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ALGORITHM 35

BIEVE

T. C. Woop

RCA Digital Computation and Simulation Group, Moores-
town, New Jersey

procedure Sieve (Nmax) Primes: (p) ;

integer Nmax; integer array D ;

Sievc uses the Sicve of Eratosthenes to find all prime
numbers not, greater than a siated inleger Nmax
and stores them in array p. This array should he
of dimension 1 by entier (2 X Nmax/ fn (Nmax)) ;

begin integer n,i,j ;

pll:=1 ; pR2l:=2 ; pBl:=j:=3 ;
for n := 3 step 2 until Nmax do

begin i:=3 ;

L1: go 1o if pli] € sqrt (n) then al else a2 ;
al: gu to if n/pli] = n + pli] then bl else b2 ;
h2:i:=1 41 o to Ll ;

a2 :plili=n 5 ji=j+l ;

bl: end ¢nd

comment

ALGORITHM 36

TCHEBYCIIEFT

AT Granw

RCA Digital Computation and Simulation Group, Muaores-
town, New Jersey

procedure  tehehyeheff (b, x, m, £)
real array t,x ; inleger £, m ;
comment given a set of m+1 values of x stored in a one-
dimensional array whose subseripts run from 0
thru m at least, construct a table of t.(x), n =
0, 1,---£ and store it in the two-dimensional
array t, where you find t,(xm]) as t[n, m)
begin integer 1, k, n
for k := 0 step 1 until m do begin ([0, k] (=1
t[l, k] := x[k] end ;
for n:=2stepluntil{dofori=0 step 1
until m do
tlm, if := 2 X x[i] X tlo — 1, 1] — tfn — 2, 1]
end tcheby

H

ALGORITHM 37

TELESCOPK 1

K. A. Brons

RCA Advanced Programming Group, Pennsauken, IN. J.

procedure Telescope 1l (N, L, eps, limit,¢) ; valuelimit, L
integer N ; real L, eps, limit ; array ¢ ;

comment: Telescopel }‘rnakes an Nth degrec polynomial approxi-

3

mation 2. ewx* to a function which was valid to
k=0

within eps 2 0 over an interval (0, I.) and reduces
it, if possible, to a polynomial of lower degree,
valid to within limit > 0. The initial cocflicients
¢ are replaced by the final coefficients, and the
deleted coefficients are replaced by zero. The ini-
tial eps is replaced by the final bound on tha ervor.

Contributions o this department must be in the form
stated in the Algorithms Department policy statement
(Communtcations, February, 1960) except that ALGOL 60
notation should be used (sce Communications, May, 1960),
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Taboratory, National Bureau of Standards,
Washington 25, . C. Algorithms should be in the Publica-
iion form of ALGOL 60 and written in a style patterned
after the most recent algorithms appearing in this depart-
ment.

Although ecach algorithm hos been tested by its con-
tribulor, no warranty, cxpress or implied, is made by the
contributor, the editor, or the Associalion for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and rclated algorithm material and no responsi-
bility is assumed by the contributor, the editor, or the
Association for Computing Machinery in eonnection there-
with.

The reproduction of algorithms appearing in this de-
partment is explicitly permiited without any charge. When
reproduction is for publication purposes, reference must be
made to the algorithm author and to the Communicaiions
issue bearing the algorithm.

N is replaced by the degree of the reduced poly-
nomial. N and eps must be variahles.

This procedure computes the coefficients given in
the Techniques Department of the ACM Com-
munications, Vol. 1, No. 9, from the recursion
formula :

k-L-(2k — 1) 4
BN+ Ek—DN—-—k+1D ’

; array d[0:N]

Akl =

begin inLeger k

start: if N <1 then go te cxit ; d[N]:= —¢c[N] ;
for k := N step — 1 until 1 do
dik — 1] := —dk] X L X k X (k - 0.5)/

(N+k -1 XN-k+1)) ;

if eps -+ abs (d[0]) < limit then
begin eps 1= eps + abs (0]} ;
fork ;= Nstep — Luntil 0do cfk] := cfk] + d[k];
N:=N—-1 ;gotostart end ;

exit: end

ALGORITHM 38

TELESCOPE 2

K. A Brows ,

RCA Advanced Programming, Pennsauken, N. J.

procedure Telescope 2 (N, T, eps, limit,¢) ; valuelimit,L
integer N ; real L, eps, limit ; array ¢ ;

comment Telescope 2 takes an Nth degrec polynomial ap-
N

proximation 2. cix* to a funetion which was
-
0

valid to within eps > 0 over an interval (=1L, 1)
and reduces it, if possible, to a polynomial of
lower degrec, valid to within limit >0. The initial
coeflicients ey are replaced by the final coeflicients,
and deleted coellicients are replaced by zero. The
initial eps is replaced by -the final bound on ths
error, and N i8 replaced by the degree of the re-
duced polynomial. N and eps must be variables.
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This procedure computes the coefficients given in
the Techniques Department of the ACM Com-
munications, Vol. 1, No, 9, from the recursion
formula

