Algorithms

ALGORITHM 41

EVALUATION OF DETERMINANT

Joser G. SoLoMoN

RCA Digital Computation and Simulation Group, Moores-
town, New Jersey

real procedure Determinant (A n);

real array A; integer n;

comment This procedure evaluates a determinant by triangu-
larization; '

begin real Product, Factor, Temp; array B[l : n, 1 : n],
Cll:mn,1:n];

integer Count, Sign, i, j, r, y;
Sign := 1; Product := 1;
for 1:=1stepl until n do for] := 1step 1 until
n do
begin Bli,jl := Ali,jI; CIi,j] := Ali,i] end;
for r := 1 step 1 until n—1 do
begin Count := r—1;
zerocheck: if Blr,r] # 0 then go to resume;
if Count < n—1 then Count := Count + 1
else go to zero;
for y :=r step 1 until n do
begin Temp := B[Count+1,y]; B[Count+1,y] :=
B{Count,yl; B[Count,y]l := Temp end;
Sign := — Sign; go to zerocheck;
zero: Determinant := 0; go to return;
resume: for i := r41 step 1 until n do
begin Factor := Cfi,r]/ Clr,r];
for j := r+1 step 1 until n do
begin B[i,j] := Bii,j] — Factor X C [r,j] end end;
for i:=r+1 step 1 until n do
for ] := r+1 step 1 until n do C[i,j] := Bl,j]
end;
for i:= 1 step 1 until n do Product := Product

X Bli,i]; Determinant := Sign X Produet;
return: end

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May, 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Publica-
tion form of ALGOL 60 and written in a style patterned
after the most recent algorithms appearing in this depart-
ment.

Although each algorithm has been tested by its contribu-
tor, no warranty, express or implied, is made by the con-
tributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning cf the algo-
rithm and related algorithm material and no responsibility
is assumed by the contributor, the editor, or the Association
for Computing Machinery in connection therewith.

The reproduction of algorithms appearing in this de-
partment is explicitly permitted without any charge. When
reproduction is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

176 Communications of the ACM

ALGORITHM 42

INVERT

T. C. Woop

RCA Digital Computation and Simulation Group,
Moorestown, New Jersey

procedure Invert (A) order: (n) Singular: (s) Inverse: (A1),
array A, Al; integer n,s,valuen;
comment This procedure inverts the square matrix A of order
n by applying a series of elementary row operation to the matrix
to reduce it to the identity matrix. These operations when
applied to the identity matrix yield the inverse Al. The case
of a singular matrix is indicated by the value s := 1;
begin comment augment matrix A with identity matrix;
array afl:n, 1:2 X n]; integeri,j;
for i := 1 step 1 until n do
for ] := 1stepl until2 X ndo
if ] < n then afi,j] := Alfi,j] else
if j = n+1 then afi, j] := 1.0 else a [i,j] := 0.0;
comment begin inversion;
for i := 1 step 1 until n do
integer k, £, ind; j := € :=1i; ind := s := 0;
L1: if a[f,j] = 0 then
begin ind := 1; if £ < n then begin { := £+ 1;
go to L1 end
else begin s := 1; go to L2 end
end;
if ind = 1 then for k := 1 step 1 until 2 X n do
begin real temp;
temp := alfXk];
alf k] := a [i,k];
ali,k] := temp end k loop;
for k := j step 1 until 2 X n do
alik] := ali,kl/ ali,jl;
for £ := 1 step 1 until n do
if £ i then for k := 1 step 1 until 2 X n do
a[lk] := alfk] — ali,k] X a[l,j};
end i loop;
for i := 1 step 1 until n do
for j := 1 step 1 until n do
Alli,j] := alin+Hil;
L2: end of procedure

begin

ALGORITHM 43

CROUT WITH PIVOTING II

Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Illinois

real procedure INNERPRODUCT (u,v) index :
finish : (f);

value s, f; integer k, s, f; real u, v;

comment INNERPRODUCT forms the sum of u(k) X v(k) for
k =s,s+1,...,f. If s > f, the value of INNERPRODUCT is
zero. The substitution of a very accurate inner product proce-
dure would make CROUT more accurate;

