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real procedure INNERPRODUCT (u,v) index : (k) start : (s)
finish : (f);
integer k, s, f;

value s, f; real u, v;

comment INNERPRODUCT forms the sum of u(k) X
v(k) for k=s,s41,...,f. If s > f, the value
of INNERPRODUCT is zero. The substitution
of a very accurate inner product procedure
would make CROUT more accurate;

begin

real h;
h :=0; fork :=sstepluntilfdoh :=h + uX v;

INNERPRODUCT := h
end INNERPRODUCT;

procedure CROUT (A, b, n, y, pivot, INNERPRODUCT);
value n; array A, b, y, pivot; integer n, pivot;
real procedure INNIERPRODUCT;,

This is Crout’s method with row interchanges, as
formulated in reference [1], for solving Ay = b
and transforming the augmented matrix [A b]
into its triangular decomposition LU with all
L{k, k] = 1. If Aissingular we exit to ‘singular,’
a non-local label. pivot(k] becomes the current
row index of the pivot element in the k-th
column. Thus enough information is preserved
for the procedure SOLVE to process a new
right-hand side without repeating CROUT.
The accuracy obtainable from CROUT would
be much increased by calling CROUT with a
more accurate inner product procedure than
INNERPRODUCT;

comment

begin
integer k, i, j, imax, p; real TEMP, quot;
for k := 1 step 1 until n do

1: begin
TEMP := 0;
fori := k step 1 until n do
2 begin
Alfi, k] := Ali, k] — INNERPRODUCT (Ali,p}, Alp, ki,
p, 1, k—1);
if abs(A[i, k]) > TEMP then
3: begin
TEMP := abs(A[i, k]); imax :=1
end 3
end 2;
pivot(k] := imax;

comment We have found that Alimax, k] is the largest
pivot in column k. Now we interchange rows k and imax;
if imax # k then
4: begin for j := 1 step 1 until n do

5: begin
TEMP := Alk,j]; Alk, j] := Alimax,j];
Alimax,j] := TEMP
end 5;

TEMP := b[k]; bk] := blimax]; bl[imax] := TEMP
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end 4;
comment The row interchange is done. We proceed to the
elimination;
if Alk, k] = 0 then go to singular;

for i := k+1 step 1 until n do

begin quot := 1.0/A[k, k]; Ali, k] := quot X Ali, k]
end;

for j := k+1 step 1 until n do

Alk, jl := Alk,jl — INNERPRODUCT(A[k, p],
Alp,jl, p, 1, k—=1);
blk] := blk] — INNERPRODUCT (A[k,p], blp], p,
1, k—1)
end 1;
comment The triangular decomposition is now finished,
and we do the back substitution;
for k := n step —1 until 1 do

ylk] := (b[k] — INNERPRODUCT(A[k,pl, ylpl, p,
k+1, n)/Alk, k]
end CROUT;

procedure SOLVE (B, ¢, n, z, pivot, INNERPRODUCT);
value n; array B, ¢, z, pivot; integer n, pivot;
real procedure INNERPRODUCT;

comment SOLVE assumes that a matrix A has already beep

transformed into B by CROUT, but that a new
column ¢ has not been processed. SOLVE solves the
system Az = ¢, and the output z of SOLVE is pre-
cisely the same as the output y of the procedure
statement CROUT (A, ¢, n, y, pivot, INNER-
PRODUCT). However, SOLVE is faster, because
it does not repeat the triangularization of A;
begin
integer k; real TEMP;
for k := 1 step 1 until n do
begin
TEMP := c[pivot(k]]; c[pivot(k]] := ec[k]; clk] :=
TEMP; c¢lk] := clk] — INNERPRODUCT@BIk, p],
elpl, p1, k = 1)
end;
for k := n step —1 until 1 do

zlk] := (e[k] — INNERPRODUCT(B[k,p], zlpl, p,
k+1, n)/Blk, k]
end SOLVE
REFERENCE
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QUERY

Perhaps the most basic procedure for an ALGOL library

of matrix programs is an inner product procedure. The pro-
cedure Innerproduct given on page 311 of (1] is fairly difficult
to comprehend, and probably poses great difficulties for most
translating routines. I merely copied its form in writing a modi-
fied inner product routine for [2].

My query is: How should one write an inner product pro-
cedure in ALGOL?
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This procedure contains the following errors:
a. In SOLVE, the expression
clk] := ¢[k] — INNERPRODUCT
B[k, pl,clpl,p 1,k — 1)
should read:
clk} := c[k] = INNERPRODUCT
(B[k: P]: C[P]r P, ly k - l)
b. In CROUT, the specification part should read:

array A, b, y ; integer n ; integer array pivot ;
c. In SOLVE, the specification part should read:
array B, ¢, z ; integer n ; integer array pivot ;

The efficiency of the algorithm will be improved by the follow-
ing changes:

a. In the elimination phase of CROUT, replace

fori:= k + 1 step 1 until n do
begin quote := 1.0/Alk, k] ; A[,k}:= quot XA[j,k]end ;
by
quot := 1.0/Alk, k] ; fori:=k + 1 step 1 until n do
Ali, k] := quot XA[i, k] ;

b. Omit INNERPRODUCT from the formal parameter list
in both CROUT and SOLVE, and declare INNERPRODUCT
either locally, or globally. This avoids any reference to INNER-
PRODUCT in the calling sequence produced by a compiler.

It is also to be noted that a minor modification of CROUT
allows it to be used to evaluate the determinant of A.

All of these suggestions are included in a later algorithm.

* Work supported by the U. S. Atomic Energy Commission.
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