```
ALGORITHM 31
GAMMA FUNCTION
ROBERT M. COLLINGE
Burroughs Corporation, Pasadena, California
real procedure Gamma (x); real x;
comment For x in the range 2 \le x \le 3 an approximating poly-
  nomial is used. In this range the maximum absolute error \epsilon(x)
  is \mid \epsilon(x) \mid < 0.25 \times 10^{-7}. For x > 3 we write \Gamma(x) = (x-1)(x-2)
  \dots (x-n)\Gamma(x-n) where 2 \le (x-n) \le 3, and for x < 2 we write
          \frac{x(x+1)}{x(x+1)...(x+n-1)} where 2 \le (x-n) \le 3. For x = 0
  or a negative integer \Gamma(x) is set equal to a large value 10^{50}.
begin
  real h, y;
  h := 1.0; y := x;
A1: if y = 0 then h := 10^{50}
     else if y = 2.0 then go to A2
     else if y < 2.0 then begin
    h := h/y; y := y + 1.0; go to A1 end
     else if y \ge 3.0 then begin
     y := y - 1.0; h := h \times y; go to A1 end
     else begin y := y - 2.0;
     h := ((((((((.0016063118 \times y + .0051589951) \times y
       + .0044511400) \times y + .0721101567) \times y
       + .0821117404) \times y + .4117741955) \times y
       + .4227874605) \times y + .9999999758) \times h end;
 A2: Gamma := h end Gamma.
```

CERTIFICATION OF ALGORITHM 31 GAMMA FUNCTION [R. M. COLLINGE, Comm. ACM, Feb. 61]

Peter G. Behrenz

Mathematikmaskinnämnden, Stockholm, Sweden

GAMMA was successfully run on FACIT EDB using Facit-Algol 1, which is a realization of Algol 60 for FACIT EDB. No changes in the program were necessary. The relative error was as stated in the comment of GAMMA about 10⁻⁸.

CERTIFICATION OF ALGORITHM 31 GAMMA FUNCTION [R. M. Collinge, Comm. ACM, Feb. 61]

Peter G. Behrenz

Mathematikmaskinnämnden, Stockholm, Sweden

GAMMA was successfully run on FACIT EDB using Facit-Algol 1, which is a realization of Algol 60 for FACIT EDB. No changes in the program were necessary. The relative error was as stated in the comment of GAMMA about 10^{-6}