comment INNERPRODUCT may be declared in the head of
any block which includes the block in which CROUT is de-
clared. It may be used independently for forming the inner
produet of vectors;

begin

(k) start : (s)

real h;
h:=0; fork:=sstepluntilfdoh :=h+tu X v;
INNERPRODUCT := h

end INNERPRODUCT;



procedure CROUT 1II (A, b, n, y, pivot, det, repeat)

comment This procedure is a revision of Algorithm 16, Crout
With Pivoting by George E. Forsythe, Comm. ACM 3, (1960)
507-8. In addition to modifications to improve the running of
the program, and to conform to proper usage, it provides for
the computation of the determinant, det, of the matrix A. The
solution is obtained by Crout’s method with row interchanges,
as formulated in reference [1], for solving Ay = b and transform-
ing the augmented matrix [A b] into its triangular decomposi-
tion LU with all L(k k) = 1. If A is singular we exit to ‘singular,’
a nonlocal label. pivot (k) becomes the current row index of
the pivot element in the k-th column. Thus enough information
is preserved for the procedure to process a new right-hand
side without repeating the triangularization, if the boolean pa-
rameter repeat is true. The accuracy obtainable from CROUT
would be much increased by calling CROUT with a more accu-
rate inner product procedure than INNERPRODUCT.

The contributions of Michael F. Lipp and George E. Forsythe
by prepublication review and pointing out several errors are
gratefully acknowledged;

comment Nonlocal identifiers appearing in this procedure are:
(1) The nonlocal label ‘singular’, to which the procedure exits
if det A=0, and (2) the real procedure INNERPRODUCT’
given above;
value n; array A, b, y; integer n; integer array
pivot; real det; Boolean repeat;
begin
integer k, i, j, imax, p; real TEMP, quot;
det :=1; if repeat then go to6;
for k := 1 step 1 until n do

1: begin
TEMP := 0;
for i := k step 1 until n do
2: begin
Afli,k] := Ali,k] — INNERPRODUCT (Ali,p], Alp,kl,
P, 1: k—l),
if abs(Afi,k]) > TEMP then
3: begin
TEMP := abs(Afi, k]); imax :=1i
end 3
end 2;
pivot [k] : = imax;

comment We have found that A[imax, k] is the largest pivot in
column k. Now we interchange rows k and imax;
if imax # k then

+: begin det := — det; for j := 1step 1 until n do
5: begin
TEMP := Alk,j}; Alk,j] := Alimax, j]; Al[imax, j]
:= TEMP
end 5;
TEMP := b[k]; bl[k] := blimax]; blimax] := TEMP
end 4;

comment The row interchange is done. We proceed
to the elimination;
if Alk,k] = 0 then go to singular;
quot : = 1.0/Alk,k];
for i := k41 step 1 until n do
Ali,k] := quot X Ali,k];
for j := k+1 step 1 until n do

Alkjl := Alkjl — INNERPRODUCT (Alk,pl,
A[p;]]: P, 17 k—l):

blk] := blk] — INNERPRODUCT (Alk,p], bp],
b, i: k—l)

end 1; goto7;
comment The {riangular decomposition is now finished,
and we skip to the back substitution;
6: begin comment This section is used when the formal
parameter repeat is true, indicating that the matrix A

has previously been decomposed into triangular form by

CROUT II, with row interchanges specified by pivot,

and that it is desired to solve the linear system with a

new vector b, without repeating the triangularization;
for k := 1 step 1 until n do

begin
TEMP : = blpivot[k]]; blpivot[k]]:= blk]; b[k]:=
TEMP; b[k] := blk] — INNERPRODUCT
(Alk, pl, blpl, p, 1, k—1) end;
end 6;
7: for k := n step — 1 until 1 do
8: begin if — repeat then det : = Ak k] X det;
ylk] := (bik] — INNERPRODUCT (Alk,p}, yIpl, b,
k+1, n)/Alk k]
end 8;

end CROUT II;

REFERENCE:

(1) J. H. WiLkiNsoN, Theory and practice in linear systems. In
John W. Carr III (editor), Application of Advanced Nu-
merical Analysis to Digital Computers, pp. 43-100 (Lectures
given at the University of Michigan, Summer 1958, College
of Engineering, Engineering Summer Conferences, Ann
Arbor, Michigan [1959]).

