COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 27

ASSIGNMENT

RoLAaND SILVER

MIT Lincoln Laboratory,* Lexington, Massachusetts

procedure Assignment(d, n, x) ; value n
array d ; integer array x ;
Assignment determines that permutation x of the
integers [1:n] for which the sum (i := 1(1)n) of
the elements d[i, x[i]] of the n X n matrix d is a
minimum. n = 2. For more complete information
see: An Algorithm for the Assignment Problem,
Roland Silver, Comm. ACM, Nov. 1960, p. 605

; integer n

comment:

begin ’
switch Switch := NEXT, L1, NEXT1, MARK ;
array afl:n, l:n] ;
integer array c[l:n], ¢b[l:n], lambdall:n], mu[i:n],
r(l:n], y(1:n] ;
integer cbl, e, ¢l0, i, j, k, I, rl, rs, sw ;
comment:
INITIALIZE
fori := 1 step 1 until n do
begin min := d[i, 1]
for j := 2 step 1 until n do if d[i, j| < min then min
= d[, j] ;
for j := 1 step 1 until n do ali, j] := d[i, j] — min
end i ;
for j := 1 step 1 until ndo

begin min := a[l, j] ;

for i := 2 step 1 until n do if ali, j] < min then min
= ali, j] ;

fori := 1step 1 until n do afi, j} := a[i, j] — min

end j ;

fori:=1step 1 until ndo x[i] := y[i] :=0 ;
for i := 1 step 1 until n do
begin
for j := 1step 1 until n do
begin
if afi, j] # 0V x[i] = 0 \V y[j] # 0 then go to JL ;
x[il == ; vl =1
Jl: end j ;
endi ;

START: comment: Start labeling ;
rli=cl:=0 ; rs:=1 ;
fori := 1step 1 until ndo

begin muli] := lambdali] := 0 ;
if x[i] # 0 then go to 11
rl:e=rl+1 ; rirl]:=1 ;

11: endi ;

LABEL: comment: Label and scan ;
i:=r{rs] ; rs:=rs+1 ;
for j := 1 step 1 until ndo

begin if afi, j] 0 or lambda[j] # 0 then go
to J2

lambdafj] ;=1 ; cl:=cl+1 ; clelj:=j ;
if y[j] = 0 then go to MARK
=1l +1 5 i) =yl ; muly(ll:=i

J2: end j ;

27-P1- 0

if rs £ rl then go to LABEL

comment:
RENORMALIZE
sw:=1 ; cl0:=cl ; cbl:=0 ;
for j := 1 step 1 until n do
begin if lambda[j] # 0 then go to J3

chi := ¢ebl + 1 ; cblebl] :=j
J3: end j ;
min := alr[i], ebli]] ;
for k := 1 step 1 until rl do
begin

for | := 1 step 1 until cbl do if a[r{k], cb[l]] < min
then min := afr(k], cb(l]]

end k

fori := 1 step 1 until n do

begin if muli] > 0 then go to 12 ;

for 1 := 1step 1 until cl0 do ali, ¢[l]] := ali, c¢{l]] + min ;

go to I3

12: for 1l := 1 step 1 until cbl do
begin ali, cb[l]] := ali, cb(l]] — min ;
go to Switch{sw] ;

NEXT: ifali, cbll] % 0\ lambda[cb[l]] # 0 then go to L1 ;
lambdaleb(l]] = i ;
if yleb{l]] = 0 then
begin j := cbll] ; sw:=2 ; goto Ll end ;
el:=cl+1 ; clel] :=cbll] ;
rl :=rl +1 ; rlrl] := ylebll]] ;
Li: end] ;
13: endi ;
go to Switch[sw +2] ;
NEXTI1: if cl0 = cl then go to LABEL ;
fori := cl0 4+ 1 step 1 until cl do muly[c[i]]] := cli] ;
go to LABEL ;
MARK: comment: mark new column and permute ;

ylj] := i := lambda[j] ;

if x[i] = 0 then begin x[i] := o
START end ;

k:=j ; j:=x[] ;

go to MARK

end Assignment

go to

xfi]:=k ;

* Operated with support ¥rom the U. 8. Army, Navy and Air
Force.

[NoTE: The reader should distinguish between the letter
and the figure 1, both of which appear in the above al-
gorithm —Ed.]

CERTIFICATION OF ALGORITHM 27
ASSIGNMENT [Roland Silver, Comm. ACM, Nov. 1960]
ALBERT NEWHOUSE
University of Houston, Houston, Texas

The ASSIGNMENT algorithm was translated into MAD and

successfully run on the IBM 709/7094 after the following correc-
tions were made:



COLLECTED ALGORITHMS (cont.)

All references to array a and d refer to the same array, i.e. FROM
change all alz, 5] to d[Z, j]. Furthermore: TO
(a) 3rd line after LABEL: comment: Label and scan;

should read
begin if d[7, j] # 0 \/ lambda [j] # 0 then go
(b) first line after J3: end j;
should read
man = d[r[l], c¢b[1]];
(c) line I2:
should read
12: forl := 1 step 1 until cbl do

Since there is no provision made for this algorithm to end the

following additions were made:
(1) 1in the integer declaration add the variable: flag
(2) first line after START: comment:
add the line
flag := n;
(3) first line before I1: end 1;
change to read
rl =l 4+ 1; rirl} :=1; muli] := —1; flag := flag — 1
(4) add a line after I1: end 7;
if flag = n then go to FINI;
(5) change the last line of the algorithm to read:
FINI: end Assignment

In nrder to obtain the minimum value of the i @i; (in the
following called total) the following additions may be made:

Add a real variable total and
(A) new line after INITIALIZE;

total := 0;
(13) new line after the first end ¢;
total := total + min;
(C) new line after the first end j;
total := total + min;
(D)) after the line end k; after J3: end i;
add the line
totnl .= total + (rl+cbl—n) X min;

CERTIFICATION OF ALGORITHM 27

ASSIGNMENT [Roland Silvers, Comm. ACM 3, Nov.
1960].

RoBerT D. WIiTTY

Burroughs Corp., Detroit, Mich.

Assignment was successfully run on the Burroughs B5000 using
Burroughs extended ArcoL 60.

Input Array

60 0 0 76 0 0
0 40 18 0 60 24
60 16 2 4 0 40
0 27 18 3 55 75
0 40 62 16 11 53
28 4 10 84 0 16

Solution Vector: X (6,4, 3,1,5,2)

The following changes were made in the algorithm prior to its
successful run:

FROM MIN := alr[t], ¢b[¢]];
TO MIN := a[r{l], cb[1]};
FROM if X[i] = 0 then begin X[i] := );

go to START end;
TO if X[¢] = 0 then begin X[:] : = j;

for ¢ := 1 step 1 until N do begin if X[{] = 0 then go

to START;
end; go to EXIT; end;

end ASSIGNMENT

EXIT:

end; ASSIGNMENT

27-P 2-

0



