COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 9 RUNGE-KUTTA INTEGRATION

3

procedure RK(x,y,n,FKT,eps,eta,xE,yE,fi) ;
integer n ;
vwE
comment

(k=1,2,...
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value
x,eps,eta,xE

Xy
Boolean fi ; real
procedure FKT ;

RK integrates the system yi’=fk (X,¥1,¥2,... 5 ¥n)

,n) of differential equations with the method of Runge-

array

Kutta with automatic search for appropriate length of integration
step. Parameters are: The initial values x and y (k] for x and the un-
known functions yx(x). The order n of the system. The procedure
FKT(x,y,n,z) which represents the system to be integrated, i.e.
the set of functions fx . The tolerance values eps and eta which
govern the accuracy of the numerical integration. The end of the
integration interval xE. The output parameter yE which repre-
sents the solution at x=xE. The Boolean variable fi, which must
always be given the value true for an isolated or first entry into
RK. If however the functions y must be available at several mesh-

points Xo, X1, ...,
edly (with x=x,

Xn , then the procedure must be called repeat-
xE=xy,1, fork=0,1,...,n—1)and then the

later calls may occur with fi=false which saves computing time.
The input parameters of FKT must be x,y,n, the output parameter

z represents the set of derivatives z[k]=fi(x,y[l], y[2], ...

» ¥[n])

for x and the actual y’s. A procedure comp enters as a non-local
identifier ;
begin

array z,yl,y2,y3[1:n] ;
integer k,j ;
procedure

real x1,x2,x3,H ;

own real s,Hs

RKIST (x,y,h,xe,ye)
Y.ye

comment : RKIST integrates one single RUNGE-KUTTA
with initial values x,y[k] which yields the output
parameters xe=x-+h and yelk], the latter being the
solution at xe. Important: the parameters n, FKT, z
enter RKIST as nonlocal entities

Boolean out ;

; real x,h,xe ; array

begin
array w(l:n], a[l:5] ; integer k,j ;
alll:= a2l :=al5]:=h/2 ; a[3]:=a/4] :=h ;
xe = X ;
for k := 1 step 1 until n do yelk] := wk] := y[k] ;

forj := 1step 1 until 4 do
begin
FKT(xe,w,n,z) ;
xe : = x+alj] ;
for k := 1step 1 until n do
begin
wlk] 1= ylk]+aljlXz[k] ;
velk] 1= yelk] + a[j+11Xzlk]/3
end k
end j
end RKIST

Begin of program:

AA:

BB:

if ithenbegin H:=xE—x ; s:=0endelseH:=Hs ;

out := false ;

if (x4+2.01XH-—xE>0)=(H>0) then

begin Hs := H ; out := true ; H := (xE—x)/2
end if ;

RKI1ST (x,y,2XH,x1,y1) ;
RKIST (x,y,H,x2,y2) ; RKIST(x2,y2,H,x3,y3) ;
for k := 1 step 1 until n do

CC:

9-P1- 0

if comp(y1[k],y3[k],eta) >eps then go to cC ;

comment : comp(a,b,c) is a function designator, the value
of which is the absolute value of the difference of the
mantissae of a and b, after the exponents of these
quantities have been made equal to the largest of the ex-
ponents of the originally given parameters a,b,c ;

x := x3 ; if out then go to DD ;

for k : = 1 step 1 until ndo y[k} := y3[k] ;

if s=5 then begins := 0 H:=2XHendif ;

s:=s+1 ; gotoAA

H:=05XxH ; out:= false ; xl:=x2 ;
fork : = 1step l until ndo y1[k] : = y2[k] ;
go to BB ;

DD: for k := 1 step 1 until n do yE[k] : = y3k]
end RK

¢ This RK-program contains some new ideas which are related
to ideas of S. GiLL, A process for the step-by-step integration of
differential equations in an automatic computing machine, Proc.
Camb. Phil. Soc. Vol. 47 (1951) p. 96; and E. FROBERG, On the
solution of ordinary differential equations with digital com-
puting machines, Fystograf. Sdllsk. Lund, Forhd. 20 Nr. 11 (1950)
p. 136-152. It must be clear, however, that with respect to com-
puting time and round-off errors it may not be optimal, nor has it
actually been tested on a computer.
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Algorithm 9 was transcribed into the hardware representation
for CDC 3600 ALcoL and run successfully. The following procedure
was used for the global procedure comp:
real procedure comp (a,b,¢); valuea, b,c; reala,b,c;
begin integer AE, BE, CE;

integer procedure expon(z); real z;

comment This function produces the base 10 exponent of z;

expon := if z = 0 then —999 else

entier (4342044819 X In(abs(z)) + 1);

comment The number —999 may be replaced by any number

AE := expon(a);
if AE < BE then AE := BE;

less than the exponent of the smallest positive number handled
by the particular machine used, for this algorithm assumes
that true zero has an exponent smaller than any nonzero
floating-point number. Users implementing real procedure
comp by machine code should make sure that this condition
is satisfied by their program;

BE := expon(b); CE := expon(c);

if AE < CE then AE := CE;

comp := abs(a — b)/101 AE

end
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This has the advantage of machine independence, but is highly
inefficient compared to machine code.

The procedure was tested using the two following procedures
for FKT:
procedure FKT (X, Y, N, Z); real X; integer N; array

Y, Z;
comment (dyl/d:v) = 2 = Y2, (dyg/dx) = 22 = Y1 . With

y1(0) = 0, %2(0) = 1, the solution is y; = sinz, y. = cosz;
begin Z [1] := Y [2]; Z[2] := —Y [1] end;
procedure FKT (X, Y, N, Z); real X; integer N; array

Y, Z;
comment (dy,/dz) = 1 + y? For y»:1(0) = 0, y(x) = tanz;

Z 1] :=1+7Y1]12;

The RK procedure was used to integrate the differential equa-
tions represented by the first FKT procedure from z = 0(0.5)7.0,
with eps = eta = 1075, and with %:(0) = 0, 42(0) = 1. The actual
step size h was .0625 for most of the range, but was reduced to
.03125 in the neighborhood of z = kx/2, where one or the other of
the solutions is small.

The computed solutions at z = 7.0 were: y; = 6.5698602746
X 107, y» = 7.5390270246 X 107, with errors —5.71 X 1077 and
4.48 X 1077, respectively.

Results for the second differential equation are summarized in
Table I below.

The efficiency of the procedure would be increased slightly on
most computers by changing the type of the own variable s from
real to integer.

The error is estimated by comparing the results of successive
pairs of steps with that of a single double step. This is somewhat
more time-consuming than the Kutta-Merson process presented
in Algorithm 218 [Comm. ACM 6 (Dee. 1963) 737-8]. However,
the criterion for step-size variation in Algorithm 9 which effec-
tively applies an approximate relative error criterion, eps, for
lyl > ela, and an absolute error criterion eta X eps, for ly] < eta,
appears superior when the solution fluctuates in magnitude.

TABLE I [ALG. 9]

9P 2- 0

x = 0.5 x =10 x =15
7 hmin Absolute error | Relative error hmin Absolute error l Relative error hmin Absolute error | Relative error
107 1073 03125 -1 X 107 | -2 X 107 03125 9 X 1078 6 X 1078 || .00390625 | —1 X 107¢ | —8 X 107®
108 1073 125 -5 X 1077 | —9 X 1077 .0625 8 X 1077 5 X 1077 | .0078125 -2 X 10*| —1 X 107®
103 1073 .25 —1 X 1075 ) —2 X 107 .25 —2 X 10| —1 X107 | .03125 —3 X102} -2 X 1073