* Work supported by the U. S. Atomic Energy Commission.

ALGORITHM 44

BESSEL FUNCTIONS COMPUTED RECURSIVELY

Maria E. Woucickr

RCA Digital Computation and Simulation Group,
Moorestown, New Jersey

procedure Bessir(N, FX, LX, Z) Result: (J, Y);
value LX, FX, N;
real FX, LX, Z; real array J, Y; integer N;
comment Bessel Functions of the first and second kind, Jp(X)
and Yp(X), integral order P, are computed by recursion for
values of X, FX = X = LX, in steps of Z. The functions are
computed for values of P, 0 £ P = N. M[SUBJ, the initial
value of P being chosen according to formulae in Erdelyi’s
Asympiotic Expansions. The computed values of Jp(X) and
Yp(X) are stored as column vectors for constant argument in
matrices J, Y of dimension (N+1) by entier (LX — FX)/Z +1);
begin real PI, X, GAMMA, PAR, LAMDA, SUM, SUMI;
integer P, SUB, MAXSUB;
PI := 3.14159265;
GAMMA = .57721566;
PAR := 63.0 — 1.5 X {n (2 X PD);
MAXSUB := entier ((LX — FX)/Z);
begin real array JHAT [0:N, 0:MAXSUB]J;
integer array M[0:MAXSUBI;
SUB := 0;
for X := FX step Z until LX do
begin if (X > 0) A (X < 10) then M [SUB] := 2 X entier (X) 4+ 9
else
begin real ALOG;
ALOG := (PAR — 1.5 X {n (X))/X;
M [SUB] := entier (X X (exp (ALOG) 4+ exp
(—ALOG))/2) end;
if N > M [SUB]| then
begin for P := M [SUB] + 1 step 1 until N do
J [P, SUB] := 0 end;
JHAT M [SUB], SUB] :=10 T (—9);
comment Having set the uppermost Jp(X) to a very small
number we are now going to compute all the Jp(X) down to

Communications of the ACM 177



P =0;
for P := M [SUB] step —1 until 1 do
JHAT [P—1, SUB] := 2 X P/X X JHAT [P, SUB] ~JHAT
[P+1, SUBJ;
SUM := SUMI := 0;
for P := 2 step 2 until (M [SUB] + 2) do
SUM := SUM -+ JHAT [P, SUBJ;
LAMDA := JHAT |0, SUB] + 2 X SUM;
for P := 0 step 1 until N do
J [P, SUB] := JHAT [P, SUB] /LAMDA;
comment Jp(X) have been computed by use of Jr(X);
for P := 2 step 2 until (M [SUB] + 2) do
SUM1 := SUMI1 + (—1) X (=1) T P + J[2 X P, 8UB]

/2/P;
Y [0, SUB] := 2/PI X (J [0, SUB] X (GAMMA + {n(X/2))
+ 4 X SUML);

for P := 0 step 1 until (M[SUB]-1) do

Y [P+1, SUB] := (—=2/PI/P + J [P+1, SUB] X Y [P,
SUBY/J [P, SUBJ;

SUB := SUB + 1 end end end

ALGORITHM 45

INTEREST

PETER Z. INGERMAN

University of Pennsylvania, Philadelphia, Pa.

procedure monpay (i, B, L, t, k, m, tol, goof)

comment This procedure calculates the periodic payment
necessary to retire a loan when the interest rate on the loan
varies (possibly from period to period) as a function of the as-
yet-unpaid principal.

The formal parameters are: i, array identifier for the vector
of interest rates; — B, array identifier for the minimum amounts
at which the corresponding i applies; —L, the amount to be
borrowed; —t, the number of periods for which the loan is to
be taken out; —k, the number of different interest rates (and
upper limit for vectors i and B); —m, the desired periodic pay-
ment; —tol, the allowable deviation of m from some ideal;
and goof, the error exit to use if convergence fails. The only
output parameter is m. For further discussion, see Comm.
ACM 3 (Oct. 1960), 542;

begin array h, S [1:k, 1:1], M, X [1:k];
integer array T, a, b [1:k];
integer D, q, T, sa, sb, I, ib, mb, nb;
comment This section sets up the procedure;
for p := 1 step 1 until k do
begin for q := 1 step 1 until t do

begin hp,q 1= ip%;

