code 31248;
procedure INTCHS(N,A,B);
value N;integer N;array A,B;
comment
    INTCHS DELIVERS THE COEFFICIENTS B[I],I=1,...N+1, OF THE INTEGRAL
    CHEBYSHEV SERIES B[1]*T1(X)+...+B[N]*TN(X)+B[N+1]*TN+1(X).
    THESE COEFFICIENTS ARE OBTAINED BY MEANS OF INDEFINITE INTEGRATION
    OF THE CHEBYSHEV SERIES A[0]+A[1]*T1(X)+...+A[N]*TN(X).
    T1(X),...TN+1(X) DENOTE CHEBYSHEV POLYNOMIALS OF THE FIRST KIND,
    OF DEGREE 1,...N+1,RESPECTIVELY;
if N=0then B[1]:=A[0]
else if N=1then begin B[2]:=A[1]/4;B[1]:=A[0]end 
      else begin integer I;real H,L,DUM;
         H:=A[N];DUM:=A[N-1];B[N+1]:=H/((N+1)*2);B[N]:=DUM/(N*2);
         for I:=N-1step -1until 2do 
         begin L:=A[I-1];B[I]:=(L-H)/(2*I);H:=DUM;DUM:=L
         end;B[1]:=A[0]-H/2
      end INTCHS;
        eop