```
ALGORITHM 27
ASSIGNMENT
ROLAND SILVER
MIT Lincoln Laboratory,* Lexington, Massachusetts
procedure Assignment(d, n, x); value n; integer n;
              array d ; integer array x ;
comment: Assignment determines that permutation x of the
              integers [1:n] for which the sum (i := 1(1)n) of
              the elements d[i, x[i]] of the n \times n matrix d is a
              minimum. n \ge 2. For more complete information
              see: An Algorithm for the Assignment Problem,
              Roland Silver, Comm. ACM, Nov. 1960, p. 605;
   switch Switch := NEXT, L1, NEXT1, MARK ;
   array a[1:n, 1:n] ;
   integer array c[1:n], cb[1:n], lambda[1:n], mu[1:n],
              r[1:n], y[1:n];
   integer cbl, el, cl0, i, j, k, l, rl, rs, sw;
   comment:
INITIALIZE ;
   for i := 1 step 1 until n do
       begin min := d[i, 1]:
        for j := 2 step 1 until n do if d[i, j] < \min then min
        for j := 1 step 1 until n do a[i, j] := d[i, j] - min
        end i ;
    for j := 1 step 1 until n do
        begin min := a[1, j]
        for i := 2 step 1 until n do if a[i, j] < min then min
         \mathbf{for} \; i := 1 \; \mathbf{step} \; 1 \; \mathbf{until} \; n \; \mathbf{do} \; a[i,\,j] := a[i,\,j] \; - \; min 
        end j ;
    for i := 1 step 1 until n do x[i] := y[i] := 0;
    for i := 1 step 1 until n do
        begin
        for j := 1 step 1 until n do
            begin
            if a[i, j] \neq 0 \lor x[i] \neq 0 \lor y[j] \neq 0 then go to J1;
            x[i] := j ; y[j] := i
J1:
            end j ;
        end i ;
START: comment: Start labeling ;
          rl := cl := 0 ; rs := 1 ;
          for i := 1 step 1 until n do
               begin mu[i] := lambda[i] := 0 ;
              if x[i] \neq 0 then go to I1;
              rl := rl + 1 ; r[rl] := i ; mu[i] := -1
              end i ;
LABEL: comment: Label and scan ;
          i := r[rs]; rs := rs + 1;
          for j := 1 step 1 until n do
              begin if a[i, j] \neq 0 or lambda[j] \neq 0 then go
                to J2
              lambda[j] := i ; cl := cl + 1 ; c[cl] := j ;
              if y[j] = 0 then go to MARK;
              rl := rl + 1 ; r[rl] := y[j] ; mu[y[j]] := i
J2:
              end j ;
```

```
if rs ≤ rl then go to LABEL ;
           comment:
RENORMALIZE ;
    sw := 1 ; cl0 := cl ; cbl := 0 ;
    \mathbf{for}\; j := 1\; \mathbf{step}\; 1\; \mathbf{until}\; n\; \mathbf{do}
        begin if lambda[j] \neq 0 then go to J3;
        cbi := cbl + 1; cb[cbl] := j
        end j
J3:
  min := a[r[i], cb[i]];
  for k := 1 step 1 until rl do
      begin
      for l := 1 step 1 until cbl do if a[r[k], cb[l]] \le min
          then min := a[r[k], cb[l]]
      end k ;
  for i := 1 step 1 until n do
      begin if mu[i] \neq 0 then go to I2 ;
      for l := 1 step l until cl0 do a[i, c[l]] := a[i, c[l]] + min ;
      go to I3 ;
      for l := 1 step l until cbl do
          \mathbf{begin} \ a[i, cb[l]] := a[i, cb[l]] - min \quad ;
        go to Switch[sw]
NEXT: if a[i, cb[l] \neq 0 \lor lambda[cb[l]] \neq 0 then go to L1;
          lambda[cb[l]] := i;
          if y[cb[l]] = 0 then
              \mathbf{begin} \ j \ := \ cb[l] \quad ; \quad sw \ := \ 2 \quad ; \quad \mathbf{go} \ \mathbf{to} \ L1 \ \mathbf{end} \quad ;
          el := el + 1 ; e[el] := eb[l] ;
          rl := rl + 1 ; r[rl] := y[cb[l]] ;
          end l ;
L1:
                end i
I3:
           go to Switch[sw +2];
NEXT1: if cl0 = cl then go to LABEL ;
           for i := cl0 + 1 step 1 until cl do mu[y[e[i]]] := e[i];
           go to LABEL ;
MARK: comment: mark new column and permute ;
          y[j] := i := lambda[j];
          if x[i] = 0 then begin x[i] := j; go to
            START end ;
          k := j ; j := x[i] ; x[i] := k ;
          go to MARK
          end Assignment
   * Operated with support from the U. S. Army, Navy and Air
```

[Note: The reader should distinguish between the letter and the figure 1, both of which appear in the above algorithm.—Ed.]

CERTIFICATION OF ALGORITHM 27 ASSIGNMENT [Roland Silver, Comm. ACM, Nov. 1960] Albert Newhouse

University of Houston, Houston, Texas

The ASSIGNMENT algorithm was translated into MAD and successfully run on the IBM 709/7094 after the following corrections were made:

```
All references to array a and d refer to the same array, i.e.
change all a[i, j] to d[i, j]. Furthermore:
(a) 3rd line after LABEL: comment: Label and scan;
   should read
     begin if d[i, j] \neq 0 \vee \text{lambda } [j] \neq 0 then go
(b) first line after J3: end j;
   should read
     min := d[r[1], cb[1]];
(c) line I2:
   should read
     I2: for l:=1 step 1 until cbl do
  Since there is no provision made for this algorithm to end the
following additions were made:
(1) in the integer declaration add the variable: flag
(2) first line after START: comment: ...
   add the line
     flag := n;
(3) first line before I1: end i;
   change to read
     rl := rl + 1; \quad r[rl] := i; \quad mu[i] := -1; \quad flag := flag - 1
(4) add a line after I1: end i;
     if flag = n then go to FINI;
(5) change the last line of the algorithm to read:
     FINI: end Assignment
  In order to obtain the minimum value of the \sum_{i=1}^{n} a_{ix_i} (in the
following called total) the following additions may be made:
  Add a real variable total and
(A) new line after INITIALIZE;
      total := 0;
(B) new line after the first end i;
      total := total + min;
(C) new line after the first end j;
      total := total + min;
(D) after the line end k; after J3: end i;
    add the line
      total := total + (rl+cbl-n) \times min;
CERTIFICATION OF ALGORITHM 27
ASSIGNMENT [Roland Silvers, Comm. ACM 3, Nov.
   1960].
ROBERT D. WITTY
Burroughs Corp., Detroit, Mich.
   Assignment was successfully run on the Burroughs B5000 using
Burroughs extended ALGOL 60.
                          Input Array
                    60
                        0
                            0 - 76
                     0 40 18
                                 0 60 24
                    60 16
                             2
                                     0 40
                     0 27 18
                                3 55 75
```

0 40 62 16

4 10

84

28

Solution Vector: X(6, 4, 3, 1, 5, 2)

MIN := a[r[1], cb[1]];FROM if X[i] = 0 then begin X[i] := j; go to START end;

to START;

if X[i] = 0 then begin X[i] := j;

end; go to EXIT; end;

 $FROM \quad MIN := a[r[i], cb[i]];$

successful run:

TO

TO

11 53

16

```
The following changes were made in the algorithm prior to its
     for i := 1 step 1 until N do begin if X[i] = 0 then go
```

FROM end ASSIGNMENT

TO

EXIT: end; ASSIGNMENT