
Algorithms 
ALGORITHM 35 
SIEVE 
T. C. WOOD 
RCA Digital Computation and Sinmlation Group, Moores- 

town, New Jersey 

p r o c e d u r e  Sieve (Nmax)  P r imes :  (p) ; 
i n t e g e r  Nmax;  in t eger  array p ; 

c o m m e n t  Sieve uses t he  Sieve of E r a t o s t h e n e s  to find all p r ime  
num ber s  no t  g rea t e r  t h a n  a s t a t e d  in t ege r  N m a x  
and  s tores  t h e m  in a r r ay  p. This  a r r ay  should  be 
of d imens ion  1 by  en t i e r  (2 X Nmax/ t~n  (Nmax) )  ; 

b e g i n  i n t e g e r  n,  i, j ; 
p[1] :=  1 ; p [ 2 ] : =  2 ; p[3] :=  j :=  3 ; 
for n := 3 s t ep  2 u n t i l  N m a x  d o  

b e g i n  i :=  3 ; 
L I :  go  t o  i f  p[i] < s q r t  (n) t h e n  a l  e l s e  a2 ; 
al:  go  t o  i f  n /p[ i ]  = n + p[i] t h e n  b l  else  b2 ; 
b 2 : i  :=  i + 1 ; go t o L l  ; 
a2 :p [ j ]  :=  n ; j :=  j + 1  ; 
b l :  e n d  e n d  

ALGORITHM 36 
TCHEBYCHEFF 
A. J. GIANNI 
RCA Digital Computation and Sinmlation Group, Moores- 

town, New Jersey 

p r o c e d u r e  t chebychef f  (t, x, m,  ~) ; 
real  array t ,  x ; i n t e g e r  ~ , m  ; 
c o m m e n t  given a se t  of m + l  va lues  of x s to red  in a one-  

d imens iona l  a r r ay  whose  subsc r ip t s  run  f rom 0 
t h r u m  at  leas t ,  c o n s t r u c t  a t ab le  of t . (X) ,  n = 
0, 1 , . . . , C  and  s tore  i t  in t he  two-d imens iona l  
a r r ay  t ,  where  you find t~(x[m]) as t [n,  m] ; 

b e g i n  i n t e g e r  i, k, n ; 
f o r  k :=  0 s t e p  1 u n t i l  in do  b e g i n  t[0, k] :=  1 ; 
t[1, k] := x[k] e n d  ; 
for n :=  2 s t e p  I u n t i l  ~ d o  f o r  i = 0 s t e p  1 

until m do 
t [n,  i] :=  2 X x[i] X t[n - 1, i ] - -  t[n -- 2, i] 

e n d  t c h e b y  

ALGORITHM 37 
TELESCOPE 1 
K. A. BRONS 
RCA Advanced Programming Group, Pennsauken, N. J. 

p r o c e d u r e  T e l e s c o p e l  ( N , L ,  eps,  l imi t ,  c) ; v a l u e l i m i t ,  L ; 
in t eger  N ; real  L, eps,  l imi t  ; a r r a y  c ; 

c o m m e n t  : Te lescope  1 t akes  an N t h  degree  po lynomia l  approx i -  
N 

m a r ion  ~ CkX k to a func t ion  which  was va l id  to 
k = 0  

wi th in  eps  > 0 over  an in te rva l  (0, L) and  reduces  
i t ,  if poss ible ,  to a po lynomia l  of lower  degree ,  
va l id  to w i th in  l imi t  > 0. The  ini t ia l  coefficients 
Ck are rep laced  by  the  final coefficients,  and  the  
de le t ed  coeffÉcients are rep laced  by  zero.  The  ini-  
t ia l  eps is rep laced  by  the  final bound  on the  error .  

