COLLECTED ALGORITHMS

FROM CACM

ALGORITHM 30

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION

K. W. ELLENBERGER

Missile Division, North American Aviation, Downey,
California

procedure ROOTPOL (n, a, L, F, u, v, CONV) ;
valuen, a, L, F ;integer L, F,n ;
array a, u, v, CONV ;
comment The Bairstow and Newton correction formulae are

used for a simultaneous linear and quadratic iterated synthetic
division. The coefficients of a polynomial of degree n are given as
a; i =0,1,...,n) where a, is the constant term. The coeffi-
cients are scaled by dividing them by their geometric mean.
The Bairstow or Newton iteration method will nearly always
converge to the number of figures carried, F, either to root
values or to their reciprocals. If the simultaneous Newton and
Bairstow iteration fails to converge on root values or their
reciprocals in L iterations, the convergence requirement will be
successively reduced by one decimal figure. This program antici-
pates and protects against loss of significance in the quadratic
synthetic division. (Refer to “On Programming the Numerical
Solution of Polynomial Equations,” by K. W. Ellenberger,
Commun. ACM 8 (Dec. 1960), 644-647.) The real and imaginary
part of each root is stated as u[i] and v[i], respectively, together
with the corresponding constant, CONV;, used in the con-
vergence test. This program has been used successfully for over
a year on the Bendix G15-D (Intercard System) and has recently
been coded for the IBM 709 (Fortran System);

begin integeri, j,m ; array h,b, ¢,d,e[—2:n] ;

real t, K, ps, gs, pt, qt, s, rev, r ;

ROOTPOL: b-l = b_z = C.1 = C_g = d.l = d_z = ey =
e :=0 ;
for j :=Ostepluntiln doh;:=2a; ; t:=1 ;
K := 10F ;
ZROTEST: if h, = 0 then
beginu, ;=0 ; v,:=0 ; CONV, := K ;
n:=n-—1 ; gotoZROTEST
end ;
INIT: if n = 0 then go to RETURN ;
ps:i=gs:=pt:=qt :=s5:=0 ;
rev:=1 ; K:= 10F
if n = 1 then
beginr := — hi/h; ; go to LINEAR
end ;
for j := 0 step 1 until n do
begin
if hj = 0 then s := s else s := s + log(abs(hj))
end ; s := sl0
for j := Ostep 1 untilndo h; := h;/s ;
if abs (hy/he) < abs (h,_i/h,) then
REVERSE: begint := —t ; m := entier ((n+1)/2) ;
for j := 0 step 1 until m do
begin s := h; ; hj := hy; ; jo;:=s
end
end ;

if qs % 0 then

beginp := ps ; q:=qs ; go to ITERATE

ITERATE:

RAIRSTOW:

BNTEST:

NEWTON:

LINEAR:

QADRTIC:

RETURN:

30-P1- 0

end ;

ifh,_; = 0 then

beginq :=1 ; p:= =2

end else

beginqg:=h/h, 2 ; p:= (haoi = qX hag)/hus
end ;

if n = 2 then go to QADRTIC

fori:= 1step 1 until L do

begin

for j := 0 step 1 until n do

begin bj = hj —p X b,'_l —qX bj_2
¢;:=bj—p X ¢;—1 — q X ¢j_,

end ;

if n,1 = 0 then go to BNTEST ;

if bo1 = 0 then go to BNTEST ;

if abs (hu_1/bna) <K then go NEWTON
bni=h,—q X bas ;

if b, = 0 then go to QADRTIC ;

if K < abs (ha/bn) then go to QADRTIC

for j := O step 1 until n do

begind; := h; +r X dj_;, ;

end ;

if dn = 0 then go to LINEAR ;

if K < abs (hn/d.) then go to LINEAR ;

r:=0 ;

’