Sp.q := (hp,a — 1)/(i, — 1) end;

if p = 1 then X, := O else X, := B, X (pt — 1p);

M, := L X (hy.e/Sp.e) end;
sa := sb := ib := mb := 0; nb := t;
for p := 1 step 1 until k do
begin a, := entier (Byy1/Mpy1 + 0.5) — sa;

sa = sa + &p;
Tp := by, := entier (By/Mp — 0.5) — sb;
sb := sb 4+ bp;

if b, > mb then
begin ib := p; nb := nb — mb;
else nb := nb — b, end;

mb := bp end

b
for p := 1 step 1 until k do
I:=1X (ap — by + 1);
comment Having counted the number of possible iterations
and established a set of trial values for the Ty’s, a trial m is
found;

178 Communications of the ACM

D:=1; E:=F :=0;
newm: for p := 1 step 1 until k do
begin D := 1D X h,.1;
u = 1;
if p # 1 then for q := 1 step 1 until p — 1
do u := u X hq.1q;
E:=E + Sp.1p X Uu;
v = 0;
if p = 1 then forr := I stepl until p
dov :=v+ X;;
F:=F + u X vend;
m:= (L X D+ F)/E;
comment Now find out whether m is good enough
q:=1; F:=D:=0;
for p := 1 step 1 until t do
begin get F: F = (D + m — E)/(1 + iq);
if Bot = F then D := Felseq :=q + 1;
if D = F go to get I end;
if abs (D — L) £ tol then go to exit;
comment If not within tolerance, adjust T.’s and try
again;
p:=0;
redo: p :=p + 1;
if p # ib then
begin if T, Z a, then
begin Tiy := Ti, + Tp — by
T, := b, end end
else begin
Ty i= T + 1;
Tip := Tiv — 1;
p := k end;
ifp=kthenI:=1-1 else go to redo;
go to if I > 0 then newm else goof;
exit: end monpay;

ALGORITHM 46

EXPONENTIAL OF A COMPLEX NUMBER
Jou~n R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure EXPC (a, b, ¢, d); value a, b; real a, b, ¢, d;
comment This procedure computes the number, ¢+di, which
is equal to e®;
begin ¢ := exp (a);
d := ¢ X sin (b);
¢ := ¢ X cos (b)
end EXPC;

ALGORITHM 47

ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY
ARGUMENTS

Joun R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure LEGENDREA (m, n, x,r); valuem,n,x,r;
integer m, n; real X, r;

comment This procedure computes any Pau(x) or Pym(ix) for
n an integer less than 20 and m an integer no larger than n.
The upper limit of 20 was taken because (42)! is larger than
10®. Using a modification of this procedure values up to n=35
have been calculated. If P,2(x) is desired, r is set to zero. If
r is nonzero, P,w(ix) is computed;



begin
integer i, j; array Gamma [1:41];
real p, z, w, y;
if n = 0 then
begin p := 1;
go to gate end;
if n < m then
begin p := 0;
go to gate end;
z =1, w:=z;
if n=m then go to main;
for i := 1 step 1 until n—m do
7z = x X z;
Gamma [1] := 1;
for i := 2 step 1 until n4n+1 do
begin Gamma [i] := w X Gamma [i—1];
w = w1 end;
wi=1; y = w/(x X x);
if r=0 then
begin y := —y;

main:

W i= —w end;
if x=0 then
begin i := (n—m)/2;
if (i+1) # (n—m) then
begin p := 0;
go to gate end;
p := Gamma [m+n+41}/(Gamma [i4+1] X Gamma
[m+i+41]);
go to last end;
j=3; p:=0
for i := 1 step 1 until 12 do :
begin if (n—m+2)/2 < i then go Lo last end;
p := p + Gamma [n4+n—i—i43] X z/(Gamma
[i] X Gamma [n—i+2] X Gamma [n—i—i—
m-+jl);
z:=127 X yend;
last: z :=1;
for i := step 1 until n do
%z = 7z+z;
p 1= p/z;
if r # 0 then
begin i := n—n/4;
if 1 < i then
p := —p end;
if m = 0 then go to gate;
ji=m/2; z:= abs(w+x X x);
if m # (j4j) then
begin z 1= sqrt (z);
j := m end;
for i := step 1 until j do
p:=p Xz
gate: LEGENDREA :=p
end LEGENDREA;