C o n t r i b u t i o n s  to th is  d e p a r t m e n t  m u s t  be in t he  fo rm 
s t a t e d  in t he  A lgo r i t hms  D e p a r t m e n t  pol icy  s t a t e m e n t  
(Communications, F e b r u a r y ,  1960) excep t  t h a t  A L G O L  60 
n o t a t i o n  should  be used  (see Communications, M a y ,  1960). 
C o n t r i b u t i o n s  should  be sen t  in dup l i ca t e  to J.  H.  Wegs te in ,  
Computation Laboratory, National Bureau of Standards, 
Washington 25, D. C. Algorithms should be in the Publica- 
tion form of ALGOL 60 and written in a style patterned 
after the most recent algorithms appearing in this depart- 
merit .  

A l t h o u g h  each  a l g o r i t h m  has  been  t e s t ed  by  i ts  con-  
t r i b u t o r ,  no w a r r a n t y ,  express  or  impl ied ,  is made  by  the  
c o n t r i b u t o r ,  t he  ed i to r ,  or t he  Assoc ia t ion  for C o m p u t i n g  
M a c h i n e r y  as to  the  accu racy  and  func t i on ing  of t he  al- 
go r i t hm and  r e l a t ed  a l g o r i t h m  ma t e r i a l  and  no respons i -  
b i l i ty  is a s sumed  by  the  c o n t r i b u t o r ,  the  ed i to r ,  or t he  
Assoc ia t ion  for  C o m p u t i n g  M a c h i n e r y  in connec t ion  the re -  
wi th .  

The  r e p r o d u c t i o n  of a lgo r i t hms  a p p e a r i n g  in th is  de-  
p a r t m e n t  is expl ic i t ly  p e r m i t t e d  w i t h o u t  any  charge.  When  
r e p r o d u c t i o n  is for pub l i ca t ion  purposes ,  re ference  m u s t  be 
m a d e  to t he  a l g o r i t h m  a u t h o r  and  to t he  Communications 
issue bea r ing  the  a lgor i thm.  

start: 

exi t :  

N is r ep laced  by  the  degree  of t he  r educed  po ly -  
nomia l .  N and  eps m u s t  be var iab les .  

Th i s  p rocedure  compu t e s  t he  coefficients g iven in 
t he  T e c h n i q u e s  D e p a r t m e n t  of the  A C M  Coln- 
m u n i c a t i o n s ,  Vol. 1, No.  9, f rom the  recurs ion  
fo rmula  

k . L . ( 2 k - -  1) 

ak-1 = - - ak ' 2 (  N + k -- 1 ) ' (N  -- k + 1) ' 

b e g i n  i n t e g e r  k ; array d[0:N]  ; 
i f  N < 1 t h e n  go  t o  exi t  ; d[N] :=  - c [ N ]  ; 
for k :=  N s t e p  -- 1 u n t i l  1 d o  
d [ k - -  1] :=  - -d[k]  X L X k X ( k - -  0.5)/  

((N + k - -  1) X (N -- k + 1)) ; 
i f  eps  + abs  (d[0]) < l imi t  t h e n  
b e g i n  eps  :=  eps  + abs  (d[0]) ; 
f o r k  :=  N s t e p  - 1 u n t i l 0 d o c [ k ]  :=  c[kl + d[kl ; 
N :=  N - 1 ; go  t o  s t a r t  e n d  ; 
e n d  

ALGORITHM 38 
TELESCOPE 2 
K .  A .  BRONS 

RCA Advanced Programming, Pennsauken, N. J. 

