Algorithms

CERTIFICATION OF ALGORITHM 13

COMPLEX EXPONENTIAL INTEGRAL (A. Beam,
Comm. ACM, July, 1960)

P. J. Rsver ann Hexry C. THacHER, JR.*

Argonne National Laboratory, Argonne, Illinois

EKZ was programmed by hand for the Royal-Precision LGP-30
ecomputer, using a 28-bit mantissa floating-point interpretive sys-
tem (24.2 modified). To facilitate comparison wilh existing tables
(National Burean of Standards Applied Mathematics Series 5!
and 37), the real and imaginary parts of Ex(z) were computed
from u and v. Results are shown in the following table, In all
cases, the values agreed with tabulated values within the toler-
ance specified.

X v k € n
1 X 108 1.0 1 107! 7
13X 108 1.0 1 10 14
1 X 10-8 1.0 1 102 24
1 X 108 1.0 1 10~ 37
1 X 10-# 1.0 1 1078 52
1 10-# 1.0 1 10-6 70
1 X 1073 1.0 1 10-7 a0
1 X 108 1.0 1 108 114
1 X 10-3 2.0 1 108 37
1 X 1073 3.0 1 10-¢ 26
1 X 10-8 4.0 1 10°¢ 21
1.0 1% 1078 1 10-% 40
1.0 1.0 1 10-% 34
1.0 2.0 1 10°§ 26
1.0 3.0 1 10-¢ 21
2-0 1 X 1078 1 10°¢ 23
2.0 1.0 1 1078 22
2.0 2.0 1 1078 20
2.0 3.0 1 106 17
3.0 1 X 1078 1 10°¢ 17
3.0 1.0 1 1078 17
3.0 2.0 1 1078 16
3.0 3.0 1 10-¢ 15
4.0 0.0 0 10°¢ 20
4.0 0.0 1 108 15
4.0 0.0 T2 1076 16
4.0 0.0 301514 10-¢ 17
4. a.o 15, 16 10°¢ 16

It thus appears that the algorithm gives satisfactory accuracy,
but that in certain ranges of 1he variables, the time required may
be excessive for extensive use.

REMARK ON ATGORITHM 20

REAL EXPONENTIAL INTEGRAL (8. Peavy, Comm.
ACM, October 1960)

8. Peavy

National Bureau of Standards, Washington, D. C.

A printing error has been called to our attention by J. A.
Beutler of F. 1. duPont de Nemours and Co. Lines 15 through 17
of Algorithm 20 should read
z 1= ((((00107857 X x — .D0Y76004) X x

4+ .05510068) X x — .24991055) X x
-+ .99999193} X x — 577215606 — In (x)

* Work supported by the U. 8. Atomic Fnergy Commission.

Contributions to this department must be in the form
stated in the Algorithins Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May, 1060).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laberatory, National Bureau of Standards,
Washington 25, . C.

CERTIFICATION OF ALGORITIIM 3

SOLUTION O POLYNOMIAL EQUATIONS BY
BAIRSTOW HITCHCOCK METIIOD (A. A. Gran,
Comm. ACM, February, 1960}

JAMES 3. VANDERGRAFT

Stanford University, Stanford, California

Bairstow was coded for the Burroughs 220 computer using the
Burroughs AnGoL. Conversion from Avncon 60 was made by hand
on a statement-for-statement busis. The integer declaration had
to be extended to include n, k, n, NAT, EX, and the corrections
noted in the certification by Henry C. Thacher, Jr., Communica-
tions ACM, June, 1960, were incorporated.

By gelecting the input parameters carefully, all branches of
the routine were tested and the program ran smoothly. The fol-
lowing polynomials equations were solved:

Xt — 14x* 4 4952 — 36 = 0, x = =+ 1.0000000
x = + 1.9999098
x = + 3.0000001
x¥ — 30x6 4 273x* — 820x2 4+ A76 = 0, x = £ 1.0000000
X = == 2.0000000
x = + 2.9999999
x = =+ 4.0000001

Several miner errors were found in the certification by Mr.
Thacher. The constant term in the first polynomial should be 54
instead of 43, the second pair of roots for that polynomial should
be - 2470639 £ 4.6405330 1, and the second pair of roots for the
second polynomial should be =1.0 & i.

ff

ALGORITHM 31

GAMMA FUNCTION

RoBerT M. COLLINGE

Burroughs Corporation, Pasadena, California

. real procedure Gamma (x); real x;

comment For xin the range 2 < x < 3 an approximating poly-
nomial is used. In this range the maximum absolute error ¢(x)
is | e(x) | < 025X 1077, For x > 3 we write T'{x) = (x—1)(x—2)
cx—n)l(x—n) where 2 < (x—n) < 3, and for x < 2 we write
\Tﬁ—l[;(x::s)-\n—l) where 2 < (x—n) < 3, Tor x = 0
or a negative integer T'(x) is set eaual to a large value 10%,
begin
real b, ¥;
hi=10; y:= x;
Al: if y = 0 then h := 10%®
else if v = 2.0 then go to A2
else if v < 2.0 then begin
h:=h/y; y:=%+10; goto Al end
else if ¥y > 3.0 then begin
y:i=¥ —10; h:=hXy;
else heginy := v — 2.0
hoo= (((((((.00160E3118 X y - .0051580951) X v
+ 00445114000 X y + .0721101567) X y
+ .0821117404) X y + .4117741955) X ¥y
+ 4227874605) X y 4+ 9999999758) % h end;
A2: Gamma := h end Gamma.

