉 ::= 〈simple variable 〉 | 〈subscripted variable 〉

28. [In the Revised Report, this sentence becomes:] The scope of a quantity is the set of statements and expressions in which
the declaration of the identifier associated with that quantity is valid. For labels see section 4.1.3.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

3.1.2. Examples
epsilon
detA
a17
Q [7, 2]
x [sin (n × pi/2),Q [3, n , 4]]
3.1.3. Semantics. A variable is a designation given to a single value. This value may be used
in expressions for forming other values and may be changed at will by means of assignment
statements (section 4.2). The type of the value of a particular variable is defined in the declaration
for the variable itself (cf. section 5.1. Type declarations) or for the corresponding array identifier
(cf. section 5.2. Array declarations).
3.1.4. Subscripts
3.1.4.1. Subscripted variables designate values which are components of multidimensional arrays
(cf. section 5.2. Array declarations). Each arithmetic expression of the subscript list occupies
one subscript position of the subscripted variable and is called a subscript. The complete list
of subscripts is enclosed in the subscript brackets []. The array component referred to by a
subscripted variable is specified by the actual numerical value of its subscripts (cf. section
3.3. Arithmetic expressions).
3.1.4.2. Each subscript position acts like a variable of type integer and the evaluation of the
subscript is understood to be equivalent to an assignment to this fictitious variable (cf. section
4.2.4). The value of the subscripted variable is defined only if the value of the subscript expression
is within the subscript bounds of the array (cf. section 5.2. Array declarations).

3.2. Function designators

3.2.1. Syntax
〈procedure identifier 〉 ::= 〈identifier 〉
〈actual parameter 〉 ::= 〈string 〉 | 〈expression 〉 | 〈array identifier 〉 | 〈switch identifier 〉
| 〈procedure identifier 〉

〈letter string 〉 ::= 〈letter 〉 | 〈letter string 〉 〈letter 〉
〈parameter delimiter 〉 ::= , |) 〈letter string 〉 : (
〈actual parameter list 〉 ::= 〈actual parameter 〉

| 〈actual parameter list 〉 〈parameter delimiter 〉 〈actual parameter 〉
〈actual parameter part 〉 ::= 〈empty 〉 | (〈actual parameter list 〉)
〈function designator 〉 ::= 〈procedure identifier 〉 〈actual parameter part 〉
3.2.2. Examples
sin (a − b)
J (v + s, n)
R
S (s − 5) Temperature : (T) Pressure : (P)
Compile (‘:=’) Stack : (Q)
3.2.3. Semantics. Function designators define single numerical or logical values, which result
through the application of given sets of rules defined by a procedure declaration (cf. section
5.4. Procedure declarations) to fixed sets of actual parameters. The rules governing specifica-
tion of actual parameters are given in section 4.7. Procedure statements. Not every procedure
declaration defines the value of a function designator.
3.2.4. Standard functions. Certain identifiers should be reserved for the standard functions of
analysis, which will be expressed as procedures. It is recommended that this reserved list should
contain:

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

abs (E) for the modulus (absolute value) of the value of the expression E
sign (E) for the sign of the value of E (+1 for E > 0, 0 for E = 0, −1 for E < 0)
sqrt (E) for the square root of the value of E
sin (E) for the sine of the value of E
cos (E) for the cosine of the value of E
arctan (E) for the principal value of the arctangent of the value of E
ln (E) for the natural logarithm of the value of E
exp (E) for the exponential function of the value of E (eE)
These functions are all understood to operate indifferently on arguments both of type real and
integer. They will all yield values of type real, except for sign (E) which will have values of
type integer. In a particular representation these functions may be available without explicit
declarations (cf. section 5. Declarations).
3.2.5. Transfer functions. It is understood that transfer functions between any pair of quantities
and expressions may be defined. Among the standard functions it is recommended that there be
one, namely
entier (E),
which “transfers” an expression of real type to one of integer type, and assigns to it the value
which is the largest integer not greater than the value of E.

3.3. Arithmetic expressions

3.3.1. Syntax
〈adding operator 〉 ::= + | −
〈multiplying operator 〉 ::= × | / | −:
〈primary 〉 ::= 〈unsigned number 〉 | 〈variable 〉 | 〈function designator 〉

| (〈arithmetic expression 〉)
〈factor 〉 ::= 〈primary 〉 | 〈factor 〉 ↑ 〈primary 〉
〈term 〉 ::= 〈factor 〉 | 〈term 〉 〈multiplying operator 〉 〈factor 〉
〈simple arithmetic expression 〉 ::= 〈term 〉 | 〈adding operator 〉 〈term 〉

| 〈simple arithmetic expression 〉 〈adding operator 〉 〈term 〉
〈if clause 〉 ::= if 〈Boolean expression 〉 then
〈arithmetic expression 〉 ::= 〈simple arithmetic expression 〉

| 〈if clause 〉 〈simple arithmetic expression 〉 else 〈arithmetic expression 〉
3.3.2. Examples
Primaries:
7.39410−8
sum
w [i + 2, 8]
cos (y + z × 3)
(a − 3/y + vu ↑ 8)
Factors:
omega
sum ↑ cos (y + z × 3)
7.39410−8 ↑ w [i + 2, 8] ↑ (a − 3/y + vu↑8)
Terms :
U
omega × sum ↑ cos (y + z × 3)/7.39410−8 ↑ w [i + 2, 8] ↑ (a − 3/y + vu↑8)
Simple arithmetic expression:
U − Yu + omega × sum ↑ cos (y + z × 3)/7.39410−8 ↑ w [i + 2, 8] ↑ (a − 3/y + vu↑8)
Arithmetic expressions:
w × u − Q (S + Cu) ↑ 2

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

if q > 0 then S + 3 × Q/A else 2 × S + 3 × q
if a < 0 then U + V else if a × b > 17 then U/V else if k 6= y then V/U else 0
a × sin (omega × t)
0.571012 × a [N × (N − 1)/2, 0]
(A × arctan (y) + Z) ↑ (7 + Q)
if q then n − 1 else n
if a < 0 then A/B else if b = 0 then B/A else 2
3.3.3. Semantics. An arithmetic expression is a rule for computing a numerical value. In case
of simple arithmetic expressions this value is obtained by executing the indicated arithmetic
operations on the actual numerical values of the primaries of the expression, as explained in
detail in section 3.3.4 below. The actual numerical value of a primary is obvious in the case
of numbers. For variables it is the current value (assigned last in the dynamic sense), and for
function designators it is the value arising from the computing rules defining the procedure
(cf. section 5.4. Procedure declarations)29 when applied to the current values of the procedure
parameters given in the expression. Finally, for arithmetic expressions enclosed in parentheses
the value must through a recursive analysis be expressed in terms of the values of primaries of
the other three kinds.
In the more general arithmetic expressions, which include if clauses, one out of several simple
arithmetic expressions is selected on the basis of the actual values of the Boolean expressions
(cf. section 3.4. Boolean expressions). This selection is made as follows: The Boolean expressions
of the if clauses are evaluated one by one in sequence from left to right until one having the value
true is found. The value of the arithmetic expression is then the value of the first arithmetic
expression following this Boolean (the largest arithmetic expression found in this position is
understood). The construction:
else 〈simple arithmetic expression 〉
is equivalent to the construction:
else if true then 〈simple arithmetic expression 〉
3.3.4. Operators and types. Apart from the Boolean expressions of if clauses, the constituents
of simple arithmetic expressions must be of types real or integer (cf. section 5.1. Type declara-
tions). The meaning of the basic operators and the types of the expressions to which they lead
are given by the following rules:
3.3.4.1. The operators +, −, and × have the conventional meaning (addition, subtraction, and
multiplication). The type of the expression will be integer if both of the operands are of integer
type, otherwise real.
3.3.4.2. The operations 〈term 〉/〈factor 〉 and 〈term 〉−: 〈factor 〉 both denote division, to be
understood as a multiplication of the term by the reciprocal of the factor with due regard to the
rules of precedence (cf. section 3.3.5). Thus for example
a/b × 7/(p − q) × v/s
means
((((a × (b−1)) × 7) × ((p − q)−1)) × v) × (s−1)
The operator / is defined for all four combinations of types real and integer and will yield
results of real type in any case. The operator −: is defined only for two operands both of type
integer and will yield a result of type integer defined as follows:30

a −: b = sign (a/b) × entier (abs (a/b))
(cf. sections 3.2.4 and 3.2.5).
3.3.4.3. The operation 〈factor 〉↑〈primary 〉 denotes exponentiation, where the factor is the base
and the primary is the exponent. Thus for example