. kIHk— D _
TN+ kD (N-—k+2

begin integer k ; real & ; array d[0: N| ;
if N <2 then go to cxit ; d[N] := —¢[N] ;
for k := N step — 2 until 2 do
dlk — 2] = —dk]X L12X k X (k — 1)/
(N+k—-2DXN-k+2) ;
if (N/2) — entier (N/2) = 0 then s := d[0] else
s = dlLI/N ;
if eps 4+ abs(s) < limit then begin
eps 1= eps -+ abs(s) ;
for k := N step — 2 until 0 do
clk] := clk] + dk] ;
N:=N--1 ; gotostart end ;
exit: end

G2 = —

start:

ALGORITHM 39

CORRELATION COEFFICIENTS WITH MATRIX
MUILTIPLICATION

Pargny Sassount

Burroughs Corporation, Pasadena, California

procedure NORM (x) number of rows: (m) number of columns:
(n) normalized output: (y) standard deviations:

(8) 3
value m, n ; integer m, n ; array X, y, s ;
comment Given an observation matrix [x] consisting of ob-
servations x;; on a population, NORM will cal-
culate
Ny — i
Yij; = ———_:_w—u,l_f fori 1, v, Il
] 8
/‘/Z(xii—ij)z J_l}.'7n
=1
and the standard deviations
1
20 Gy — &2
8 = T
m
where x; is the mean of observations on the j-th
factor ;
begin integer i, ] ; real r, h, ¢, b ;

r = sqrt {(m) ; for j
1: begin h:=0 ;

for i := 1 step 1 until m de

h:=h4+x[,j] ; h:i=h/m ; b:=0

:= 1 step 1 until n do

’

fori := 1step 1l until m do
2: begin e:=x[i,jl—h ; b:=b+eT2 ; yi,j] :=c¢
end 2
b = sqrt (b) ;
fori:= 1 step 1 until m do
¥li, il -== ¥[,il/b ; sil:=b/r
end 1
end NORM ;
comment The normalization is now completed, and wc are

ready to compute the corrclation matrix ;
procedurc TRANSMULT (y) number of rows: (m) number of
columns: (n) symmetrical square matrix result:
(@) ;
m, n ; inleger m, n ;

value array y, z
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A: end ti

comment This procedure multiplies two matrices, the first
being the transpose of the second. The result is a
symmetrical matrix with respect to the main diag-
onal, therefore only the lower part of it, including
the main diagonal, is computed. The upper half is
obtained by equating corresponding elements;
integer i, j,k ; realh ;
for j := 1 step 1 until n do
fori := j step 1 until n do
besin h:=0 ;
for k := | step 1 nntil m do
h i= b+ ylk, i] X ¥k, ] ;
ifi#=]thenzlj,il:=h
cnd i
end TRANSMULT. [z] is the squarc matrix of the
eorrelation coefficients of the initial observation
matrix [x]

begin

eli, jl :=h ;

ALGORITHM 40

CRITICAL PATH SCHEDULING

B. LLravexworTH

American Machine & Foundry Co., Greenwich, Conn.

procedure CRITICALPATH (n,1,J, D1J,ES, L8, EF, LF, TF,
FFy
integer array I, J, DII, ES, L8, EF, LF, TF,
FF ;
comment: Given the total number of jobs n of a project, the
vector pair I, , Jy representing the kth job, which is thought
of as an arrow connecting event T to event Ju(le < Ji,
k =1 ---,n), and a duration vector (DIJ}; , CRITICAL-
PATH determines the earliest starting time (ES)., latest
starting time (T.8)y , earliest completion time (BIF)., latest
completion time (LF)k, the total float (TF)y , and the free
float (FF)x . 1, must bel and the Iy , Jix must be in ascending
order. TFor example, if the first three jobs arc labelled (1, 2),
(1, 33, (3, 4}, then the T, J vectors are (1,1, 3) and (2, 3, 4)
respectively. The critical path is given by each arrow whose
total Hoat is zero. The following non-loeal labels are used for
exits: outl — Iy not less than Jx ; out2 — Ik out of se-

integer n

quence ; ontd — I, missing;
begin
integer k, index, max, min ; integer array ti, te [Lin] ;
index ;=1
for k := 1 step 1 until n do
begin
if Ilk] = Jlk] then go to outl
if I[k] < index then go to oui2 ;
if I[k] > index A T[k] # index 4+ 1 then go to out3 ;
if I|k] = index + 1 then index := Ik} ;
C: c¢nd ;
for k := 1 step 1 until n do

tik] := telk] := 0 ;
for k := 1 step 1 until n do
bezin
max ;= K[I[k]] + DIiJk] ;
if ti[J[k]] = 0 V tilJ1k]] < max then
ti[J{k]] ;= max ;
telJ[n]) := tilJ[n]} ;
for k := n step —1 until 1 do
begin
min = te[J[k]] — DLJ[k] ;
if te(I[k]] = 0V te[I[k]] > min then
telllk]] := min ;

