and from among sentences can be used for locating classes of

common meaning at various levels of abstraction. The expression

of individual words, pairs of words, and short strings in the multi-

dimensional space can then be examined for semantic relevance.
REFERENCE:

BexnerT, E. M.; MAYER, R. P.; BT AL. COLLAD-I, 2 command
language laboratory demonstration (preliminary concepts). The
MITRE Corp., Technical Memorandum TM-3001, Mar. 1960.

TARGETEER

Computer Sciences Department, The RAND Corpora-
tion, Santa Monica, California

F. M. Tonge (September 1960)
computer application, programming,
aircraft routing, dynamic programming

Reported by:
Descriptors:

This routine determines the highest expected target value
routing of aircraft through a target complex. Routing is done
by an iterative dynamic programming technique modified to
recognize aircraft range restrictions and to prevent multiple
visits by any aireraft to a single target.

Location, range and number of weapons of each aircraft, target
values, and intertarget distances and survival probabilities are
required as input data. The routine prints out the targeting of
each aircraft on each iteration of the routing scheme and a final
summary of aircraft and target statuses. The relative maximum
numbers of aircraft, targets, and weapons can be varied by recom-
piling. This routine was developed as a research tool for evaluating
routing techniques.

Conference on

Information Retrieval Oriented
Languages

October 6, 1961
RCA, Princeton, N. J.

By the Subcommittee on Information Retrieval of the
ACM Special Interest Committee on Computer Languages

So far, no computer language designed especially for
storage and retrieval applications has received widespread
publicity. However, a number of languages have been de-
veloped for searching files, and languages have been de-
signed for other specific problems. It would be interesting
to know how many of these languages have been machine
tested, and to know how many are being used. Are these
languages similar to each other? If not, how do they differ?
What are their specifications? What are the limitations?
Probably, some of the ‘blue sky’ languages include ‘things
to come’.

The subcommittee needs all the information it can re-
cover, discover and uncover about IR languages. If you
have first-hand experience in designing, programming,
testing or using a machine language for storage and re-
trieval problems, please contact one of the subcommittee
members:

Hers Korrer, R & D Group, U. S. Patent Office,
Washington 25, D. C.

Jack MiINKER, Astro-Electronic Products Division,
RCA, Princeton, New Jersey

Manpy Grems, IBM Corp., White Plains, New York

236 Communications of the ACM

Algorithms

ALGORITHM 58

MATRIX INVERSION

Do~aLp CorEN

Burroughs Corporation, Pasadena, Calif.

procedure invert (n) array: (a);
comment matrix inversion by Gauss-Jordan elimination;
valuen;
array a; integern;
begin
array b, ¢ [L:n}; integeri,j, k, ¢, p;
integer array z [l:n];
for j := 1 step 1 until n do z{j] := j;
fori :=1step 1 until n do begin
k:=i; y:=al,i]l; £:=1—1; p:=i+1;
forj := p step 1 until n do begin
w .= ali,j]; if abs(w) > abs(y) then begin
k :=1]; vy := w end end;
for] := 1 step 1 until n do begin
clj] := alj, kl; a[j, k] := alj, il;
alj, i) :== —cljl/y; bljl:= ali, }] := ali, jl/y end ;
ali,i] := 1/y; j:=zli]; z0):=z[k]; zlkl:=} ;
for k := 1 step 1 until ¢, p step 1 until ndo
for j := 1step 1 until £, p step 1 until n do
alk,j] := alk,i] — b[j] X clklend; £:=0 ;
£:=£+1; k:=z[{]; if { =< nthen begin
for j := { while k # j do begin
for i := 1 step 1 until n do begin
w = alj, i]; afj,i] := alk,i]; alk,i] := wend ;
go to back end
end invert.

back:

ALGORITHM 59

ZEROS OF A REAL POLYNOMIAL BY RESULTANT
PROCEDURE

E. H. Bargiss and M. A. FISHERKELLER

Argonne National Laboratory, Argonne, IlL

procedure RES (n, c, alpha, mu, re, im, rt, gc) ; value n,
¢, alpha ; integer n, alpha ; integer array
mu ; array c, re, im, rt, gc ;

comment RES finds simultaneously all zeros of a polynomial of

degree n with real coefficients, ¢; (j = 0, ... n), where c,
is the constant term. The real part, re; , and imaginary part,
im; , of each zero, with corresponding multiplicity, mu; , and
remainder term, rti, (i = 1, ..., n), are found and a poly-
nomial with coefficients ge; (j = 0, ... , n), is generated from
these zeros. Alpha provides an option for local or nonlocal
selection of M, the number of root-squaring iterations, and
delta and epsilon, acceptance criteria. If alpha = 1, these
parameters are assigned locally. If alpha = 2, M, delta and
epsilon are set equal to the global parameters Mp, deltap,
and epsilonp, respectively. In cases where zeros may be found

more than once, the superfluous ones are eliminated by fae-
torization. The method has been described by E. H. Bareiss
(J. ACM 7, Oct. 1960, pp. 346-386). ;

begin integer M ;

