COLLECTED ALGORITHMS FROM CACM

ALGORITHM 48

LOGARITHM OF A COMPLEX NUMBER

Jou~ R. HERNDON

Stanford Research Institute, Menlo Park, California

procedure LOGC(a, b, ¢, d); real a, b, ¢, d;
comment This procedure computes the number, c+di, which
is equal to log.(a+bi);
begin ¢ := sqrt (a X a 4+ b X b);
d := arctan (b/a);
¢ := log (¢);
if a < 0 then d := d+43.1415927
end LOGC;

value a, b;

CERTIFICATION OF ALGORITHM 48

LOGARITHM OF A COMPLEX NUMBER (J. R.
Herndon, Comm. ACM /4 (Apr., 1961), 179)

A. P. RELrH

Atomic Power Div., The English Electric Co.. Whetstone,
England

Algorithm 48 was translated using the DEUCE ArcoL compiler,
after certain modifications had been incorporated, and then gave
satisfactory results.

The original version will fail if @ = 0 when the procedure for
arctan is entered. It also assumes that —=/2<d <3r/2, whereas the
principal value for logarithm of a complex number assumes
—gr<dZ .

Incidentally, the ALcoL 60 identifier for natural logarithm is In,
not log.

The modified procedure is as follows:

procedure LOGC (ab,c,d); value ab; reala,b,c,d;
comment This procedure computes the number ¢ + di which is
equal to the principal value of log, (@ + bi). If a = 0 then ¢ is
put equal to —1047 which is used to represent ‘“— infinity’’;
begin integer m,n
m := sign (a); n := sign (b);
if a = 0 then begin ¢ := —1047;
d := 1.5707963 X n;
go to k
end;
¢ :=sqrta X a+ b X b);
¢ := In (c);
d := 15707963 X (1—m) X (14+n—nXn) + arctan (b/a);
k: end LOGC;

REMARK ON ALGORITHM 48

LOGARITHM OF A COMPLEX NUMBER [John R.
Herndon, Comm. ACM 4 (Apr. 1961)]

MARGARET L. JOHNSON AND WARD SANGREN

Computer Applications, Inc., San Diego, Calif.
Considerable care must be taken in using the arctan function.

In Algorithm 48 two such difficulties are ignored. First it is

necessary, because of a resulting division by zero, to deal sepa-

rately with the case where the real part of the complex number

is zero. Second, if the real part of the complex number is negative

48-P1- 0

and the argument of the logarithm is to have a value between

— o and = then the action depends upon the sign of the imaginary

part of the complex number. For clarity the following procedure

exhibits in sequence the alternatives:

procedure LOGC (a, b, ¢, d); value a,b; real a, b, ¢, d;

comment This procedure computes the number c¢-+di which is
equal to log, (a+b4). It is assumed that the arctan has a value
between —=/2 and 7/2.

begin if a>0 then begin THETA := 0; go to SOL end;
if a<0Ab=0 then begin THETA := 3.1415927;
go to SOL end;
if a<0Ab<0 then begin THETA := —3.1415927;
go to SOL end;
if a=0Ab=0 then begin ¢ := d = 0;
go to RETURN end;
if a=0Ab>0 then begin ¢ := In(b); d := 1.570963;
go to RETURN end;
if a=0Ab <0 then begin ¢ := In(abs(b));
d := 1.570963; go to RETURN end;
SOL: d := arctan (b/a) + THETA;

¢ := sqrt(axXa+hXxb);
c 1= In(e);
RETURN: end LOGC

REMARK ON REMARKS ON ALGORITHM 48 [B3]

LOGARITHM OF A COMPLEX NUMBER [John R.
Herndon, Comm. ACM 4 (Apr. 1961), 179; 5 (Jun. 62),
347: 5 (Jul. 62), 391]

Davip S. CoLLens (Recd. 24 Jan. 1964 and 1 Jun. 1964)

Computer Laboratory, The University, Liverpool 3,
England

This procedure was designed to compute log.(a+b7), namely
¢+di, and although some very necessary precautions about its
use have already been stated, some points seem to have escaped
notice. In particular, A. P. Relph [Comm. ACM, June 1962, 347]
remarked that if @ = 0, then ¢ becomes «_infinity’, but this is only
the case if b = 0 also. Margaret L. Johnson and Ward Sangren
[Comm. ACM, July 1962, 391] conceded thata = b = 0 was & special
case, but wrongly gave zero as the result. The only reasonable way
of dealing with this case is to exit to some nonlocal label and to
let the user decide whether to terminate his program or to assign
particular values to ¢ and d. The obvious values to use here are, for
¢, a negative number, larger than the largest which would be given
by the procedure, and possibly zero for d. (In an implementation
where 2712 is the smallest representable nonzero number, the
largest negative value of ¢ possible is —89.416.) Finally, in the
Johnson-Sangren version of the procedure, the last conditional
statement should read

ifa = 0 A b < 0 then begin ¢ := In(abs(d));
d := —1.570063; go to RETURN end;

the omission of the minus sign in the original being probably
typographical in origin.