B: cndte ;

for k := 1 step 1 until n do



begin
ESIk] := ti[1[k]] ;
L8(k) := te[Jk]] — DLJ[K] ;
EF[k] := ti[lk]] + DIIKk] ;

Lk'k] = te[Jk]] ;
TFk] := te[J[k]] — ti[T{k]] — DIJ(k] ;
FFk] := tid k)] — ti[lk]] — DIJ{k]
end
end CRITICALPATH

REFERENCES
(1) James E. Kewiey, Jr. avo Moreay IL. WaLker, “Critical-
Path Planning and Scheduling,” 1959 Proceedings of the
Eastern Joint Computer Conference.
(2) M. C. Fursasera, “Least Cost Estimating and Scheduling
— Scheduling Phase Only,” IBM 650 Program Library
File No. 10.3.005.

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
{Comm. ACM, November 1960)

J. H. WiLkiNsoN

National Physical Taboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the eal-
culation of zeros of arbitrary functlions by successive linear or
quadratic interpolation. The main limiting factor on the ncouracy
attainable with such procedures is the condition of the methad
of evaluating the function in the ncighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, cven
when the funetion has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple-
diagonal matrices T having i = oy, tyus = by,
Ciy1 . As an extreme case I took ay = a4 = -+ = g, = 0, a5 =
a=---=aup=1, an =2, by =1, ¢; = 0s0 that the fune-
tion which was being evuluated was ¥ (x — 1)5(x — 2). In spite
of the multiplicity of the roots, the answers obtained using float-
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 27*. Results of similar aceuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.
This is because the method of evaluation which was used, the two-
term recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, T was
able to set a tolerance of 272 with confidence. If the same SJunction
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 27 would have been necessary and the mul.
tiple roots would have obtained with very low ageuracy,

To find the zcro roots it is necessary to have an absolute toler-
ance for | xer — x| as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of caleulating
the derivaiive, we have great freedom of choice in evaluating the
function itself. This freedom is encrouched upon if we frame the
rootfinder so that it finds the zeros of x = [(x) since the true func-
tion x — f(x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi-
fication 2 (June 1960), the caleculation of the zeros of x — tan x
was attempted. If the function (—x 4+ tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example

‘tpiyi+l =

X=nr+y

tan X — x = —nyr  —m— |
cos ¥
the multiple zeros at x = 0 conld be found as accurately as any
of the others. With a slight modification of common sine and co-
sine routlines, this could be evaluated as

(siny — y) — yleos y — 1)

—aT - 14 (eosy — 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re-
striction to 10 (Certification 2) is rather unrcasonably small.
For example, the direct evaluation of x® — 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerahle
number of iterations are needed to find the root x = 1. Similarly
a very large number are needed for Newton’s method, starting
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function {often it is much longer),
then linear interpolation is usually faster, and quadratic inter-
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is use-
ful to have some ecriterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is meb fo some extent in Algorithm 25 by the condition
84, that abs(iprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the remainders rl and
rQ respectively. They are very difficult tolcrances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with sach of the computed factors. This eliminates the loss
of aceuracy which may occur if the factors are net found in in-
crcasing order. This presumably was the case in Certification 3
when the roots of =5+ Txt + 6x3 4 62 + 8x + 2 = (0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence wag very fast using single-
preeision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = —6.35099 36103 and the spurious zero were found first,
the remaining two quadratie factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
polynomial. When either of the other two factors was found first,
then all factors were fully aceurate even without iteration in the
origiral polynomial [1].

REFERENCE

1] J. H. Wirkinson. The evaluation of the zeros of ill-conditioned
polynomials Parts T and IL. Nwm. Math. 1 (1959), 150-180.

CERTIFTCATION OF ALGORITHM 4
BISECTION ROUTINE (8. Gorn, Comm. ACM,
March 1960)
Parry Jane Rapmw,* Argonne National Laboratory,
Argonne, Illinois
Bisec was coded for the Royal-Precision LGP-30 computer,
using an interpretive floating point system (24.2) with 28 bits of
significance.
The following minor correction was found necessary.

a: go ko v should be go to +;

* Work supported by the U. 8. Atomic Encrgy Commissiomn.
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After this correction was made, the program ran smoothly for
F(x) = cos x, using the following parameters:

¥ ¥ € a Results
0 1 . 001 001 FLSXT
0 2 .001 .00 1.5703
1.5 2 .001 001 1.5703
1.55 2 .1 1 1.5500
1.5 2 001 1 1.5625

These combinations test all loops of the program.