p r o c e d u r e  Telescope  2 (N, L, eps,  l imi t ,  c) ; v a l u e l i m i t ,  L ; 
i n t e g e r  N ; real  L, eps,  l imi t  ; array  e ; 

e o m l n e n t  Te lescope  2 t akes  an N t h  degree  po lynomia l  ap-  
N 

p r o x i m a t i o n  ~ ekx k to a f unc t i on  which  was  
k ~ 0  

va l id  to w i t h i n  eps  _> 0 over  an i n t e rva l  ( - -L ,  L) 
and  reduces  i t ,  if poss ib le ,  to a po lynomia l  of 
lower  degree ,  va l id  to  w i t h i n  l imi t  >0 .  T h e  in i t ia l  
coefficients ck are  rep laced  by  the  final coefficients,  
and  de l e t ed  coefficients are  rep laced  by  zero• The  
in i t ia l  eps  is r ep laced  by  t h e  final b o u n d  on the  
er ror ,  and  N is r ep laced  by  the  degree  of t he  re- 
duced  po lynomia l .  N and  eps  m u s t  be var iab les .  
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s t a r t :  

ex i t :  

T h i s  p r o c e d u r e  c o m p u t e s  t h e  coeff icients  g iven  in 
t h e  T e c h n i q u e s  D e p a r t m e n t  of  t h e  A C M  C o m -  
m u n i c a t i o n s ,  Vol.  1, No .  9, f r o m  t h e  r e c u r s i o n  
f o r m u l a  

k • I ] ( k -  1) 

ak-2 = - - a k ( N  + k - -  2 ) ' ( N -  k + 2 )  ' 

b e g i n  i n t e g e r  k ; r e a l  s ; a r r a y  d[0: N]  ; 
i f  N < 2 t h e n  g o  t o  ex i t  ; d[N] : =  - -c [N]  ; 
for  k :=  N s t e p  -- 2 u n t i l  2 d o  
d [ k -  2] : =  - d [ k ]  × L ~ ' 2 X  k X ( k - -  1 ) /  

( (N + k - 2) X (N - k + 2)) ; 
i f  (N/2)  -- e n t i e r  (N /2 )  = 0 t h e n  s : =  d[0] e l s e  

s : =  d [1 ] /N ; 
i f  eps  + abs ( s )  < l i m i t  t h e n  b e g i n  

eps  : =  eps  + abs ( s )  ; 
for  k :=  N s t e p  -- 2 u n t i l  0 d o  

e[k] :=  c[k] + d[k] ; 
N :=  N -- 1 ; g o  t o  s t a r t  e n d  ; 
e n d  

ALGORITHM 39 
CORRELATION COEFFICIENTS WITH MATRIX 

MULTIPLICATION 
P A P K E N  S A S S O U N I  

Burroughs Corporation, Pasadena, California 

p r o c e d u r e  N O R M  (x) n u m b e r  of  rows :  (m) n u m b e r  of  c o l u m n s :  
(n) n o r m a l i z e d  o u t p u t :  (y) s t a n d a r d  d e v i a t i o n s :  
( s )  ; 

v a l u e  m,  n ; i n t e g e r  m ,  n ; a r r a y  x, y ,  s ; 
c o m m e n t  G i v e n  an  o b s e r v a t i o n  m a t r i x  [x] c o n s i s t i n g  of ob-  

s e r v a t i o n s  xii on  a p o p u l a t i o n ,  N O R M  will  cal-  
cu l a t e  

Xii - -  fXi 
Yii = f o r i  = 1, . . . , m  

~ (xli --  ~j)2 j = 1, " " ,  n 
i-1 

a n d  t h e  s t a n d a r d  d e v i a t i o n s  

• E (~ - ~)~ 
i-i 

S i = 
m 

w h e r e  ,~j is t h e  m e a n  of o b s e r v a t i o n s  on t h e  j - t h  
f a c t o r  ; 

b e g i n  i n t e g e r  i, j ; r e a l  r ,  h ,  c, b ; 
r :=  s q r t  (m) ; f o r  j : =  1 s t e p  1 u n t i l  n d o  

1 : b e g i n  h :=  0 ; 
for  i : =  1 s t e p  1 u n t i l  m d o  
h : = h + x [ i , j ]  ; h : = h / m  ; b : = 0  ; 
f o r  i :=  1 s t e p  1 u n t i l m d o  