)

e; 1= d,-—+—r><e;-1

Cn-1:= —pP X Cpn2—(q X Cpr_3 ;
2
$ = Cn-2 — Cpn_1 X Cpn3 ;
if =0 then
beginp:=p—-2 ; q:=qX (q+1)

end else

beginp := p 4 (boy X cnz — by X Casy)/s
q:=q + (_bn-l X Cn-1 + bn X On-2)/s

end ;

ifen1 =0thenr:=r—lelser := r — dy/e,_,

end ; ps:=pt ; gs:=qt ; pt:=p ;
qt :=q ;

if rev < 0 then K := K/10 ; rev = —rev ;
go to REVERSE ;

ift<Othenr:=1/r ; u,:=r1 ; v,:=0 ;

CONV,:=K ; n:=n-1 ;
for j := O step 1 until n do h; := d;
if n = 0 then go to RETURN

go to BAIRSTOW

if t < 0 then

beginp :=p/q ; q:=1/q

end ;

if 0 < (g — (p/2)?) then

beginu, := u,; = —p/2 ;
8 :=sqrt (@ — (p/2)%) ; vao:=s ;
Vp-1 := —8

end else

begins := sqt ((p/2)}) — q) ;

ifp<Othenu, := —p/2+3s
elseu, := —p/2—s ; U := q/u, ;
Vp i= Vpoq :=0

end ; CONV, := CONV,;:=K ;
n:=n-2 ;
for j := 0 step 2 until n do h; := b; ;
go to INIT ;

end

COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 30

NUMERICAL SOLUTION O THE POLYNOMIAL
EQUATION (K. W. Ellenberger, Comm. ACM, Dee.
1960)

WiLLianm J. ALEXANDER

Argonne National Laboratory,* Argonne, I1I.

ROOTPOL was coded by hand for the LGP-30 using the ACT-TII
Compiler with 24 bits of significance. The following corrections
were found necessary.

(@) by i= by 1= c_; 1= ¢, := dyi=d,y:i=¢i=e,:=0
should be
boai=bai=c ii=c,:i=d, .= e :=h_:=0

(b) m := entier ((n + 1)/2)
m := entier ((n — 1)/2)

(¢) Juoj i='s should be h,_;:= s

(d) q := h/hu_s should be hy/h,_s

() cj:=bj—pXe;—1— q X ¢j—2 should be
cii=bj—pXci—qXej,

(f) ifn,_; = 0 then go to BNTEST
ifh, ; = 0then go to BNTEST

(g) s 1= sqrt (q — (p/2)%) should be
s = sqrt (q — (p/2)2)

(h) forj :=0step 2 until ndo h; := b should be
forj := Ostep !l untilndoh;:= b;

(1) go to BAIRSTOW should be go to ITERATE

should be

should be

I

The following correction was found necessary in the given
example (Refer to “On Programming the Numerical Solution of
Polvnomial Equations,” by K. W. Ellenberger, Comm. ACM 3,
Dec., 1960):

f(x) = (.10098), 108 x' — (.98913) 10% x2 + (.10000) 108 x +
(.10000) 10" = 0 should be

f(x) = (.10098) 108 x% — (.98913) 106 x3 — (.10990) 108 x2 +
(.10000) 10% x + (.10000) 10' = 0

With these corrections the results obtained agree with those
given in the example.

Tor equations of higher order it was found necessary to avoid
repeated scaling of the reduced equation in order to prevent
floating point overflow. The range on the exponent in the ACT 111
svstem is —32 < e < 31.

Further floating point overflow difficulties were experienced
when certain coefficients in the reduced equation beecame small
but not zero. The following additions were made to avoid this
fault:

(a) forj :=Ostepluntilndoh; :=d; was replaced by
for j := 0 step 1 until n do begin if abs (hj/d;) < K then
h; := djelse h; := 0 end
(b) forj := Ostep 1 until ndo h; := b; was replaced by
for j := 0 step 1 until n do begin if abs (h;/b;) < K then
h; := bj else h; := 0 end
With the above changes the following results were obtained:
X —3x3 4+ 20x2 4 44x 4+ 54 = 0
X = —.9706390 + 1.005808i
X = 2470639 + 4.6405331
X = 2x 42X+ X34 62— G6x 4+ 8 =0
X —.9999999 4 .9999999i
X = 1.500000 =+ 1.322876i