T(x) =

go to Al end

Communications of the ACM 105

ALGORITHM 32

MULTINT

R. Doy Freeman Jr.

Michigan State University, East Lansing, Michigan

real procedure MULTINT (n, Low, Upp, Funev, s, P, u, w);
value n;

real procedurce Low, Upp, Funcv; array s, u,
w; integer 1;

comment MULTINT will perform u single, double, triple,...,
T-order integration depending on whether n=1, 2,..., T. The
result is:

Upp(1) Upp(2, x)
MULTINT = { Funev(l, x1) dx; | Funev{Zx,x2) dxs ...
Low(1) Tow(2, x

Funev(x,.,Xs) dxa

Low{n,x,...Xa1
The variable of inlegration is x[}]. J=1 refers to the sutermost
integral, j=n, the innermost integral. The code divides each
interval equally into s(j] subintervals and performs a P-point
Gaussian Integration on each subinterval with weight func-
tions wlk[j]] and abscissas u[k[j]]. P is the size of the arrays of
weight functions and abscissas and must he provided by the
main codec along with these arrays.

Since the values x[1], x[2],..., x[n], are storcd in an array, as
are a, b, ¢, d, v, it is necessary to substitute an integer for the
upper bound T of these arrays before the program is executed.
This means, for example, if 3 is substituted for T, then the
procedure will not do a 4th order integral unless it is retrans-
lated with T > 4.

The values of the lower and upper bounds and functions must
of course be specified at the time of use. If each of these con-
stituted a separaie procedure, it would require writing and
translating 3n different procedures. This is eliminated by group-
ing them into Low, Upp, and Funev which compute the lower
and upper bounds and value of the functions respectively in
each of the jth integrals. Since these are each essentially a eol-
lection of “‘subprocedures,” the first stafement of each should
be a switch dirceting the code to the ‘‘subprocedure” which is
used in the jth integral. Note that, for example, Low(3,x) is
formally a function of x[11, x{2],..., x[T}]; tids is done mcrely
becausc it is more convenient to make Low(j,x) formally a func-
tion of the whole array x for all j. Actually of course Low(3, x)
would be a function of x[1] and x[2] only;
begin real array a, b, e, d, r, x[1:T};
integer array k, h[l:T]; real f; integer j, m;
for | ;=1 step 1 until T do

fUpp (nlxll"'Jx“‘l)

x[il := 0.0;
m:=1;
rin+1) := dn+1] := 1.0;
setup: for j := m step 1 until n do
begin
afj] := Low(j,x);
blj} == Upplj,x);

dij] := blil— aljh/sljl;
elil == alil + 0.5 X dfjj;

|

x[j] == c[j] + 0.5 X d[i] X ull};
rj] := 0.0;
h(j]l := k[j] :=; end;
j=m

sum: f := Funev(j,x);

rfil 1= rli] + r[i+1] >} d{j+1] X £ X wik[j!};
if (kfj1 < P) then go to labk;

if (hij] < s[j]} then go to labh;

i=1i-1

if (j = 0) then go Lo cxit;

go to sum;

labh: h[j] := hjl + 1;

elil += afi] + ([l — 0.5) X dfi];

106 Communications of the ACM

k[jl == 1;
. go 1o initalx;
labk: kfi] := k[j] + 1;

inttalx: x[j] := ¢[j] + 0.5 X dlj} X ulki{jll;
if (j=n) then go to sum;
m = j+1;
go to sebup;
exit: MULTINT := rli] X d{11 X 0.5T n; cnd

ALGORITHM 33
FACTORIAL
M. F. Lipp
RCA Digital Cemputation and Simulation Group,
Moorestown, New Jersey
real procedure Factorial {(n) ;
value n ; integern ;
comment This procedure makes use of the implicitly defined
recursive property ol Algol to compute n!;
begin Factorial := if n = 0 then 1. else nX Factorial (n—1)
cnd

ALGORITHM 34

GAMMA FUNCTION

M. I'. Lp

RCA Digital Computation and Simulation Group,
Moorestown, New Jersey

real procedure Gamma (x) ; real x;

comment This procedure generalizes the recursive factorial
routine, finding T(1+x} for reasonable values of x. Accuracy
vanishes for large x{(|x| > 10) and for negative x with small
fractional parts. For x being a negative integer the impoasible
value zero is given;

begin test: if x < 0 then go to minus else if x < 1 then

begin integer i ; real y; arvray a [L8];

a [1] := — 57710165 ;

a [2] := 98820689 ; a [3] := —.8O705604 ;
a [4] = 91820686 ;

a [B] := —.75670408 ; a [6] := .48219930 ;
a [7] 1= —.19352782 ;

a [8] := 03586834 ; y :=a[l];
fori:=2stepluntil8doy:=y X x+ali];

Gamma := y cnd hastings
else Gamma := x X Gamma (x—1) ; go toendgam;
minus: if x = —1 then Gamma := (else

Gamma := Gamma (x+1) / x;
endgam : end gam

Although each algorithm has been tested by its con-
tributar, no warranty, express or implied, is made by the
contributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material and no responsi-
bility is assumed by Lhe contributor, the editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this de-
partment is explicitly permitted without any charge. When
reproduction is for publieation purposcs, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