* Work supported by the U. 8. Atomic Energy Commission.

REMARK ON ALGORITHM 16

CROUT WITH PIVOTING (G. E. Forsythe, Comm.
ACM, 3 (Sept. 1960), 507-8.)

Hexry C. TaacHER, Jr.,* Argonne National Labora-
tory, Argonne, Ilinois

This procedurc contains the following errors:
a. In BOLVE, the expression
elk] := ¢[k] — INNERPRODUCT
Blk, pl, elpl,p L,k —~ 1D
should read:
clk] := ¢[k] — INNERPRODUCT
(Blk, pl, elp), p, 1, k — 1)
b. In CROUT, the specification part should read:

array A, b, y ; integer n ; integer array pivot ;
.. In SOLVE, the specification part should read:
array B, ¢, z ; integer n ; integer array pivol H

The cfficiency of the algorithm will be improved by the follow-
ing changes:

a. Tn the elimination phase of CROUT, replace

fori:= k | 1 step | umntil n do
begin quote := 1.0/Alk, k] ; Al k] := quot XA[i; k] end ;
by -
quot := 1.0/Alk, k] ; fori := k <+ 1step 1 until n do
Ali, k] = quot XA[i, k] ;

b. Omit INNERPRODUCT from the formal parameter list
in both CROUT and SOLVE, and declare INNERPRODUCT
either locally, or globally. This avoids any refcrence to INNER-
PRODUCT in the calling sequence produced by a compiler.

It is also to be noted that a minor modification of CROTUT
allows it to be used Lo evaluate the determinant of A.

All of these suggestions are included in a later algorithin.

* Work supporled by the U. 8. Atomie Energy Commission.

REMARK ON ALGORITHM 25
REAL ZEROS OF AN ARBITRARY TFUNCTTON
(B. Leavenworth, Comm. ACM, November 1960)
RopertT M. COLLINGE
Burroughs Corporation, Pasadena, California
On attempting to use this algorithm, I discovered the two fol-

lowing errors:
(1) The linc following the SWITCH statement should read:

for L := 1 step 1 until n do
(2) The line starting with the label loop: should read:
Ioop: dd = 14+ d ; bi=x0Xdf2—x1lxddf2

+x2X Wdd + d) ; .
With these two modifications incorporated the algorithm was
translated into the language of the Burroughs Algebraic Com-
piler and has been uscd successfully on the Burroughs 220 Com-
puter. :
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“COMPUTERS—
KLY TO TOTAL SYSTEMS CONTROL”
IS TUEME OF
1961 EASTERN
JOINT COMPUTER CONFERENCIL

Bruce (. Oldfield, Program Chatrman,
Calls For Papers T'o Be Presented
December 12-14, Sheraton-Park Hotel,
Washington, D.C.

The 1961 Tastern Joint Computer Conference
Committee has announced that the theme for this
vear’s conference, to be held December 12-14 at
the Sheraton-Park Hotel in Washington, D. C., will
be “Computers—Key to Tatal Systems Control”.

Bruce G. Oldfield, Program Chairman, states that
this theme reflects one of the most significant trends
in modern computer technology., “Until quite
recently, computers were considered o be data
processing ends in themselves,” Mr. Oldfield points
out. “Now they are more and more being treated
as merely one eclement—although the most vital
one—in total systems for government, defense, in-
dustry and business management, operations. Other
important elements in the closed loop for the ‘“total
system” are data acquisition, digital data communi-
cations, display, and actual control or guidance.”

The 1961 EJCC will follow this total systems ap-
proach by presenting the latest advances in equip-
ment and coneepts leading toward computer control
of present and future systems. Mr. Oldfield called
for papers in such representative areas as:

Network Caontrol

Man- Machine Systems
Self Organizing Systems
High Speed Digital Data

Communications

Business Management Control
Military and Space Command

Contro! Systems
Industrial I'rocess Control
Real Time Systems

Each person wishing to contribute a. paper to the
program should submit two copies of hoth a 100-
word abstract and a two-page summary to:

Bruce G. Oldfield

IBM Federal Systems Division
326 E. Montgomery Avenue
Rockville, Maryland

The deadline for submission of abstracts and sum-
marics is June 20, 1961. Authors whose papers are
chosen for presentation will be promptly notified.

Inasmuch as papers will be published prior to the
Conference and made available to the attendees, the
full text of papers chosen for presentation must be
submitted to the Program Chairman by September
1, 1961.