29. [Revised Report :] (cf. section 5.4.4. Values of function designators)

30. [Revised Report :] of type integer, mathematically defined as follows:

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

2 ↑ n ↑ k means (2n)k

while
2 ↑ (n ↑ m) means 2(n

m)

Writing i for a number of integer type, r for a number of real type, and a for a number of
either integer or real type, the result is given by the following rules:

a ↑ i If i > 0 : a × a × . . . × a (i times), of the same type as a
If i = 0, if a 6= 0 : 1, of the same type as a

if a = 0 : undefined
If i < 0, if a 6= 0 : 1/(a × a × . . . × a) (the denominator has i factors),31

of type real
if a = 0 : undefined

a ↑ r If a > 0 : exp (r × ln (a)), of type real
If a = 0, if r > 0 : 0.0, of type real

if r 5 0 : undefined
If a < 0 : always undefined

3.3.5. Precedence of operators. The sequence of operations within one expression is generally
from left to right, with the following additional rules:
3.3.5.1. According to the syntax given in section 3.3.1 the following rules of precedence hold:
first: ↑
second: × / −:
third: + −
3.3.5.2. The expression between a left parenthesis and the matching right parenthesis is evaluated
by itself and this value is used in subsequent calculations. Consequently the desired order of
execution of operations within an expression can always be arranged by appropriate positioning
of parentheses.
3.3.6. Arithmetics of real quantities. Numbers and variables of type real must be interpreted
in the sense of numerical analysis, i. e. as entities defined inherently with only a finite accuracy.
Similarly, the possibility of the occurrence of a finite deviation from the mathematically defined
result in any arithmetic expression is explicitly understood. No exact arithmetic will be speci-
fied, however, and it is indeed understood that different hardware representations may evaluate
arithmetic expressions differently. The control of the possible consequences of such differences
must be carried out by the methods of numerical analysis. This control must be considered a
part of the process to be described, and will therefore be expressed in terms of the language
itself.

3.4. Boolean expressions
3.4.1. Syntax
〈relational operator 〉 ::= < | 5 | = | = | > | 6=
〈relation 〉 ::= 〈arithmetic expression 〉 〈relational operator 〉 〈arithmetic expression 〉32
〈Boolean primary 〉 ::= 〈logical value 〉 | 〈variable 〉 | 〈function designator 〉
| 〈relation 〉 | (〈Boolean expression 〉)

〈Boolean secondary 〉 ::= 〈Boolean primary 〉 | ¬ 〈Boolean primary 〉
〈Boolean factor 〉 ::= 〈Boolean secondary 〉 | 〈Boolean factor 〉 ∧ 〈Boolean secondary 〉
〈Boolean term 〉 ::= 〈Boolean factor 〉 | 〈Boolean term 〉 ∨ 〈Boolean factor 〉
〈implication 〉 ::= 〈Boolean term 〉 | 〈implication 〉 ⊃ 〈Boolean term 〉
〈simple Boolean 〉 ::= 〈implication 〉 | 〈simple Boolean 〉 ≡ 〈implication 〉
〈Boolean expression 〉 ::= 〈simple Boolean 〉
| 〈if clause 〉 〈simple Boolean 〉 else 〈Boolean expression 〉

31. [Revised Report :] (the denominator has −i factors),

32. [Revised Report :] 〈relation〉 ::= 〈simple arithmetic expression〉 〈relational operator〉 〈simple arithmetic expression〉

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

3.4.2. Examples
x = −2
Y > V ∨ z < q
a + b > −5 ∧ z − d > q ↑ 2
p ∧ q ∨ x 6= y
g ≡ ¬a ∧ b ∧ ¬c ∨ d ∨ e ⊃ ¬f
if k < 1 then s > w else h 5 c
if if if a then b else c then d else f then g else h < k
3.4.3. Semantics. A Boolean expression is a rule for computing a logical value. The principles of
evaluation are entirely analogous to those given for arithmetic expressions in section 3.3.3.
3.4.4. Types. Variables and function designators entered as Boolean primaries must be declared
Boolean (cf. section 5.1. Type declarations and section 5.4.4. Values of function designators).
3.4.5. The operators. Relations take on the value true whenever the corresponding relation is
satisfied for the expressions involved, otherwise false.
The meaning of the logical operators ¬ (not), ∧ (and), ∨ (or), ⊃ (implies), and ≡ (equivalent),
is given by the following function table.

b1 false false true true
b2 false true false true

¬b1 true true false false
b1 ∧ b2 false false false true
b1 ∨ b2 false true true true
b1 ⊃ b2 true true false true
b1 ≡ b2 true false false true

3.4.6. Precedence of operators. The sequence of operations within one expression is generally
from left to right, with the following additional rules:
3.4.6.1. According to the syntax given in section 3.4.1 the following rules of precedence hold:
first: arithmetic expressions according to section 3.3.5.
second: < 5 = = > 6=
third: ¬
fourth: ∧
fifth: ∨
sixth: ⊃
seventh: ≡
3.4.6.2. The use of parentheses will be interpreted in the sense given in section 3.3.5.2.

3.5. Designational expressions
3.5.1. Syntax
〈label 〉 ::= 〈identifier 〉 | 〈unsigned integer 〉
〈switch identifier 〉 ::= 〈identifier 〉
〈switch designator 〉 ::= 〈switch identifier 〉 [〈subscript expression 〉]
〈simple designational expression 〉 ::= 〈label 〉 | 〈switch designator 〉
| (〈designational expression 〉)

〈designational expression 〉 ::= 〈simple designational expression 〉
| 〈if clause 〉 〈simple designational expression 〉 else 〈designational expression 〉

3.5.2. Examples
17
p9
Choose [n − 1]
Town [if y < 0 then N else N + 1]
if Ab < c then 17 else q [if w 5 0 then 2 else n]

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

3.5.3. Semantics. A designational expression is a rule for obtaining a label of a statement
(cf. section 4. Statements). Again the principle of the evaluation is entirely analogous to that
of arithmetic expressions (section 3.3.3). In the general case the Boolean expressions of the if
clauses will select a simple designational expression. If this is a label the desired result is already
found. A switch designator refers to the corresponding switch declaration (cf. section 5.3. Switch
declarations) and by the actual numerical value of its subscript expression selects one of the
designational expressions listed in the switch declaration by counting these from left to right.
Since the designational expression thus selected may again be a switch designator this evaluation
is obviously a recursive process.
3.5.4. The subscript expression. The evaluation of the subscript expression is analogous to that
of subscripted variables (cf. section 3.1.4.2). The value of a switch designator is defined only if
the subscript expression assumes one of the positive values 1, 2, 3, . . ., n, where n is the number
of entries in the switch list.
3.5.5. Unsigned integers as labels. Unsigned integers used as labels have the property that leading
zeroes do not affect their meaning, e. g. 00217 denotes the same label as 217.

4. Statements
The units of operation within the language are called statements. They will normally be executed
consecutively as written. However, this sequence of operations may be broken by go to statements,
which define their successor explicitly, and shortened by conditional statements, which may cause
certain statements to be skipped.
In order to make it possible to define a specific dynamic succession, statements may be provided
with labels.
Since sequences of statements may be grouped together into compound statements and blocks
the definition of statement must necessarily be recursive. Also since declarations, described in
section 5, enter fundamentally into the syntactic structure, the syntactic definition of statements
must suppose declarations to be already defined.