U1, U2 ;

real delta, epsilon ; switch U :=

go to U [alpha];

Ul:
U2:

START:

SYNTHETIC
DIV:

SQUARING
OPERATION:

RD:

M:=10 ; delta:=02 ; epsilon :=10% ;
goto START ;
M := Mp ; delta := deltap ; epsilon :=
epsilonp ;
begin integer CT, nu, nuc, beta, m, j, je, k,
i,p ; Boolean ROOT ;
real X, Y, GX,rp ; array a, ac [0:n, 0:M],
R, Re, t [0:n],

8 [~1:n], ag [-2:n],rh, q, G, F [1:2Xn] ;

switch 8 := 81,82 ; switchT :=T1, T2
switch V := V1, V2 ;
real procedure min (u,v) ; realu,v ;
min := ifu £ vthenuelsev ;
real procedure SYND (W, Q, I, T)
integerl ; realW,Q ;
array T
begin s [-1] := 0 ; s [0] := T[0] ; for
m := 1 step 1 until I do
$ [m] := T Im] — Wss [m — 1] — QXs
im—2] ;
if Q = O then SYND := abs (s[I)) else
SYND := abs (W/2Xs [I — 1] + s[I])
end SYND
CT := beta :=1 ; forj
ndoa (j,0] := ¢{j] ;
begin integer el ;
1 step 1 until M do
begin for j := 1 step 1 until n do
begin h := 0 ; for el := 1 slep 1 unitil
min (n — j,) do
h:=h+(-1) telXalj~el,m— 1]Xa
(G+el,m~1] ;
aljm) :=(-1) 1 jX @[, m—1] 1
2 4+ 2Xh) end end end ;
for j := O step 1 until n do R [j] := (1) 1
Xalj, M — 1] 1 2/a [j,M] ;
=0 ; nu:=1 ;
if 1 ~delta =R A R =1+ delta)
then
beginrp := (a [j,M]/a [j — nu,M]) T (1/(2 1
MXnu))
go to T [beta] end
nu:=nu+1 ;
j=j3+1 ; ifj=nthen go to S [beta)
elsegotoRD
nu:=1 ; goto2 ;
rh [CT] :=rp ; X :=rp + epsilon X rp ;
Y =X +epsilon Xrp
fork :=0Ostep 1 untilndot [k] := abs (ek]) ;
F [CT] := SYND (Y,0,n,t) — SYND
(X,0,n,t) ;
G [CT] := SYND (th [CT],0,n,¢)
F[CT]> GICT]then
begin ROOT := wue ; g [CT] := 0 ;
CT:=CT+1 ; F[CT]:=F[CT —1]end ;
th [CT] := —rp ; G [CT] := SYND (th
[CT],0,n,¢) ;
if F [CT] > G [CT] then begin ROOT :=
true ; q[CT|:=0 ; CT:=CT + 1 ;
FICT]:=F[CT ~1lend ; ifnu =1 then
goto2 ;
qICTj:=rmp 12 ;

H

’

:= 0 step 1 until

real h ; for m :=

’

;o if

nue :=nu ; je:=j ;

RESULTANT:

T2:

S2:

S1:

MULT:

IT:

Vi:
V2:

D:

for j := Ostep 1 until n do

begin Re [j] := R [j] ; ac [j,M] := a [j,M]

end ;

begin real h ;

—1:n 4 1], A [1:n],
r[0:n,0:n],CB [—1:n + 1] ;

b[~1,0] :=CB[-1]:=CBn+ 1] :=0 ;

for) := Ostep 1 until n do

CB [j] :=clil] ; b 0,0l :=1 ;

1 step 1 until n do

array b [—1lin ++ 1,

for k :=

begin b [k,—1] := 0 ; forj := 0 step 1
until k do
blk+1,jl :i=b [k,] — 1] =q[CT] X b
k—1,j] 3

bk +1,k+1]:=h :=0
n — k step —1 until 0 do
h:=h+ (CB[jIXCB [k +j] -~ CB[j — 1}
XCBk+j+1) XqlCT] 1 n -k —j) ;
Alk] := (=1 T kXh ; forj := O step
1 until k — 1 do
begin r [0,j] :=0 ;
A[k]X Db lk,jlend ;
r [k,k] := Akl end ;
j :=0step 1 until ndo
a {j,0] :=r [n,jl end ;
ING OPERATION ;
if (rp/2) T 22 q [CT] then go to 3 ; rh
[CT]:=1p ;
G [CT] := SYND (rh [CT], q [CT], n,e) ;
if F [CT] > G [CT] then
begin CT := CT + 1 ; ¥ [CT] := F
[CT — 1] ; q [CT] := q [CT — 1] end ;
rh [CT]:=—rp ; GI[CT]:=SYND [rh [CT],
q [CTI, n,e) ;
if F [CT] > G [CT] then begin CT := CT
+1 ; FICT]:=FI[CT -1} ;
q[CT]:=q[CT —1lend ; goto3 ;
for j := 0 step 1 until n do begin a {j M] :=
ac [j,M] ;