2 : b e g i n  e : = x [ i , j ] - -  h ; b : =  b + c ~ 2  ; y [ i , j ]  :=  e 
e n d  2 ; 
b : =  s q r t  (b) ; 
for  i :=  I s t e p  1 u n t i l  m d o  
y[i ,  Jl : =  y[i ,  j ] / b  ; s[j] : =  b / r  
e n d  1 
e n d  N O R M  ; 

c o m m e n t  T h e  n o r m a l i z a t i o n  is n o w  c o m p l e t e d ,  a n d  we are  
r e a d y  to  c o m p u t e  t h e  c o r r e l a t i o n  m a t r i x  ; 

p r o c e d u r e  T R A N S M U L T  (y) n u m b e r  of  rows :  (m) n u m b e r  of  
c o l u m n s :  (n) s y m m e t r i c a l  s q u a r e  m a t r i x  r e s u l t :  
( z )  ; 

v a l u e  In, n ; i n t e g e r  m ,  n ; array  y,  z ; 

c o m m e n t  

b e g i n  

b e g i n  

T h i s  p r o c e d u r e  m u l t i p l i e s  two m a t r i c e s ,  t h e  f i rs t  
be ing  t h e  t r a n s p o s e  of t he  second .  T h e  r e s u l t  is a 
s y m m e t r i c a l  m a t r i x  w i t h  r e s p e c t  to t h e  m a i n  d iag-  
ona l ,  t h e r e f o r e  on ly  t h e  lower  p a r t  of  i t ,  i n c l u d i n g  
t h e  m a i n  d i agona l ,  is c o m p u t e d .  T h e  u p p e r  ha l f  is  
o b t a i n e d  by  e q u a t i n g  c o r r e s p o n d i n g  e l e m e n t s ;  

i n t e g e r  i, j ,  k ; r e a l  h ; 
for  j :=  1 s t e p  1 u n t i l n  d o  
f o r  i :=  j s t e p  1 u n t i l  n d o  
h : = 0  ; 
for  k :=  1 s t e p  1 u n t i l  m d o  
h :=  h + y[k,  i] × y[k,  j] ; z[i, j] :=  h ; 
i f  i # j t h e n  z[j,  il :=  h 
e n d  i 
e n d  T R A N S M U L T .  [z] is t h e  s q u a r e  m a t r i x  of t h e  

co r r e l a t i on  coeff icients  of t h e  in i t i a l  o b s e r v a t i o n  
m a t r i x  [x] 

ALGORITHM 40 
CRITICAL PATH SCHEDULING 
B .  L E A V E N W O R T H  

American Machine & Foundry Co., Greenwich, Conn. 

p r o c e d u r e  C R I T I C A L P A T H  (n, I ,  J ,  D I J ,  ES,  LS,  E F ,  L F ,  T F ,  
F F )  ; 

i n t e g e r  n ; i n t e g e r  array  I,  J ,  D I J ,  ES ,  LS,  E F ,  L F ,  T F ,  
F F  ; 

c o m m e n t :  G i v e n  t h e  t o t a l  n u m b e r  of  j obs  n of  a p r o j e c t ,  t h e  
v e c t o r  pa i r  Ik , Jk r e p r e s e n t i n g  t h e  k t h  job ,  w h i c h  is t h o u g h t  
of  as  a n  a r row c o n n e c t i n g  e v e n t  Ik to  e v e n t  Jk(Ik  < J k ,  
k = 1 --" , n) ,  a n d  a d u r a t i o n  v e c t o r  (DIJ )k  , C R I T I C A L -  
P A T H  d e t e r m i n e s  t h e  ea r l i e s t  s t a r t i n g  t i m e  ( E S ) k ,  l a t e s t  
s t a r t i n g  t i m e  (LS)k , e a r l i e s t  c o m p l e t i o n  t i m e  ( E F ) k ,  l a t e s t  
c o m p l e t i o n  t i m e  (LF)k , t h e  t o t a l  f loat  (TF)k  , a n d  t h e  free  
f loat  (FF)k . I1 m u s t  be  1 a n d  t h e  Ik , Jk m u s t  be in a s c e n d i n g  
order .  F o r  e x a m p l e ,  if t h e  f irst  t h r e e  j obs  a re  l abe l l ed  (1, 2), 
(1, 3),  (3, 4),  t h e n  t he  I,  J v e c t o r s  a re  (1, 1, 3) a n d  (2, 3, 4) 
r e s p e c t i v e l y .  T h e  c r i t i ca l  p a t h  is g iven  b y  each  a r row w h o s e  
t o t a l  f loat  is zero.  T h e  fo l lowing  non - loca l  l abe ls  a re  u s e d  for  
ex i t s :  p u r l -  Ik n o t  less  t h a n  Jk ; o u t 2 -  Ik o u t  of se-  
q u e n c e  ; ou t3  - -  Ik m i s s i n g ;  