ALGORITHM 48
LOGARITHM OF A COMPLEX NUMBER
Joun R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure LOGC(a, b, ¢, d); value a, b; real a, b, ¢, d;
comment This procedure computes the number, c+di, which
is equal to log.(a+bi);
begin ¢ := sqrt (a X a + b X b);
d := arctan (b/a);
¢ := log (c);
if a < 0 then d := d+3.1415927
end LOGC;

ALGORITHM 49

SPHERICAL NEUMANN FUNCTION

Jou~n R. HErNDON

Stanford Research Institute, Menlo Park, California

real procedure SPHBEN (r,x); value r,x; real r,x;
comment This procedure computes the spherical Neumann
function (m/2x)IN,.12(x). Infinity is represented by 10%7;
begin real z, g, t;
if x=0 then
begin s := 10 T 47;
go to gate
end;
s 1= —cos (x)/x;
ifr = 0 then
2o to gate;
t = sin (x)/x;
for g := 1 step 1 until r do
begin z := s;
s =5 X (g+g—1)/(x—t}:
t =1z
end;
gate: SPHBEN :=s
end SPHBEN ;

ALGORITHM 50

INVERSE OF A FINITE
HILBERT MATRIX

Joun R. HErNDON

Stanford Research Institute, Menlo Park, California

SEGMENT OF THE

procedure INVHILBERT (n,S);
real array S;
comment This procedure computes the elements of the inverse
of an n X n finite segment of the Hilbert matrix and stores them
in the array S;
begin real i, j, k;
S[1,1] = n X n;
for i := 2 step 1 until n do
begin
S[, il := (n+i—1) X (n—i+1)/((—1) X (i-1));
Sh, 1] := S[i—1, 1—1] X Sfi, i] X S[i, i]

value n; real n;

end;
fori:= 1step 1 until n—1 do
begin
for j := i+1 step 1 until n do
begin
k:=j—1;
Shi,jl:= —8[i, k] X (n+k) X (n—k)/(k X k)
end
end;

for i := 2 step 1 until n do
begin S[i, i] := S[i, i]/(+i—1);

for j := 1 step 1 until i—1 do
begin 8[j, i] := 8(j, 11/(+j-1);
8h, jI == 8Ij, il
end
end

end INVHILBERT:

Communications of the ACM 179



ALGORITHM 51

ADJUST INVERSE OF A MATRIX WHEN AN
ELEMENT IS PERTURBED

JoHN R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure ADJUST (n, d, i, j, A, B); valuei,j, n,d;
integer i, j, n; real d; real array A, B;
comment If the n X n matrix A=M™ and a change, d, is made
in the i, j-th element of M this procedure will calculate the
corrected matrix for M~ by adjusting matrix A. The adjusted
matrix is stored in B;
begin integer r, s;
real t;
t = d/(Alj, i] X d+1);
forr := 1 step 1 until n do
begin for s := 1 step 1 until n do
Blr, s] = Afr, s] — t X Alr, i] X Aj, s] end
end ADJUST

ALGORITHM 52

A SET OF TEST MATRICES

Joun.R. HErNDON

Stanford Research Institute, Menlo Park, California

procedure TESTMATRIX (n,A);
real array A;
comment This' procedure places in A an n X n matrix whose
inverse and eigenvalues are known. The n-th row and the n-th
column of the inverse are the set: 1, 2, 3, ..., n. The matrix
formed by deleting the n-th row and the n-th column of the
inverse is the identity matrix of order n—1;
begin integer i, j;
real t, ¢, d, f;
c:=t X (t+1) X (t+t—5)/6;

value n; integer n;

Aln, n] := —d;
fori := 1step 1 until n—1 do
begin f := i;
Ali, n] :=d X f;
Aln, i] := Ali, n];
Afl,i] :=d X (c—1f X f);
for j := 1 step 1 until i—1 do

begin t := j;
All, j] := —d X f X t;
Afj, 1] := AL, jl

end

end
end TESTMATRIX;