4.1. Compound statements and blocks
4.1.1. Syntax
〈unlabeled basic statement 〉 ::= 〈assignment statement 〉 | 〈go to statement 〉
| 〈dummy statement 〉 | 〈procedure statement 〉

〈basic statement 〉 ::= 〈unlabeled basic statement 〉 | 〈label 〉 : 〈basic statement 〉
〈unconditional statement 〉 ::= 〈basic statement 〉 | 〈for statement 〉
| 〈compound statement 〉 | 〈block 〉33

〈statement 〉 ::= 〈unconditional statement 〉 | 〈conditional statement 〉34
〈compound tail 〉 ::= 〈statement 〉 end | 〈statement 〉 ; 〈compound tail 〉
〈block head 〉 ::= begin 〈declaration 〉 | 〈block head 〉 ; 〈declaration 〉
〈unlabeled compound 〉 ::= begin 〈compound tail 〉
〈unlabeled block 〉 ::= 〈block head 〉 ; 〈compound tail 〉
〈compound statement 〉 ::= 〈unlabeled compound 〉 | 〈label 〉 : 〈compound statement 〉
〈block 〉 ::= 〈unlabeled block 〉 | 〈label 〉 : 〈block 〉35
This syntax may be illustrated as follows: Denoting arbitrary statements, declarations, and labels,
by the letters S, D, and L, respectively, the basic syntactic units take the forms:
Compound statement:
L: L: . . . begin S; S; . . . S; S end
Block:
L: L: . . . begin D; D; . . . D; S; S; . . . S; S end

33. [Revised Report :] 〈unconditional statement〉 ::= 〈basic statement〉 | 〈compound statement〉 | 〈block〉
34. [Revised Report :] 〈statement〉 ::= 〈unconditional statement〉 | 〈conditional statement〉 | 〈for statement〉
35. [Added in the Revised Report , after the definition of 〈block〉:] 〈program〉 ::= 〈block〉 | 〈compound statement〉

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

It should be kept in mind that each of the statements S may again be a complete compound
statement or block.
4.1.2. Examples
Basic statements:
a := p + q
go to Naples
Start : Continue : W := 7.993
Compound statement:
begin x := 0 ; for y := 1 step 1 until n do x := x + A[y];

if x > q then go to STOP else if x > w − 2 then go to S ;
Aw : St : W := x + bob end

Block:
Q : begin integer i, k ; real w ;

for i := 1 step 1 until m do
for k := i + 1 step 1 until m do
begin w := A[i,k];

A[i,k] := A[k,i];
A[k,i] := w end for i and k

end block Q
4.1.3. Semantics. Every block automatically introduces a new level of nomenclature. This is
realized as follows: Any identifier occurring within the block may through a suitable declaration
(cf. section 5. Declarations) be specified to be local to the block in question. This means (a) that
the entity represented by this identifier inside the block has no existence outside it and (b) that
any entity represented by this identifier outside the block is completely inaccessible inside the
block.
Identifiers (except those representing labels) occurring within a block and not being declared to
this block will be non-local to it, i. e. will represent the same entity inside the block and in the
level immediately outside it. The exception to this rule is presented by labels, which are local to
the block in which they occur.36

Since a statement of a block may again itself be a block the concepts local and non-local to a
block must be understood recursively. Thus an identifier, which is non-local to a block A, may
or may not be non-local to the block B in which A is one statement.

4.2. Assignment statements

4.2.1. Syntax
〈left part 〉 ::= 〈variable 〉 :=37

〈left part list 〉 ::= 〈left part 〉 | 〈left part list 〉 〈left part 〉
〈assignment statement 〉 ::= 〈left part list 〉 〈arithmetic expression 〉
| 〈left part list 〉 〈Boolean expression 〉

4.2.2. Examples
s := p[0] := n := n + 1 + s
n := n + 1
A := B/C − v − q × S
s [v, k + 2] := 3 − arctan (s × zeta)
V := Q > Y ∧ Z

36. [In the Revised Report, this sentence becomes:] A label separated by a colon from a statement, i. e. labeling that statement,
behaves as though declared in the head of the smallest embracing block, i. e. the smallest block whose brackets begin and
end enclose that statement. In this context a procedure body must be considered as if it were enclosed by begin and end and
treated as a block.

37. [Revised Report :] 〈left part〉 ::= 〈variable〉 := | 〈procedure identifier〉 :=

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

4.2.3. Semantics. Assignment statements serve for assigning the value of an expression to one
or several variables.38 The process will in the general case be understood to take place in three
steps as follows:
4.2.3.1. Any subscript expressions occurring in the left part variables are evaluated in sequence
from left to right.
4.2.3.2. The expression of the statement is evaluated.
4.2.3.3. The value of the expression is assigned to all the left part variables, with any subscript
expressions having values as evaluated in step 4.2.3.1.
4.2.4. Types. All variables of a left part list must be of the same declared type. If the variables
are Boolean the expression must likewise be Boolean. If the variables are of type real or integer
the expression must be arithmetic. If the type of the arithmetic expression differs from that of the
variables, appropriate transfer functions are understood to be automatically invoked. For transfer
from real to integer type the transfer function is understood to yield a result equivalent to
entier (E + 0.5)
where E is the value of the expression.39

4.3. Go to statements

4.3.1. Syntax
〈go to statement 〉 ::= go to 〈designational expression 〉
4.3.2. Examples
go to 8
go to exit [n + 1]
go to Town [if y < 0 then N else N + 1]
go to if Ab < c then 17 else q [if w < 0 then 2 else n]
4.3.3. Semantics. A go to statement interrupts the normal sequence of operations, defined by
the write-up of statements, by defining its successor explicitly by the value of a designational
expression. Thus the next statement to be executed will be the one having this value as its label.
4.3.4. Restriction. Since labels are inherently local, no go to statements can lead from outside
into a block.40

4.3.5. Go to an undefined switch designator. A go to statement is equivalent to a dummy
statement if the designational expression is a switch designator whose value is undefined.

4.4. Dummy statements

4.4.1. Syntax
〈dummy statement 〉 ::= 〈empty 〉
4.4.2. Examples
L:
begin . . .; John : end
4.4.3. Semantics. A dummy statement executes no operation. It may serve to place a label.

38. [In the Revised Report , this sentence becomes:] Assignment statements serve for assigning the value of an expression to
one or several variables or procedure identifiers. Assignment to a procedure identifier may only occur within the body of a
procedure defining the value of a function designator (cf. section 5.4.4).

39. [In the Revised Report , this section becomes:] Types. The type associated with all variables and procedure identifiers of a
left part list must be the same. If this type is Boolean, the expression must likewise be Boolean. If the type is real or integer,
the expression must be arithmetic. If the type of the arithmetic expression differs from that associated with the variables and
procedure identifiers, appropriate transfer functions are understood to be automatically invoked. For transfer from real to
integer type the transfer function is understood to yield a result equivalent to entier (E + 0.5) where E is the value of the
expression. The type associated with a procedure identifier is given by the declarator which appears as the first symbol of the
corresponding procedure declaration (cf. section 5.4.4).