b e g i n  
i n t e g e r  k, index ,  m a x ,  m i n  ; i n t e g e r  a r r a y  t i ,  te  [1:11] ; 
i n d e x  :=  1 ; 
f o r  k :=  1 s t e p  1 u n t i l  n d o  
b e g i n  

i f  I[k] => J[k] t h e n  go  t o  p u r l  ; 
i f  I [ k ] <  index  t h e n  go  t o  ou t2  ; 
i f  I[k] > i ndex  h I[k] # i ndex  + 1 t h e n  go  t o  ou t3  ; 
i f  I[k] = i ndex  + 1 t h e n  i ndex  :=  I[k] ; 

C:  e n d  ; 
f o r  k :=  1 s t e p  1 u n t i l  n d o  

ti[k] :=  te[k] :=  0 ; 
f o r  k :=  1 s t e p  1 u n t i l  n d o  
b e g i n  

m a x  :=  t i[I[k]l  + DI J [k ]  ; 
i f  t i [J[kH = 0 V ti[J[k]] < m a x  t h e n  
t i[J[k]] :=  m a x  ; 

A: e n d  t i  ; 
te[J[n]]  :=  t i[J[n]l  ; 
for  k :=  n s t e p  --1 u n t i l  1 d o  

b e g i n  
m i n  :=  te[J[k]] - D I J [ k ]  ; 
i f  te[I[k]] = 0 ~ / t e [ I [ k ] ]  > rain  t h e n  
te[I[k]] :=  ra in  ; 

B :  e n d  te  ; 
f o r  k :=  1 s t e p  1 u n t i l  n d o  
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b e g i n  
ES[k] := ti[I[k]] ; 
LS[k] := te[J[k]] -- DIJ[k] ; 
EF[k] := ti[I[k]] -4- DIJ[k] ; 
LF[k] := te[J[k]] ; 
TF[k] := te[J[k]] -- ti[I[k]] -- DIJ[k] ; 
FF[k] := ti[J[k]] -- ti[I[k]] - DIJ[k] 

e n d  

e n d  CRITICALPATH 
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Algorithms 2, 15, 25 and 26 were all concerned with the cal- 
culation of zeros of arbi t rary  functions by successive linear or 
quadrat ic  interpolat ion.  The main limiting factor on the accuracy 
at ta inable  with such procedures is the condition of the method 
of evaluating the function in the neighbourhood of the zeros. 
I t  is this condition which should determine the tolerance which is 
allowed for the relative error. With a well-conditioned method of 
evaluat ion quite a s tr ict  convergence criterion will be met,  even 
when the function has mult iple roots. 