ALGORITHM 53

Nt ROOTS OF A COMPLEX NUMBER

Jou~n R. HErNDON

Stanford Research Institute, Menlo Park, California

procedure NTHROOT (n, r, u, REAL, UNREAL);
n, r, u; integer n;
real r, u; real array REAL, UNREAL;
comment This procedure computes the n roots of the equation
x® = r4ui. The real parts of the roots are stored in the vector
REAL [ ]. The imaginary parts are stored in the corresponding
locations in the vector UNREAL [ |;
begin integer nl, n2; real en, th, s, th 1;
REAL [n] := 0;

value

180 Communications of the ACM

en := 1/n;
if u=0 then
begin s := (abs(r)) T en;
th := 0,
go to main end;
if r=0 then
begin s := (abs(u)) T en;
th := 1.5707963;
if u < 0 then
th := —th
go to main end;
s:= (r X r+u X u) T (en/2);
th := arctan (u/r);
if r < 0 then
th := th + 3.1415926;
th := en X th;
thl := 6.2831853 X en;
for n2 := 1 step 1 until n do
begin REAL [n2] := s X cos (th);
UNREAL [n2] := s X sin (th);
th = th4+th 1 end
end NTHROOT,;

main:

ALGORITHM 54

GAMMA FUNCTION FOR RANGE 1 TO 2

Joux R. HernbpON

Stanford Research Institute, Menlo Park, California

real procedure Q(x); value x; real x,
comment This procedure computes T'(x) for 1 = x £ 2. This is
a reference procedure for the more general gamma function
procedure. T'(x) = Q(x—1);
begin Q = (((((((0.035868343 X x — 0.19352782) X x
+ 0.48219939) X x — 0.75670408) X x
+ 0.91820686) X x — 0.89705694) X x
+ 0.98820589) X x — 0.57719165) X x + 1.0
end Q;

ALGORITHM 55

COMPLETE ELLIPTIC INTEGRAL OF THE FIRST
KIND

JoaN R. HeErnDON

Stanford Research Institute, Menlo Park, California

real procedure ELLIPTIC 1(k); value k; real k;
comment This procedure computes the elliptic integral of the
first kind K(k, =/2);

begin real t;
t:=1-k X k;
ELLIPTIC 1 := (((0.032024666 X t +
0.054555509) X t
+ 0.097932891) X t + 1.3862944)
— (((0.010944912 X t -+ 0.060118519) X t
+ 0.12475074) X t + 0.5) X log (t)
end ELLIPTIC 1;

ALGORITHM 56

COMPLETE ELLIPTIC
SECOND KIND

Joun R. HErRNDON

Stanford Research Institute, Menlo Park, California

real procedure ELLIPTIC 2(k);

INTEGRAL OF THE

value k; real k:



comment This procedure computes the elliptic integral of the
second kind E(k, /2);

begin real t;
t:=1-—k Xk;
ELLIPTIC 2 := (((0.040905094 X t +
0.085099193) X t
+ 0.44479204) X t + 1.0 — (((0.01382999 X t
+ 0.08150224) X t 4 0.24969795) X t) X log (t)
end ELLIPTIC 2;

ALGORITHM 57

BER OR BEI FUNCTION

Jon~ R. HERNDON

Stanford Research Institute, Menlo Park, California

real procedure BERBEI (r, z); valuer, z; realr, z;
comment This procedure computes ber(z) if r is set equal to
zero. bei(z) is produced if r equals 1.0;

begin

real s, k, ¢, f, t;

ifr = 0 then

s:=1
else

I

step 2 until 100 do

ifs = s + k then
go to gate;
t := (c+r) X (c+r—1);
k:= —0.0625 X k X f/(t X t);
s := s+k end;
gate: BERBEI := s
end BERBEI;

REMARK

ON TFREQUENTLY OCCURRING ERRORS IN
ALGOL-60 PROGRAMS

W. BORscH-SuPAN

National Bureau of Standards, Washington 25, D. C.

There are some features in the syntax of ALgoL 60 which are
often neglected by people writing algorithms. This fact may be
due in part to the lack of redundance in the ALaoL 60 report, in
part to some confusion with other languages like ALcoL 58 or
FortraN. Therefore it may be worthwhile to mention these fre-
quently occurring errors in order to avoid them in the future.

