code 31248; procedure INTCHS(N,A,B); value N;integer N;array A,B; comment INTCHS DELIVERS THE COEFFICIENTS B[I],I=1,...N+1, OF THE INTEGRAL CHEBYSHEV SERIES B[1]*T1(X)+...+B[N]*TN(X)+B[N+1]*TN+1(X). THESE COEFFICIENTS ARE OBTAINED BY MEANS OF INDEFINITE INTEGRATION OF THE CHEBYSHEV SERIES A[0]+A[1]*T1(X)+...+A[N]*TN(X). T1(X),...TN+1(X) DENOTE CHEBYSHEV POLYNOMIALS OF THE FIRST KIND, OF DEGREE 1,...N+1,RESPECTIVELY; if N=0then B[1]:=A[0] else if N=1then begin B[2]:=A[1]/4;B[1]:=A[0]end else begin integer I;real H,L,DUM; H:=A[N];DUM:=A[N-1];B[N+1]:=H/((N+1)*2);B[N]:=DUM/(N*2); for I:=N-1step -1until 2do begin L:=A[I-1];B[I]:=(L-H)/(2*I);H:=DUM;DUM:=L end;B[1]:=A[0]-H/2 end INTCHS; eop