For example, a real quadratic root solver (of a type similar to 
Algorithm 25) has been used on ACE to find the zeros of tr iple- 
diagonal matrices T having t l i =  a i  , t i+ i , i  = b i + i  , t i , i+ l  

c~+t . As an extreme case I took a~ = a~ . . . . .  a~ = 0, a6 = 
a7 . . . . .  a~0 = 1, an = 2, bl = 1, ei = 0 s o t h a t  the func- 
t ion which was being evaluated was xS(x -- 1)5(x - 2). In spite 
of the mult ipl ici ty of the roots, the answers obtained using float- 
ing-point ar i thmetic with a 46-bit mant issa  had errors no greater  
than 2 -44. Results  of similar accuracy have been obtained for the 
same problem using linear interpolat ion in place of the quadratic.  
This is because the method of evaluation which was used, the two- 
term recurrence relation for the leading principal minors, is a 
very well-conditioned method of evaluation. Knowing this,  I was 
able to set a tolerance of 2 -42 with confidence. If the same function 
had been evaluated from its explicit polynomial expansion, then 
a tolerance of about 2 -7 would have been necessary and the nml- 
tiple roots would have obtained with very low accuracy. 

To find the zero roots it is necessary to have an absolute toler- 
ance for [ x~÷l - Xr I as well as the relative tolerance condition. 
I t  is undesirable tha t  the prel iminary detect ion of a zero root 
should be necessary. The great power of rootfinders of this type 
is tha t ,  since we are ~mt saddled with the problem of calculating 
the derivative,  we have great freedom of choice in evaluating the 
function itself. This freedom is encroached upon if we frame the 
rootfinder so tha t  it  finds the zeros of x = f(x) since the true func- 
tion x -- f(x) is arbi trar i ly separated into two parts.  The formal 
advantage of using this formulation is very slight. Thus, in Certi-  
fication 2 (June 1960), the calculation of the zeros of x = tan x 
was a t tempted .  If the function ( - x  + tan x) were used with a 
general zero finder then,  provided the method of evaluation was, 
for example 

x =  n ~ - + y  

y3 yS 
3 3O 

t a n  x - -  x ~ - -nTr  -~- - -  
cos y 

the multiple zeros at x = 0 could be found as accurately as any 
of the others.  With a slight modification of common sine and co- 
sine routines,  this could be evaluated as 

(sin y -- y) -- y(eos y -- 1) 

1 + ( c o s y - -  1) 

and the evaluation is then well-conditioned in the neighbourhood 
of x = 0. As regards the number of i terat ions needed, the re- 
str ict ion to 10 (Certification 2) is ra ther  unreasonably small. 
For  example, the direct  evaluation of x 6° - I is well conditioned, 
but s tar t ing with the values x = 2 and x = 1.5 a considerable 
number of i terat ions are needed to find the root x = 1. Similarly 
a very large number are needed for Newton ' s  method,  s tar t ing 
with x = 2. If the time for evaluat ing the derivative is about the 
same as tha t  for evaluat ing the function (often it is much longer),  
then linear interpolat ion is usually faster,  and quadratic inter-  
polation much faster,  than  Newton.  

In all of the algorithms, including tha t  for Bairstow, it is u s e  
ful to have some criterion which limits the permissible change 
from one value of the independent  variable to the next [1]. This 
condition is met  to some extent  in Algori thm 25 by the condition 
$4, tha t  abs(fprt)  < ahs(x2 X 10), but  here the l imitat ion is 
placed on the permissible increase in the value of the function 
from one step to the next. Algorithms 3 and 25 have tolerances on 
the size of the function and on the size of the remainders r l  and 
r0 respectively.  They are very difficult tolerances to assign since 
these quanti t ies  may take very small values wi thout  our wishing 
to accept the value of x as a root. In Algorithm 3 (Comm. ACM 
June 1960) i t  is useful to re turn  to the original polynomial and to 
i terate  wi th  each of the computed factors. This eliminates the loss 
of accuracy which may occur if the factors are not found in in- 
creasing order. This presumably was the case in Certification 3 
when the roots of x s + T x  4 + 5 x  3 + 6 x a + 3 x +  2 = 0 were 
a t tempted .  On ACE, however, all roots of this polynomial were 
found very accurately and convergence was very fast  using single- 
precision, but the roots emerged in increasing order. The reference 
to slow convergence is puzzling. On ACE, convergence was fast  
for all the initial approximations to p and q which were tr ied.  
When the initial approximations used were such tha t  the real 
root x = --6.35099 36103 and the spurious zero were found first, 
the remaining two quadrat ic  factors were of lower accuracy, 
though this was, of course, rectified by i terat ion in the original 
polynomial.  When either of the other  two factors was found first, 
then all factors were fully accurate even without  i terat ion in the  
original polynomial [1]. 