There is some confusion between specifications and declarations
in procedures. Specifications are given for the formal parameters
of a procedure, i.e. for the quantities that connect the procedure
to the main program. Declarations are given for the variables
local to the procedure body, i.e. for the subsidiary quantities not
accessible to the main program. Specifications may be omitted in
case of formal parameters called by name, but they may be helpful
to the user of the procedure and to the compiler. Specifications
of arrays must not contain information about the dimensionality
and subscript bounds. Nevertheless this information often is
needed by the user of the subroutine. Therefore it should be in-
cluded in a comment, where a notation similar to declarations
could be used.

When the delimiters “end” and ;" come together the fol-

lowing should be kept in mind: The *“;’ separates subsequent
statements. The “begin’ and “‘end’ tie together a sequence of
statements to form a compound statement. Therefore, as a rule,
“end’’ or a string of several ‘“‘end’’ must be followed by a ;"

if another statement follows. In the string ‘; end’’ the *‘;’” always
can be dropped since it only introduces a dummy statement
without label between ‘“;”” and “end’’.

An integer followed by a decimal point is no ALGoL-60 number.
Write “1”’ or ““1.0”’ instead of 1.7,

According to the paragraph 2.3 of the ArcorL-60-report, the
comment must not be given before the procedure heading. The
reason is very formal: The report declares what ‘“‘comment”
preceded by ““;” or “begin’’ means, but ‘“‘comment’’ preceded
by nothing is undefined.

There is no rule about what the comment of a procedure should
include. But, I think that users of procedures would like writers
of procedures to include all the information necessary to ensure a
correct use of procedures without reading the procedure body.

Two other things may be helpful to the reader of algorithms:
Using simple and multiple indentation in a systematic manner may
clarify the nesting of statements quite a bit. In a similar way one
may improve the readability by putting notes after the delimiter
‘“‘end’ which indicate the delimiter “begin’’ to which they be-
long.

CERTIFICATION OF ALGORITHM 3

SOLUTION OF POLYNOMIAL EQUATION BY
BARSTOW-HITCHCOCK (A. A. Grau, Comm. ACM
Feb. 1960)

JouN HernDON

Stanford Research Institute, Menlo Park, California

Bairstow was transliterated into BALGOL and tested on the
Burroughs 220. The corrections supplied by Thatcher, Comm.
ACM, June 1960, were incorporated. Results were correct for
equations for which the method is suitable. x* — 16 = 0 is one
of those which gave nonsensical results. Seven-digit results were
obtained for 12 test equations, one of which was x6 — 2x5 + 2x* +
x* 4 6x2 — 6x + 8 = 0.

CERTIFICATION OF ALGORITHM 10

CHEBYSCHEV POLYNOMIAL T.(x) (Galler, Comm.
ACM, June, 1960)

JorN HernDON

Stanford Research Institute, Menlo Park, California

When transliterated into BALGOL and tested on the Bur-
roughs 220, Ch(n, x) gave better than 7-digit accuracy for n = 0,
1,4,8 and x = .01, .2, .7. It gave answers when x > 1 which cor-
responded to the value of the series with x substituted.

CERTIFICATION OF ALGORITHM 13

LEGENDRE POLYNOMIAL P.(x) (Galler,
ACM, June 1960)

JouN HErNDON

Stanford Research Institute, Menlo Park, California

Comm.

When transliterated into BALGOL and tested on the Burroughs
220, Le(n, x) gave 7-digit aceuracy forn = 0,1,4,9and X = .01,
2,.7,1.9, 5.0.

Communications of the ACM 181



CERTIFICATION OF ALGORITHM 20

REAL EXPONENTIAL INTEGRAL (8. Peavy, Comm.
ACM, Oct. 1960)

WiLriaMm J. ALExanpeErR* and Hexry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Illinois

Expint (x) was programmed for the I.GP-30 computer, using
both a 7S floating-point compiler (ACT III) and an 8S floating-
point interpretive code (24.2). Constants given to more than 78
(or to 88 for the 24.2 program) were rounded to 78 (or 83).

After changing the constant .005519968 to 05519968, both pro-
grams gave acceptable accuracy over the range tested.