40. [Added in the Revised Report :] A go to statement may, however, lead from outside into a compound statement.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

4.5. Conditional statements

4.5.1. Syntax
〈if clause 〉 ::= if 〈Boolean expression 〉 then
〈unconditional statement 〉 ::= 〈basic statement 〉 | 〈for statement 〉

| 〈compound statement 〉 | 〈block 〉41
〈if statement 〉 ::= 〈if clause 〉 〈unconditional statement 〉 | 〈label 〉 : 〈if statement 〉42
〈conditional statement 〉 ::= 〈if statement 〉 | 〈if statement 〉 else 〈statement 〉43
4.5.2. Examples
if x > 0 then n := n + 1
if v > u then V : q := n + m else go to R
if s < 0 ∨ P 5 Q then AA: begin if q < v then a := v/s

else y := 2 × a end else if v > s then a := v − q
else if v > s − 1 then go to S

4.5.3. Semantics. Conditional statements cause certain statements to be executed or skipped
depending on the running values of specified Boolean expressions.
4.5.3.1. If statement. The unconditional statement of an if statement will be executed if the
Boolean expression of the if clause is true. Otherwise it will be skipped and the operation will
be continued with the next statement.
4.5.3.2. Conditional statement. According to the syntax two different forms of conditional state-
ments are possible. These may be illustrated as follows:
if B1 then S1 else if B2 then S2 else S3; S4
and
if B1 then S1 else if B2 then S2 else if B3 then S3; S4
Here B1 to B3 are Boolean expressions, while S1 to S3 are unconditional statements. S4 is the
statement following the complete conditional statement.
The execution of a conditional statement may be described as follows: The Boolean expressions
of the if clauses are evaluated one after the other in sequence from left to right until one yielding
the value true is found. Then the unconditional statement following this Boolean is executed.
Unless this statement defines its successor explicitly the next statement to be executed will be S4,
i. e. the statement following the complete conditional statement. Thus the effect of the delimiter
else may be described by saying that it defines the successor of the statement it follows to be
the statement following the complete conditional statement.
The construction
else 〈unconditional statement 〉
is equivalent to
else if true then 〈unconditional statement 〉
If none of the Boolean expressions of the if clauses is true, the effect of the whole conditional
statement will be equivalent to that of a dummy statement.
For further explanation the following picture may be useful:

if B1 then S1 else if B2 then S2 else S3; S4

B1 false B2 false
4.5.4. Go to into a conditional statement. The effect of a go to statement leading into a condi-
tional statement follows directly from the above explanation of the effect of else.

41. [Revised Report :] 〈unconditional statement〉 ::= 〈basic statement〉 | 〈compound statement〉 | 〈block〉
42. [Revised Report :] 〈if statement〉 ::= 〈if clause〉 〈unconditional statement〉
43. [Revised Report :] 〈conditional statement〉 ::= 〈if statement〉 | 〈if statement〉 else 〈statement〉 | 〈if clause〉 〈for sta-
tement〉 | 〈label〉 : 〈conditional statement〉

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

4.6. For statements
4.6.1. Syntax
〈for list element 〉 ::= 〈arithmetic expression 〉
| 〈arithmetic expression 〉 step 〈arithmetic expression 〉 until 〈arithmetic expression 〉
| 〈arithmetic expression 〉 while 〈Boolean expression 〉

〈for list 〉 ::= 〈for list element 〉 | 〈for list 〉 , 〈for list element 〉
〈for clause 〉 ::= for 〈variable 〉 := 〈for list 〉 do
〈for statement 〉 ::= 〈for clause 〉 〈statement 〉 | 〈label 〉 : 〈for statement 〉
4.6.2. Examples
for q := 1 step s until n do A[q] := B [q]
for k := 1, V1 × 2 while V1 < N do
for j := I + G, L, 1 step 1 until N, C + D do A[k, j] := B [k, j]

4.6.3. Semantics. A for clause causes the statement S which it precedes to be repeatedly executed
zero or more times. In addition it performs a sequence of assignments to its controlled variable.
The process may be visualized by means of the following picture:

Initialize; test; statement S; advance; successor

for list exhausted
In this picture the word initialize means: perform the first assignment of the for clause. Advance
means: perform the next assignment of the for clause. Test determines if the last assignment
has been done. If so, the execution continues with the successor of the for statement. If not, the
statement following the for clause is executed.
4.6.4. The for list elements. The for list gives a rule for obtaining the values which are consec-
utively assigned to the controlled variable. This sequence of values is obtained from the for list
elements by taking these one by one in the order in which they are written. The sequence of
values generated by each of the three species of for list elements and the corresponding execution
of the statement S are given by the following rules:
4.6.4.1. Arithmetic expression. This element gives rise to one value, namely the value of the
given arithmetic expression as calculated immediately before the corresponding execution of the
statement S.
4.6.4.2. Step-until-element. An element of the form A step B until C, where A, B, and C are
arithmetic expressions, gives rise to an execution which may be described most concisely in terms
of additional ALGOL statements as follows:

V := A;
L1 : if (V − C) × sign (B) > 0 then go to Element exhausted ;

Statement S ;
V := V + B ;
go to L1 ;

where V is the controlled variable of the for clause and Element exhausted points to the
evaluation according to the next element in the for list, or if the step-until-element is the last of
the list, to the next statement in the program.
4.6.4.3. While-element. The execution governed by a for list element of the form E while F,
where E is an arithmetic and F a Boolean expression, is most concisely described in terms of
additional ALGOL statements as follows:
L3 : V := E ;

if ¬F then go to Element exhausted ;
Statement S ;
go to L3 ;

where the notation is the same as in 4.6.4.2 above.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

4.6.5. The value of the controlled variable upon exit. Upon exit out of the statement S (supposed
to be compound) through a go to statement the value of the controlled variable will be the same
as it was immediately preceding the execution of the go to statement.
If the exit is due to exhaustion of the for list, on the other hand, the value of the controlled
variable is undefined after the exit.
4.6.6. Go to leading into a for statement
The effect of a go to statement, outside a for statement, which refers to a label within the for
statement, is undefined.

4.7. Procedure statements
4.7.1. Syntax
〈actual parameter 〉 ::= 〈string 〉 | 〈expression 〉 | 〈array identifier 〉 | 〈switch identifier 〉
| 〈procedure identifier 〉

〈letter string 〉 ::= 〈letter 〉 | 〈letter string 〉 〈letter 〉
〈parameter delimiter 〉 ::= , |) 〈letter string 〉 : (
〈actual parameter list 〉 ::= 〈actual parameter 〉

| 〈actual parameter list 〉 〈parameter delimiter 〉 〈actual parameter 〉
〈actual parameter part 〉 ::= 〈empty 〉 | (〈actual parameter list 〉)
〈procedure statement 〉 ::= 〈procedure identifier 〉 〈actual parameter part 〉
4.7.2. Examples
Spur (A) Order : (7) Result to: (V)
Transpose (W, v + 1)
Absmax (A, N, M, Yy, I, K)
Innerproduct (A[t,P,u], B [P], 10, P, Y)
These examples correspond to examples given in section 5.4.2.
4.7.3. Semantics. A procedure statement serves to invoke (call for) the execution of a procedure
body (cf. section 5.4. Procedure declarations). Where the procedure body is a statement written
in ALGOL the effect of this execution will be equivalent to the effect of performing the following
operations on the program:44

4.7.3.1. Value assignment (call by value). All formal parameters quoted in the value part of
the procedure declaration heading are assigned the values (cf. section 2.8. Values and types)
of the corresponding actual parameters, these assignments being considered as being performed
explicitly before entering the procedure body. These formal parameters will subsequently be
treated as local to the procedure body.45

4.7.3.2. Name replacement (call by name). Any formal parameter not quoted in the value list is
replaced, throughout the procedure body, by the corresponding actual parameter, after enclosing
this latter in parentheses wherever syntactically possible. Possible conflicts between identifiers
inserted through this process and other identifiers already present within the procedure body
will be avoided by suitable systematic changes of the formal or local identifiers involved.
4.7.3.3. Body replacement and execution. Finally the procedure body, modified as above, is
inserted in place of the procedure statement and executed.46

4.7.4. Actual-formal correspondence. The correspondence between the actual parameters of the
procedure statement and the formal parameters of the procedure heading is established as follows:

44. [Revised Report :] the following operations on the program at the time of execution of the procedure statement:

45. [In the Revised Report, this sentence becomes:] The effect is as though an additional block embracing the procedure
body were created in which these assignments were made to variables local to this fictitious block with types as given in the
corresponding specifications (cf. section 5.4.5). As a consequence, variables called by value are to be considered as non-local to
the body of the procedure, but local to the fictitious block (cf. section 5.4.3).