Il

x = .5000002 + .86G60251i
X xt - 8x3 — 16x2 4+ Tx + 15 = 0
x = 3.000001
X = —2.000000 3- 1.000001i
X = —.9999997
x = .9999998

* Work supported by the U. S. Atomic Energy Commission

30-P 2- R1

CERTIFICATION OF ALGORITHM 30

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION [K. W. Ellenberger, Comm. ACM 3
(Dec. 1960), as corrected in the previous Certification
by William J. Alexander, Comm. ACM 4 (May 1961)]

Kaiman J. Conex

Graduate School of Industrial Administration, Carnegie
Institute of Technology, Pittsburgh, Pa.

The ROOTPOL procedure originally published by Illenberger
as corrected and modified by Alexander was coded for the Bendix
G20 in 20-GATE. Some serious errors were found in the third and
fourth lines above the statement labelled “REVERSE” in Ellen-
berger’s Algorithm which were not mentioned in Alexander’s
Certification. First, the function “log” is not a standard function
in ALGOL 60; it is clear from the context, however, that Ellenberger
intends this to be the logarithm function to the base 10. Second,
Ellenberger’s Algorithm failed to divide the accumulated sum of
the logarithms by n+1 before taking the antilogarithm.

The correct, and slightly simplified, manner in which the third
and fourth lines above the statement labelled “REVERSE”
should read is:

if hj 5% 0 then s := In(abs(h;))
end; s :=s/(n+1); s:= exp(s);

With these corrections, the numerical results obtained essen-
tially agree with those reported by Alexander.

CERTIFICATION OF ALGORITHM 30 [C2]

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION [K. W. ELLENBERGER, Comm. ACM
3 (Dec. 1960), 643]

Jonn J. Kourerp (Recd. 31 Aug. 1964, 18 Nov. 1964 and
10 Nov. 1966)

Computing Center, United Technology Center, Sunny-
vale, Calif. 94088
The ROOT POL procedure was found to use the identifiers 2, g,

without declaring them. They should be declared real.

The first Ancon statement in Cohen’s Certification [Comm.
ACM 5 (Jan. 1962), 50] which reads:

ifh; # 0 then s := In (abs(h;))
should read:
if hj > 0 then s := In (abs(h;)) + s.
The next line could be simplified to read:
s 1= exp(s/(n+1));

The above corrections, as well as Algorithm 30 itself, are in
publication language ALcor. In order to translate the algorithm
to reference language Avcow, which is now used in CACM, 107
would need to be replaced by 10 1 F, and k; would need to be re-
placed by & [j].

With these corrections and those contained in Alexander’s
Certification [Comm. ACM 4 (May 1961), 238], Ellenberger’s Al-
gorithm was adapted to B-5000 ALcoL and successfully executed
on the Burroughs B-5000 computer at United Technology Center.
The results from the four examples used by Alexander are given
below.

end;

COLLECTED ALGORITHMS (cont.)

Ezample 1

(1.0098)107z* — (9.8913)10%3 — (1.0990)105%z2 4~ 10°%z + 1 = 0.
The roots are:
z = —0.201080185406
z 0.149521622653 + 0.163989609283:
z (—9.99989011230)10-%.

I

Ezample 2

zt — 328 + 202 + 442 + 54 = 0
z = 2.47063897001 + 4.64053316164¢
z = —0.970638970010 & 1.00580758903%

Ezample 3

28 — 225 4 22t a2+ 622 — 62+ 8 =0
z = —0.999999999990 4 1.000000000000:
z = 1.500000000000 + 1.32287565553¢
z 0.500000000000 =+ 0.8660254037807

II

Example 4

Pt — 83— 1622+ 72+ 15=0

z = 3.00000000000

r = —2.00000000000 <+ 1.000000000037
z = —0.999999999990

z = 1.000000000000

Il

These results agree substantially with those given in Alexander’s

Certification.

30-P 3-

0