The 8S (24.2) program was compared with the 9D values given
for —E;i(—x) in Mathematical Tables Project, Tables of Sine,
Cosine, and Ezponential Integrals, Volume II (1940) for the
set of values x = 0.1(0.1)1.0(1.0)10.0. The largest discrepancy found
was —16 X 107¢ for x = 0.1. For x greater than 1, all values tested
were good to 8S.

For computing real values of the exponential integral, this
algorithm is much faster than EKZ (Algorithm 13). For x < 1,
the ratio of speeds was of the order of 20.

* Work supported by the U.S. Atomic Energy Commission.

CERTIFICATION OF ALGORITHM 43

CROUT II (Henry C. Thacher, Jr., Comm. ACM, 1960)
Henxry C. TrHACHER, JR.*

Argonne National Laboratory, Argonne, Illinois

CROUT 1II was coded by hand for the Royal Precision LGP-30
computer, using a 28-bit mantisa floating point interpretive
system (24.2 modified).

The program was tested against the linear system:

12.1719 27.3041 1.9827 7.3757) 6.6355
A = | 81163 23.3385 0.8397 4.9474 b = [6.1304
3.0706 13.5434 15.5973 7.5172 4.6921
3.0581 3.1510 6.9841 13.1984) 2.5393)
with the following results:
12.171900 27394100 1.9827000 7.3756999
A/ = | 025226057 6.6327021  15.007125 5.6565352
T | 0.25124262 —0.56260107  14.979620 14.527683
0.66680633  0.76468695 —0.20207132 —1.3606142
6.6354999 1 0.15929120
bt = | 30181653 vob = |3 _ | 0.14691771
2.5702026 prvot =14 = 10.11257482
—0.082780734 4) (0.060840712
det = —1645.4499. All elements of Ab — y were less than 10~7 in

magnitude. Identical results were obtained with the same b,
and repeat true. With the same b and the last row vector of A
replaced by (19.1927, 33.4409, 25.1298, 5.2811),i.e. A4,j = A1},
+ 2A 2, — 3A 3, ], the results were:
det = 0.10924352 X 1073,
y = (0.29214425 X 108, —0.12131172 X 108, 0.72411923 X 107,
—0.51018392 X 10%)
Failure to recognize this singular matrix is due to roundoff, either
in the data input or in the calculation.

* Work supported by the U.S. Atomic Energy Commission.

182 Communications of the ACM

Standards

Further Survey of Punched Card Codes

H. McG. Ross, Ferrani Lid., London

The valuable “Survey of Punched Card Codes” pre-
pared by Smith and Williams (Comm. ACM 3, Dec. 1960,
638) unfortunately omits the card codes of Furopean
equipment, other than IBM. These are presented in the
table on page 181. This information has been extracted
from a Ferranti publication, “Collected Information on
Punched Card Codes” (List CS 266) and has been set out
in much the same way as the table by Smith and Williams.

A valuable step forward has been made by the British
Standards Institution in publishing Standard 3174,
“Alpha-Numeric Punching Codes for Data Processing
Cards”. As well as decimal numbers and letters, this
Standard also gives single-column punching codes for
pence, for shillings, for months, and for days within the
month, ete.

In the table, the card rows are identified by 12, 11, 0,
1,---, 9, from top to bottom; it should be noted, how-
ever, that modern practice in Britain prefers the top row
to be numbered 10. Where nothing is punched in a zone or
position the symbol b is used. The abbreviation Sp is used
for the space obtained in a printer from an entirely blank
column. Letter O is shown with a dot in it, to distinguish
it from zero.

The table gives examples of the treatment of days,
months, pence, ete., particularly when a single column is
used, often with two holes in it. However, even within one
type of code, 10 and 11 may be reversed.

The “old Hollerith” 4-zone code, which is widely used,
is designed to “‘cycle” within the zones; this brings the
letters into alphabetical order.

The asterisks refer to the Bull codes in which rows 7, 8,
and 9 are used to punch the zones, in place of 12, 11, and
0 respectively. Another special optional feature is the
“mechanical zero” punched in row 12; this is for left-
hand zeros, and is treated as zero by the accounting
machine but does not print.