46. [Added in the Revised Report :] If the procedure is called from a place outside the scope of any non-local quantity of the
procedure body the conflicts between the identifiers inserted through this process of body replacement and the identifiers whose
declarations are valid at the place of the procedure statement or function designator will be avoided through suitable systematic
changes of the latter identifiers.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

The actual parameter list of the procedure statement must have the same number of entries as
the formal parameter list of the procedure declaration heading. The correspondence is obtained
by taking the entries of these two lists in the same order.
4.7.5. Restrictions. For a procedure statement to be defined it is evidently necessary that the
operations on the procedure body defined in sections 4.7.3.1 and 4.7.3.2 lead to a correct ALGOL
statement.
This poses47 the restriction on any procedure statement that the kind and type of each actual
parameter be compatible with the kind and type of the corresponding formal parameter. Some
important particular cases of this general rule are the following:
4.7.5.1. Strings cannot occur as actual parameters in procedure statements calling procedure
declarations having ALGOL 60 statements as their bodies (cf. section 4.7.8).48

4.7.5.2. A formal parameter which occurs as a left part variable in an assignment statement
within the procedure body and which is not called by value can only correspond to an actual
parameter which is a variable (special case of expression).
4.7.5.3. A formal parameter which is used within the procedure body as an array identifier can
only correspond to an actual parameter which is an array identifier of an array of the same
dimensions. In addition if the formal parameter is called by value the local array created during
the call will have the same subscript bounds as the actual array.
4.7.5.4. A formal parameter which is called by value cannot in general correspond to a switch
identifier or a procedure identifier,49 because these latter do not possess values (the exception is
the procedure identifier of a procedure declaration which has an empty formal parameter part
(cf. section 5.4.1) and which defines the value of a function designator (cf. section 5.4.4). This
procedure identifier is in itself a complete expression).
4.7.5.5. Any formal parameter may have restrictions on the type of the corresponding actual
parameter associated with it (these restrictions may, or may not, be given through specifica-
tions in the procedure heading). In the procedure statement such restrictions must evidently be
observed.
4.7.6. Non-local quantities of the body. A procedure statement written outside the scope of any
non-local quantity of the procedure body is undefined.50

4.7.7. Parameter delimiters. All parameter delimiters are understood to be equivalent. No corre-
spondence between the parameter delimiters used in a procedure statement and those used in
the procedure heading is expected beyond their number being the same. Thus the information
conveyed by using the elaborate ones is entirely optional.
4.7.8. Procedure body expressed in code. The restrictions imposed on a procedure statement
calling a procedure having its body expressed in non-ALGOL code evidently can only be derived
from the characteristics of the code used and the intent of the user and thus fall outside the
scope of the reference language.

5. Declarations
Declarations serve to define certain properties of the identifiers of the program. A declaration
for an identifier is valid for one block.51 Outside this block the particular identifier may be used
for other purposes (cf. section 4.1.3).

47. [Revised Report :] imposes

48. [In the Revised Report , this section becomes:] If a string is supplied as an actual parameter in a procedure statement or
function designator, whose defining procedure body is an ALGOL 60 statement (as opposed to non-ALGOL code, cf. section
4.7.8), then this string can only be used within the procedure body as an actual parameter in further procedure calls. Ultimately
it can only be used by a procedure body expressed in non-ALGOL code.

49. [Added in the Revised Report , before the comma:] or a string

50. [In the Revised Report, this section becomes:] Deleted.

51. [In the Revised Report, these two sentences become:] Declarations serve to define certain properties of the quantities used
in the program, and to associate them with identifiers. A declaration of an identifier is valid for one block.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

Dynamically this implies the following: at the time of an entry into a block (through the begin
since the labels inside are local and therefore inaccessible from outside) all identifiers declared
for the block assume the significance implied by the nature of the declarations given. If these
identifiers had already been defined by other declarations outside they are for the time being
given a new significance. Identifiers which are not declared for the block, on the other hand,
retain their old meaning.
At the time of an exit from a block (through end, or by a go to statement) all identifiers which
are declared for the block lose their significance again.52

A declaration may be marked with the additional declarator own. This has the following effect:
upon a reentry into the block, the values of own quantities will be unchanged from their values
at the last exit, while the values of declared variables which are not marked as own are unde-
fined. Apart from labels and formal parameters of procedure declarations and with the possible
exception of those for standard functions (cf. sections 3.2.4 and 3.2.5) all identifiers of a program
must be declared. No identifier may be declared more than once in any one block head.
Syntax.
〈declaration 〉 ::= 〈type declaration 〉 | 〈array declaration 〉 | 〈switch declaration 〉
| 〈procedure declaration 〉

5.1. Type declarations

5.1.1. Syntax
〈type list 〉 ::= 〈simple variable 〉 | 〈simple variable 〉 , 〈type list 〉
〈type 〉 ::= real | integer | Boolean
〈local or own type 〉 ::= 〈type 〉 | own 〈type 〉
〈type declaration 〉 ::= 〈local or own type 〉 〈type list 〉
5.1.2. Examples
integer p, q, s
own Boolean Acryl, n
5.1.3. Semantics. Type declarations serve to declare certain identifiers to represent simple va-
riables of a given type. Real declared variables may only assume positive or negative values
including zero. Integer declared variables may only assume positive and negative integral values
including zero. Boolean declared variables may only assume the values true and false.
In arithmetic expressions any position which can be occupied by a real declared variable may be
occupied by an integer declared variable.
For the semantics of own, see the fourth paragraph of section 5 above.

5.2. Array declarations

5.2.1. Syntax
〈lower bound 〉 ::= 〈arithmetic expression 〉
〈upper bound 〉 ::= 〈arithmetic expression 〉
〈bound pair 〉 ::= 〈lower bound 〉 : 〈upper bound 〉
〈bound pair list 〉 ::= 〈bound pair 〉 | 〈bound pair list 〉 , 〈bound pair 〉
〈array segment 〉 ::= 〈array identifier 〉 [〈bound pair list 〉]

| 〈array identifier 〉 , 〈array segment 〉
〈array list 〉 ::= 〈array segment 〉 | 〈array list 〉 , 〈array segment 〉
〈array declaration 〉 ::= array 〈array list 〉 | 〈local or own type 〉 array 〈array list 〉
5.2.2. Examples
array a, b, c[7 :n,2 :m], s [−2 :10]
own integer array A[if c < 0 then 2 else 1 :20]
real array q [−7 :−1]

52. [Revised Report :] lose their local significance.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

5.2.3. Semantics. An array declaration declares one or several identifiers to represent multidi-
mensional arrays of subscripted variables and gives the dimensions of the arrays, the bounds of
the subscripts, and the types of the variables.
5.2.3.1. Subscript bounds. The subscript bounds for any array are given in the first subscript
bracket following the identifier of this array in the form of a bound pair list. Each item of this
list gives the lower and upper bound of a subscript in the form of two arithmetic expressions
separated by the delimiter : . The bound pair list gives the bounds of all subscripts taken in
order from left to right.
5.2.3.2. Dimensions. The dimensions are given as the number of entries in the bound pair lists.
5.2.3.3. Types. All arrays declared in one declaration are of the same quoted type. If no type
declarator is given the type real is understood.
5.2.4. Lower upper bound expressions.
5.2.4.1. The expressions will be evaluated in the same way as subscript expressions (cf. section
3.1.4.2).
5.2.4.2. The expressions can only depend on variables and procedures which are non-local to the
block for which the array declaration is valid. Consequently in the outermost block of a program
only array declarations with constant bounds may be declared.
5.2.4.3. An array is defined only when the values of all upper subscript bounds are not smaller
than those of the corresponding lower bounds.
5.2.4.4. The expressions will be evaluated once at each entrance into the block.
5.2.5. The identity of subscripted variables. The identity of a subscripted variable is not related
to the subscript bounds given in the array declaration. However, even if an array is declared own
the values of the corresponding subscripted variables will, at any time, be defined only for those
of these variables which have subscripts within the most recently calculated subscript bounds.