R E F E R E N C E  

[1] Z. ~-I. WILKINSON. The evaluation of the zeros of i l l-conditioned 
polynomials Par t s  I and II.  Num. Math. 1 (1959), 150-180. 

C E R T I F I C A T I O N  O F  A L G O R I T H M  4 

B I S E C T I O N  R O U T I N E  (S. G o r n ,  Comm. ACM,  
M a r c h  1960) 

PATTY JANE RADER,* A r g o n n e  N a t i o n a l  L a b o r a t o r y ,  

A r g o n n e ,  I l l ino is  

BisEc was coded for the Royal-Precision LGP-30 computer ,  
using an interpret ive floating point system (24.2) with 28 bits  of 
significance. 

The following minor correction was found necessary. 

cz: go to "yl should be go to  3,i 

* Work supported by the U. S. Atomic Energy Commission.. 
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A f t e r  th is  cor rec t ion  was made ,  the  p rog ram ran  s m o o t h l y  for  
F(x)  = cos x, us ing  the  fol lowing p a r a m e t e r s :  

yt y~ • et Results 
0 1 .001 .001 F L S X T  
0 2 .001 .001 1.5703 
1.5 2 .001 .001 1.5703 
1.55 2 .1 .1 1.5500 
1.5 2 .001 .1 1.5625 

These  c o m b i n a t i o n s  t e s t  all loops of t he  p rog ram.  

* Work  s u p F o r t e d  by  the  U. S. Atomic  E n e r g y  Commiss ion .  

R E M A R K  ON A L G O R I T H M  16 
C R O U T  W I T H  P I V O T I N G  (G. E. Forsythe,  Comm. 

ACM, 3 (Sept. 1960), 507-8.) 
HENRY C. TI~ACHER, JR.,* Argonne National  Labora-  

tory, Argonne, Illinois 

This  p rocedure  con ta ins  t he  fol lowing er rors :  
a. In  SOLVE,  the  express ion  

c[k] :=  c[k] -- I N N E R P R O D U C T  
( B [ k , p ] , c [ p ] , p  1, k -  1) 

shou ld  read  : 
c[k] :=  c[k] - I N N E R P R O D U C T  

(B[k, p], c[p], p, 1, k -- 1) 
b. In CROUT, the specification part should read: 

a r r a y  A, b, y ; i n t e g e r  n ; i n t e g e r  a r r a y  p i v o t  ; 
' c. In  SOLVE,  t h e  spec i f ica t ion  p a r t  should  read :  

a r r a y  B, c, z ; i n t e g e r  n ; i n t e g e r  a r r a y  p i v o t  ; 
'3"he efficiency of t he  a lgo r i t hm will be improved  :by the  fol low- 

ing changes  : 
a. I n  t he  e l imina t ion  phase  o f C R O U T ,  replace  

f o r  i :=  k -4- 1 s t e p  1 U n t i l  I~ d o  
• : b e g [ h q u o t e  := 1.0/A[k,k] . ;  A[i ,k]  :=  q u o t X A [ i , k ] e n d  ; 
by  

q u o t  :=  1 . 0 / ~ [ k , k ]  ; f o r i  :=  k-4- 1 s t e p  l u n t i l  n d o  
A[i, k] := quot XA[i, kl ; 

b. Omit INNERPRODUCT from the formal parameter list 
in both CROUT and SOLVE, and declare INNERPRODUCT 
either locally, or globally. This avoids any reference to INNER- 
PRODUCT in the calling sequence produced by a compiler. 

