1. QuadI

R. J. Herbold

National Bureau of Standards, Washington 25, D. C.

comment

QuadI is useful when integration of several functions of same limits at same time using same point rule is desired. The interval (a,b) is divided into m equal subintervals for an n-point quadrature integration. p is the number of functions to be integrated. w_k and u_k are normalized weights and abscissas respectively, where $k=1,2,3,\cdots,n$. u_k must be in ascending order. P(B,j)=:(c) is a procedure which must be supplied by the programmer. It evaluates (c) the function (as) indicated by (c) for (c) is the result of integration for function (c).

procedure

 $QuadI \ (a,b,m,n,p,w_k,u_k,P(B,j) \ = \ : \ (c)) \ = \ : \ (Ij)$

begin

QuadI:

$$h := (b-a)/m$$

for j := 1(1)p; $I_j := 0$

A := a - h/2

for i := 1(1)m

L1 **begin** A := A+h

for k := 1(1)n

L2 **begin** B := $A+(h/2)\times u_k$

for j := 1(1)p

L3: **begin** P(B,j) = : (c)

 $I_j := I_j + w_k \times c$ end L3; end L2

end L1

for j := 1(1)p

 $I_j := (h/2) \times I_j$

return

integer (j,k,i)

end QuadI