5.3. Switch declarations

5.3.1. Syntax
〈switch list 〉 ::= 〈designational expression 〉 | 〈switch list 〉 , 〈designational expression 〉
〈switch declaration 〉 ::= switch 〈switch identifier 〉 := 〈switch list 〉
5.3.2. Examples
switch S := S1, S2, Q [m], if v > −5 then S3 else S4
switch Q := p1, w
5.3.3. Semantics. A switch declaration defines the values corresponding to a switch identifier.53

These values are given one by one as the values of the designational expressions entered in the
switch list. With each of these designational expressions there is associated a positive integer, 1,
2, . . ., obtained by counting the items in the list from left to right. The value of the switch desig-
nator corresponding to a given value of the subscript expression (cf. section 3.5. Designational
expressions) is the value of the designational expression in the switch list having this given value
as its associated integer.
5.3.4. Evaluation of expressions in the switch list. An expression in the switch list will be
evaluated every time the item of the list in which the expression occurs is referred to, using the
current values of all variables involved.
5.3.5. Influence of scopes. Any reference to the value of a switch designator from outside the scope
of any quantity entering into the designational expression for this particular value is undefined.54

53. [In the Revised Report, this sentence becomes:] A switch declaration defines the set of values of the corresponding switch
designators.

54. [In the Revised Report, this section becomes:] Influence of scopes. If a switch designator occurs outside the scope of a
quantity entering into a designational expression in the switch list, and an evaluation of this switch designator selects this
designational expression, then the conflicts between the identifiers for the quantities in this expression and the identifiers whose
declarations are valid at the place of the switch designator will be avoided through suitable systematic changes of the latter
identifiers.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

5.4. Procedure declarations

5.4.1. Syntax
〈formal parameter 〉 ::= 〈identifier 〉
〈formal parameter list 〉 ::= 〈formal parameter 〉

| 〈formal parameter list 〉 〈parameter delimiter 〉 〈formal parameter 〉
〈formal parameter part 〉 ::= 〈empty 〉 | (〈formal parameter list 〉)
〈identifier list 〉 ::= 〈identifier 〉 | 〈identifier list 〉 , 〈identifier 〉
〈value part 〉 ::= value 〈identifier list 〉 ; | 〈empty 〉
〈specifier 〉 ::= string | 〈type 〉 | array | 〈type 〉 array | label | switch

| procedure | 〈type 〉 procedure
〈specification part 〉 ::= 〈empty 〉 | 〈specifier 〉 〈identifier list 〉 ;

| 〈specification part 〉 〈specifier 〉 〈identifier list 〉 ;
〈procedure heading 〉 ::=

〈procedure identifier 〉 〈formal parameter part 〉 ; 〈value part 〉 〈specification part 〉
〈procedure body 〉 ::= 〈statement 〉 | 〈code 〉
〈procedure declaration 〉 ::= procedure 〈procedure heading 〉 〈procedure body 〉
| 〈type 〉 procedure 〈procedure heading 〉 〈procedure body 〉

5.4.2. Examples (see also the examples at the end of the report).
procedure Spur (a) Order : (n) Result : (s); value n ; array a ; integer n ; real s ;
begin integer k ;

s := 0 ; for k := 1 step 1 until n do s := s + a [k,k]
end
procedure Transpose (a) Order : (n); value n ; array a ; integer n ;
begin real w ; integer i, k ;
for i := 1 step 1 until n do
for k := 1 + i step 1 until n do
begin w := a [i,k];

a [i,k] := a [k,i];
a [k,i] := w

end
end Transpose
integer procedure Step (u); real u ;
Step := if 0 5 u ∧ u 5 1 then 1 else 0
procedure Absmax (a) size : (n, m) Result : (y) Subscripts : (i, k);
commentThe absolute greatest element of the matrix a, of size n by m is transferred to y,
and the subscripts of this element to i and k ;
array a ; integer n, m, i, k ; real y ;
begin integer p, q ;

y := 0 ;
for p := 1 step 1 until n do for q := 1 step 1 until m do
if abs (a [p,q]) > y then begin y := abs (a [p,q]); i := p; k := q end

end Absmax
procedure Innerproduct (a, b) Order : (k, p) Result : (y); value k ; integer k, p; real y, a, b;
begin real s ;

s := 0 ; for p := 1 step 1 until k do s := s + a × b;
y := s

end Innerproduct
5.4.3. Semantics. A procedure declaration serves to define the procedure associated with a
procedure identifier. The principal constituent of a procedure declaration is a statement or
a piece of code, the procedure body, which through the use of procedure statements and/or
function designators may be activated from other parts of the block in the head of which the
procedure declaration appears. Associated with the body is a heading, which specifies certain

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

identifiers occurring within the body to represent formal parameters. Formal parameters in the
procedure body will, whenever the procedure is activated (cf. section 3.2. Function designators
and section 4.7. Procedure statements) be assigned the values of or replaced by actual parameters.
Identifiers in the procedure body which are not formal will be either local or non-local to the
body depending on whether they are declared within the body or not. Those of them which
are non-local to the body may well be local to the block in the head of which the procedure
declaration appears.55

5.4.4. Values of function designators. For a procedure declaration to define the value of a
function designator there must, within the procedure body, occur an assignment of a value
to the procedure identifier, and in addition the type of this value must be declared through the
appearance of a type declarator as the very first symbol of the procedure declaration.
Any other occurrence of the procedure identifier within the procedure body denotes activation
of the procedure.56

5.4.5. Specifications. In the heading a specification part, giving information about the kinds and
types of the formal parameters by means of an obvious notation, may be included. In this part no
formal parameter may occur more than once and formal parameters called by name (cf. section
4.7.3.2) may be omitted altogether.57

5.4.6. Code as procedure body. It is understood that the procedure body may be expressed
in non-ALGOL language. Since it is intended that the use of this feature should be entirely a
question of hardware representation, no further rules concerning this code language can be given
within the reference language.

Examples of procedure declarations

Example 1

procedure euler (fct, sum, eps, tim);
value eps, tim ; integer tim ; real procedure fct ; real sum, eps ;
comment euler computes the sum of fct(i) for i from zero up to infinity by means of a suitably
refined euler transformation. The summation is stopped as soon as tim times in succession
the absolute value of the terms of the transformed series are found to be less than eps. Hence,
one should provide a function fct with one integer argument, an upper bound eps, and an
integer tim. The output is the sum sum. euler is particularly efficient in the case of a slowly
convergent or divergent alternating series ;
begin integer i, k, n, t ; array m [0 :15]; real mn, mp, ds ;
i := n := t := 0 ; m [0] := fct (0); sum := m [0] / 2 ;
nextterm : i := i + 1 ; mn := fct (i);

for k := 0 step 1 until n do
begin mp := (mn + m [k]) / 2 ; m [k] := mn ; mn := mp end means ;

55. [Added in the Revised Report :] The procedure body always acts like a block, whether it has the form of one or not.
Consequently the scope of any label labeling a statement within the body or the body itself can never extend beyond the
procedure body. In addition, if the identifier of a formal parameter is declared anew within the procedure body (including the
case of its use as a label as in section 4.1.3), it is thereby given a local significance and actual parameters which correspond to
it are inaccessible throughout the scope of this inner local quantity.

56. [In the Revised Report, this section becomes:] Values of function designators. For a procedure declaration to define the
value of a function designator there must, within the procedure body, occur one or more explicit assignment statements with
the procedure identifier in a left part; at least one of these must be executed, and the type associated with the procedure
identifier must be declared through the appearance of a type declarator as the very first symbol of the procedure declaration.
The last value so assigned is used to continue the evaluation of the expression in which the function designator occurs. Any
occurrence of the procedure identifier within the body of the procedure other than in a left part in an assignment statement
denotes activation of the procedure.