It  is also to be noted that a minor modification of CROUT 
allows it to be used to evaluate the determinant of A. 

All of these suggestions are included in a later algorithm. 

* Work  s u p p o r t e d  by  the  U. S. A tomic  E n e r g y  Commiss ion .  

R E M A R K  ON A L G O R I T H M  25 
R E A L  ZEROS OF AN A R B I T R A R Y  F U N C T I O N  

(B. Leavenworth,  Comm. ACM, November  1960) 
ROBERT M .  COLLINGE 

Burroughs Corporation, Pasadena, California 

On a t t e m p t i n g  to use th i s  a lgo r i thm,  I d i scovered  the  two  fol- 
lowing er rors  : 

(1) The  l ine fol lowing the  S W I T C H  s t a t c i n e n t  should  read :  
f o r  L := 1 s t e p  1 u n t i l  n d o  

(2) The  line s t a r t i n g  wi th  t he  label  loop', should  read :  
loop:  dd  := 1 -4- d ; bi = x0 X dT.2 - x l  X d d T 2  

--I- x2 X (dd + d) ; 
W i t h  these  two modi f i ca t ions  i n c o r p o r a t e d  ~t~e a l g o r i t h m  was 
t r a n s l a t e d  in to  t he  language  of t h e  B u r r o u g h s  Algebra ic  Com- 
pi ler  and has  been  used  successfu l ly  on the  B u r r o u g h s  220 Com- 
pu te r .  
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" C O M P U T E R S - -  

K E Y  T O  T O T A L  S Y S T E M S  C O N T R O L "  

I S  T H E M E  O F  

1961 E A S T E R N  

J O I N T  C O M P U T E R  C O N F E R E N C E  

Bruce G. Oldfield, Program Chairman, 
Calls For Papers To Be Presented 

December 12-14, Sheraton-Park Hotel, 
Washington, D.C. 

The 1.961 Eastern  Joint Computer  Conference 
Commit tee  has announced tha t  the theme for this 
year 's  conference, to be held December 12-14 at  
the Sheraton-Park Hotel  in Washington, D. C., will 
be " C o m p u t e r s - - K e y  to Tota l  Systems Control".  

Bruce G. Oldfield, Program Chairman, states tha t  
this theme reflects one of the most  significant trends 
in modern computer  technology. "Until  quite 
recently, computers were considered to be da ta  
processing ends in themselves," Mr. Oldfield points 
out. "Now they are more and more being t reated 
as merely one e lement- -a l though the most  vital 
one- - in  total  systems for government,  defense, in- 
dustry and business management  operations. Other 
important  elements in the closed loop for the ' total  
sys tem" are da ta  acquisition, digital da ta  communi- 
cations, display, and actual  control or guidance." 

The 1961 E J C C  will follow this total  systems ap- 
proach by presenting the latest advances in equip- 
ment  and concepts leading toward computer  control 
of present and future systems. Mr. Oldfield called 
for papers in such representative areas as: 

Business Management Control Network Control 
Military and Space Command Man-Machine Systems 

Control Systems Self Organizing Systems 
Industrial Process Control High Speed Digital Data 
Real Time Systems Communications 

Each person wishing to contribute a paper  to the 
program should submit  two copies of both a 100- 
word abs t rac t  and a two-page summary  to: 

Bruce G. Oldfield 
I B M  Federal Systems Division 
326 E. Montgomery  Avenue 
Rockville, Mary land  

The deadline for submission of abstracts  and sum- 
m&ries is June 20, 1961. Authors whose papers are 
chosen for presentation will be prompt ly  notified. 

Inasmuch as papers will be published prior to the 
Conference and made available to the attendees, the 
full text  of papers chosen for presentation must  be 
submit ted to the Program Chairman by  September 
1, 1961. 