57. [In the Revised Report, this sentence becomes:] In this part no formal parameter may occur more than once. Specifications
of formal parameters called by value (cf. section 4.7.3.1) must be supplied and specifications of formal parameters called by
name (cf. section 4.7.3.2) may be omitted.

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

if (abs (mn) < abs (m [n])) ∧ (n < 15) then
begin ds := mn / 2 ; n := n + 1 ; m [n] := mn end accept

else ds := mn ;
sum := sum + ds ;
if abs (ds) < eps then t := t + 1 else t := 0 ;
if t < tim then go to nextterm

end euler

Example 258

procedure RK (x, y, n, FKT, eps, eta, xE, yE, fi);
value x, y ; integer n ; Boolean fi ; real x, eps, eta, xE ; array y, yE ; procedure FKT ;
comment:RK integrates the system yk’ = fk (x, y1, y2, . . ., yn) (k = 1, 2, . . . n) of differential
equations with the method of Runge-Kutta with automatic search for appropriate length
of integration step. Parameters are: The initial values x and y [k] for x and the unknown
functions yk (x). The order n of the system. The procedure FKT (x, y, n, z) which represents
the system to be integrated, i. e. the set of functions fk. The tolerance values eps and eta which
govern the accuracy of the numerical integration. The end of the integration interval xE. The
output parameter yE which represents the solution at x = xE. The Boolean variable fi, which
must always be given the value true for an isolated or first entry into RK. If however the
functions y must be available at several meshpoints x0, x1, . . ., xn, then the procedure must
be called repeatedly (with x = xk, xE = xk+1, for k = 0, 1, . . ., n − 1) and then the later
calls may occur with fi = false which saves computing time. The input parameters of FKT
must be x, y, n, the output parameter z represents the set of derivatives z [k] = fk (x, y [1],
y [2], . . ., y [n]) for x and the actual y’s. A procedure comp enters as a non-local identifier ;
begin

array z, y1, y2, y3 [1 :n]; real x1, x2, x3, H ; Boolean out ;
integer k, j ; own real s, Hs ;
procedure RK1ST (x, y, h, xe, ye); real x, h, xe ; array y, ye ;

comment:RK1ST integrates one single Runge-Kutta step with initial values x,
y [k] which yields the output parameters xe = x + h and ye [k], the latter being
the solution at xe.
Important: the parameters n, FKT, z enter RK1ST as non-local entities;
begin
array w [1 :n], a [1 :5]; integer k, j ;
a [1] := a [2] := a [5] := h / 2 ; a [3] := a [4] := h ; xe := x ;
for k := 1 step 1 until n do ye [k] := w [k] := y [k];
for j := 1 step 1 until 4 do
begin

FKT (xe, w, n, z);
xe := x + a [j];
for k := 1 step 1 until n do
begin

w [k] := y [k] + a [j] × z [k];
ye [k] := ye [k] + a [j + 1] × z [k] / 3

end k
end j

end RK1ST ;

58. This RK-program contains some new ideas which are related to ideas of S. Gill, A process for the step by step integration
of differential equations in an automatic computing machine, Proc. Camb. Phil. Soc. Vol. 47 (1951) p. 96, and C.-E. Fröberg,
On the solution of ordinary differential equations with digital computing machines, Fysiograf. Sällsk. Lund Förhd. 20 Nr. 11
(1950) p. 136–152. It must be clear however that with respect to computing time and round-off errors it may not be optimal,
nor has it actually been tested on a computer [this was not true anymore when the Revised Report was published].

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

Begin of program :
if fi then begin H := xE − x ; s := 0 end else H := Hs ;
out := false;

AA: if (x + 2.01 × H − xE > 0) ≡ (H > 0) then
begin Hs := H ; out := true; H := (xE − x) / 2 end if ;
RK1ST (x, y, 2 × H, x1, y1);

BB : RK1ST (x, y, H, x2, y2); RK1ST (x2, y2, H, x3, y3);
for k := 1 step 1 until n do if comp (y1 [k], y3 [k], eta) > eps then go to CC ;
comment: comp (a, b, c) is a function designator, the value of which is the absolute value
of the difference of the mantissæ of a and b, after the exponents of these quantities have
been made equal to the largest of the exponents of the originally given parameters a, b, c;
x := x3 ; if out then go to DD ;
for k := 1 step 1 until n do y [k] := y3 [k];
if s = 5 then begin s := 0 ; H := 2 × H end if ;
s := s + 1 ; go to AA;

CC : H := 0.5 × H ; out := false; x1 := x2 ;
for k := 1 step 1 until n do y1 [k] := y2 [k];
go to BB ;

DD : for k := 1 step 1 until n do yE [k] := y3 [k]
end RK

Alphabetic index of definitions of concepts and syntactic units

All references are given through section numbers. The references are given in three groups:
def Following the abbreviation “def” reference to the syntactic definition (if any) is given.
synt Following the abbreviation “synt” references to the occurrences in metalinguistic formulæ

are given. References already quoted in the def-group are not repeated.
text Following the word “text” the references to definitions given in the text are given.
The basic symbols represented by signs other than underlined59 words have been collected at
the beginning. The examples have been ignored in compiling the index.

+ see: plus
− see: minus
× see: multiply
/ −: see: divide
↑ see: exponentiation
< 5 = = > 6= see: 〈relational operator 〉
≡ ⊃ ∨ ∧ ¬ see: 〈logical operator 〉
, see: comma
. see: decimal point
10 see: ten
: see: colon
; see: semicolon
:= see: colon equal
§† see: space
() see: parentheses
[] see: subscript bracket
‘ ’ see: string quote
〈actual parameter 〉, def 3.2.1, 4.7.1
〈actual parameter list 〉, def 3.2.1, 4.7.1
〈actual parameter part 〉, def 3.2.1, 4.7.1

〈adding operator 〉, def 3.3.1
alphabet, text 2.1
arithmetic, text 3.3.6
〈arithmetic expression 〉, def 3.3.1 synt 3,

3.1.1, 3.4.1, 4.2.1, 4.6.1, 5.2.1 text 3.3.3
〈arithmetic operator 〉, def 2.3 text 3.3.4
array, synt 2.3, 5.2.1, 5.4.1
array, text 3.1.4.1
〈array declaration 〉, def 5.2.1 synt 5

text 5.2.3
〈array identifier 〉, def 3.1.1 synt 3.2.1, 4.7.1,

5.2.1 text 2.8
〈array list 〉, def 5.2.1
〈array segment 〉, def 5.2.1
〈assignment statement 〉, def 4.2.1 synt 4.1.1

text 1, 4.2.3
〈basic statement 〉, def 4.1.1 synt 4.5.1
〈basic symbol 〉, def 2
begin, synt 2.3, 4.1.1
〈block 〉, def 4.1.1 synt 4.5.1 text 1, 4.1.3, 5

59. [boldfaced]

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

a. THE 1960 REPORT & 1962 REVISED REPORT

〈block head 〉, def 4.1.1
Boolean, synt 2.3, 5.1.1 text 5.1.3
〈Boolean expression 〉, def 3.4.1 synt 3, 3.3.1,

4.2.1, 4.5.1, 4.6.1 text 3.4.3
〈Boolean factor 〉, def 3.4.1
〈Boolean primary 〉, def 3.4.1
〈Boolean secondary 〉, def 3.4.1
〈Boolean term 〉, def 3.4.1
〈bound pair 〉, def 5.2.1
〈bound pair list 〉, def 5.2.1
〈bracket 〉, def 2.3
〈code 〉, synt 5.4.1 text 4.7.8, 5.4.6
colon :, synt 2.3, 3.2.1, 4.1.1, 4.5.1, 4.6.1,

4.7.1, 5.2.1
colon equal :=, synt 2.3, 4.2.1, 4.6.1, 5.3.1
comma , , synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1,

5.1.1, 5.2.1, 5.3.1, 5.4.1
comment, synt 2.3
comment convention, text 2.3
〈compound statement 〉, def 4.1.1 synt 4.5.1

text 1
〈compound tail 〉, def 4.1.1
〈conditional statement 〉, def 4.5.1 synt 4.1.1

text 4.5.3
〈decimal fraction 〉, def 2.5.1
〈decimal number 〉, def 2.5.1 text 2.5.3
decimal point . , synt 2.3, 2.5.1
〈declaration 〉, def 5 synt 4.1.1 text 1, 5

(complete section)
〈declarator 〉, def 2.3
〈delimiter 〉, def 2.3 synt 2
〈designational expression 〉, def 3.5.1 synt 3,

4.3.1, 5.3.1 text 3.5.3
〈digit 〉, def 2.2.1 synt 2, 2.4.1, 2.5.1
dimension, text 5.2.3.2
divide / −: , synt 2.3, 3.3.1 text 3.3.4.2
do, synt 2.3, 4.6.1
〈dummy statement 〉, def 4.4.1 synt 4.1.1

text 4.4.3
else, synt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1

text 4.5.3.2
〈empty 〉, def 1.1 synt 2.6.1, 3.2.1, 4.4.1,

4.7.1, 5.4.1
end, synt 2.3, 4.1.1
entier, text 3.2.5
exponentiation ↑, synt 2.3, 3.3.1 text 3.3.4.3
〈exponent part 〉, def 2.5.1 text 2.5.3
〈expression 〉, def 3 synt 3.2.1, 4.7.1 text 3

(complete section)

〈factor 〉, def 3.3.1
false, synt 2.2.2
for, synt 2.3, 4.6.1
〈for clause 〉, def 4.6.1 text 4.6.3
〈for list 〉, def 4.6.1 text 4.6.4
〈for list element 〉, def 4.6.1 text 4.6.4.1,

4.6.4.2, 4.6.4.3
〈formal parameter 〉, def 5.4.1 text 5.4.3
〈formal parameter list 〉, def 5.4.1
〈formal parameter part 〉, def 5.4.1
〈for statement 〉, def 4.6.1 synt 4.1.1, 4.5.1

text 4.6 (complete section)
〈function designator 〉, def 3.2.1 synt 3.3.1,

3.4.1 text 3.2.3, 5.4.4
go to, synt 2.3, 4.3.1
〈go to statement 〉, def 4.3.1 synt 4.1.1

text 4.3.3
〈identifier 〉, def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1,

5.4.1 text 2.4.3
〈identifier list 〉, def 5.4.1
if, synt 2.3, 3.3.1, 4.5.1
〈if clause 〉, def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1

text 3.3.3, 4.5.3.2
〈if statement 〉, def 4.5.1 text 4.5.3.1
〈implication 〉, def 3.4.1
integer, synt 2.3, 5.1.1 text 5.1.3
〈integer 〉, def 2.5.1 text 2.5.4
label, synt 2.3, 5.4.1
〈label 〉, def 3.5.1 synt 4.1.1, 4.5.1, 4.6.1

text 1, 4.1.3
〈left part 〉, def 4.2.1
〈left part list 〉, def 4.2.1
〈letter 〉, def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1
〈letter string 〉, def 3.2.1, 4.7.1
local, text 4.1.3
〈local or own type 〉, def 5.1.1 synt 5.2.1
〈logical operator 〉, def 2.3 synt 3.4.1

text 3.4.5
〈logical value 〉, def 2.2.2 synt 2, 3.4.1
〈lower bound 〉, def 5.2.1 text 5.2.4
minus −, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply ×, synt 2.3, 3.3.1 text 3.3.4.1
〈multiplying operator 〉, def 3.3.1
non-local, text 4.1.3
〈number 〉, def 2.5.1 text 2.5.3, 2.5.4
〈open string 〉, def 2.6.1
〈operator 〉, def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5
〈parameter delimiter 〉, def 3.2.1, 4.7.1

synt 5.4.1 text 4.7.7

Copyright © 2017 by Gauthier van den Hove <ghe@fibonacci.org>. All rights reserved. This work may not be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the author. The cover, inside covers, and pp. 1–2, 7–9, 13–15 and 249–302 of this work can however be freely distributed.

 THE 1960 REPORT & 1962 REVISED REPORT a.

parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1,
3.5.1, 4.7.1, 5.4.1 text 3.3.5.2

plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
〈primary 〉, def 3.3.1
procedure, synt 2.3, 5.4.1
〈procedure body 〉, def 5.4.1
〈procedure declaration 〉, def 5.4.1 synt 5

text 5.4.3
〈procedure heading 〉, def 5.4.1 text 5.4.3
〈procedure identifier 〉, def 3.2.1 synt 4.7.1,

5.4.1 text 4.7.5.4
〈procedure statement 〉, def 4.7.1 synt 4.1.1

text 4.7.3
program, text 160

〈proper string 〉, def 2.6.1
quantity, text 2.7
real, synt 2.3, 5.1.1 text 5.1.3
〈relation 〉, def 3.4.1 text 3.4.5
〈relational operator 〉, def 2.3, 3.4.1
scope, text 2.7
semicolon ;, synt 2.3, 4.1.1, 5.4.1
〈separator 〉, def 2.3
〈sequential operator 〉, def 2.3
〈simple arithmetic expression 〉, def 3.3.1

text 3.3.3
〈simple Boolean 〉, def 3.4.1
〈simple designational expression 〉, def 3.5.1
〈simple variable 〉, def 3.1.1 synt 5.1.1

text 2.4.3
space §†, synt 2.3 text 2.3, 2.6.3
〈specification part 〉, def 5.4.1 text 5.4.5
〈specificator 〉, def 2.3
〈specifier 〉, def 5.4.1
standard function, text 3.2.4, 3.2.5
〈statement 〉, def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1

text 4 (complete section)
statement bracket see: begin end
step, synt 2.3, 4.6.1 text 4.6.4.2
string, synt 2.3, 5.4.1
〈string 〉, def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3

string quotes ‘ ’, synt 2.3, 2.6.1 text 2.6.3
subscript, text 3.1.4.1
subscript bound, text 5.2.3.1
subscript brackets [], synt 2.3, 3.1.1, 3.5.1,

5.2.1
〈subscripted variable 〉, def 3.1.1 text 3.1.4.1
〈subscript expression 〉, def 3.1.1 synt 3.5.1
〈subscript list 〉, def 3.1.1
successor, text 4
switch, synt 2.3, 5.3.1, 5.4.1
〈switch declaration 〉, def 5.3.1 synt 5

text 5.3.3
〈switch designator 〉, def 3.5.1 text 3.5.3
〈switch identifier 〉, def 3.5.1 synt 3.2.1,

4.7.1, 5.3.1
〈switch list 〉, def 5.3.1
〈term 〉, def 3.3.1
ten 10, synt 2.3, 2.5.1
then, synt 2.3, 3.3.1, 4.5.1
transfer function, text 3.2.5
true, synt 2.2.2
〈type 〉, def 5.1.1 synt 5.4.1 text 2.8
〈type declaration 〉, def 5.1.1 synt 5 text 5.1.3
〈type list 〉, def 5.1.1
〈unconditional statement 〉, def 4.1.1, 4.5.1
〈unlabeled basic statement 〉, def 4.1.1
〈unlabeled block 〉, def 4.1.1
〈unlabeled compound 〉, def 4.1.1
〈unsigned integer 〉, def 2.5.1, 3.5.1
〈unsigned number 〉, def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2
〈upper bound 〉, def 5.2.1 text 5.2.4
value, synt 2.3, 5.4.1
value, text 2.8, 3.3.3
〈value part 〉, def 5.4.1 text 4.7.3.1
〈variable 〉, def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1,

4.6.1 text 3.1.3
〈variable identifier 〉, def 3.1.1
while, synt 2.3, 4.6.1 text 4.6.4.3

60. [Revised Report :] 〈program〉, def 4.1.1 text 1