; forj :=

rik,jl =1k — 1,jl +
beta :=2 ; for

go to SQUAR-

R[j1:=Rcljlend ; j:=je ; beta:=1 ;
if ROOT then go to 3 else

nu:=nuc ; gotol ;
ag [-2] 1= ag [-1] := 0 ; ag [0] := 1 ;
for j := 1step 1 until n do
aglil:=0 ; k:=1 ; i:=n ; m:=1 ;
for j := 0 step 1 until n do

til:=clil ;
mu m] :=0 ; p:=if q [k] = 0 then 1
else2 ;
GX := SYND (th [k], q k],i,t) ; if F [k]
> GX then

begin for j := 1step 1 untilndo
ag [j] = ag[jl —rthk] X ag[j — 1] +q
k] X agj —2] ;
mu [m} := mu m] +p ;
for) := O step 1 until i do
t [jl := s [j] ; go to IT end else if
mu [m] # 0 then begin
rt [m] := G (k] ; go to V [p] end else

i:=1~—p ;

goto D ;
rem]:=rh(k] ; imml:=0 ; gotoLL ;
re [m] := rh [k]/2 ; im [m] := sqrt (q (k] —
re [m] T 2)
m:=m-+1 ;
k:i=k+1 ; ifk=CT Am = nthengoto
MULT ;

forj := Ostep 1 until ndo ge [j] := ag [j]l end
end RES

237

Communications of the ACM

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May, 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Publica-
tion form of ALGOL 60 and written in a style patterned
after the most recent algorithms appearing in this depart-
ment.

Although each algorithm has been tested by its con-
tributor, no warranty, express or implied, is made by the
contributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material and no responsi-
bility is assumed by the contributor, the editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this de-
partment is explicitly permitted without any charge. When
reproduction is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

CERTIFICATION OI' ALGORITHM 23

MATHSORT (Wallace Feurzeig, Comm. ACM, Nov.,
1960)

Russern W. RansHaw

University of Pittsburgh, Pittsburgh, Pa.

The MATHSORT procedure as published was coded for the
IBM 7070 in ForrrAN. Two deficiencies were discovered:
1. The TOTVEC array was not zeroed within the procedure.
This led to some difficulties in repeated use of the procedure.
2. Input vectors already in sort on nonsort fields were unsorted.
That is, given the sequence
31, 21, 32, 22, 33,
Mathsort would produce, for a sort on the 10’s digit:
22, 91, 33, 32, 31,
which is definitely out of sequence.
The following modified form of the procedure corrects these
difficulties. Note the transformation of symbols.

procedure MATHSORT (I, O, T, n, k, 8); value n, k;
array I, O; integer array T; integer procedure S;
integer n, k;
fori:= Ostep 1 until k — 1 do T[i] := 0;
fori := 1step 1 until n do T[S(I[i])] := TISI[L])] + 1;
for i := k — 2 step —1 until 0 do T[i] := Tii] +
Tl + 11;
fori := 1 step 1 until n do

begin O[n + 1 — T[SIMD]) := I[i];

TBAGD] := TEAD] — 1;

I

begin

end
end MATHSORT.

Using the MATHSORT procedure ten times and having the
procedure 8 supply each digit in order, 1000 random numbers of
10 digits each were sorted into sequence in 31 seconds. The method
of locating the lowest element, interchanging with the first ele-
ment, and continuing until the entire list has been so examined
yielded a complete sort on the same 1000 random numbers in 227
seconds. Using the Table-Lookup-Lowest command in the 7070
yielded 56 seconds for the same set of random numbers.

238 Communications of the ACM

CERTIFICATION OF ALGORITHM 30

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION (K. W. Ellenberger, Comm. ACM, Dec.
1960)

WiLniam J. ALEXANDER

Argonne National Laboratory,* Argonne, Ill.

ROOTPOL was coded by hand for the 1.GP-30 using the ACT-III
Compiler with 24 bits of significance. The following corrections
were found necessary.
(@) baii=bs:i=cy:i=ca:i=di=dy:i=e; i =e:=0
should be
b_1 = b_2 = C_1 = C_g := d_1 =€ = h_1 = 0

(b) m :=entier ((n +1)/2) should be
m := entier ((n — 1)/2)

() jo—j:=8 shouldbe h,_; :=s

(d) q := h/hn_s should be h,/h,_»

() cj:=bj—pXec;—1—qXcje should be
ci:=b;—pXei1—qXeje

(f) ifn,, = 0then go to BNTEST should be
if hy—y = 0 then go to BNTEST

(g) s := sqrt (q — (p/2)%) should be
s 1= sqrt (q — (p/2)®)

(h) for j := O step 2 until n do h; := b; should be
for] := Ostep 1 until n do h; := b;

(i) mo to BAIRSTOW should be go to ITERATE

The following correction was found necessary in the given
example (Refer to ““On Programming the Numerical Solution of
Polynomial Equations,” by K. W. Ellenberger, Comm. ACM 3,
Deec., 1960):

f(x) = (.10098) 108 x* — (.98913) 105 x2 4+ (.10000) 10¢ x +
(.10000) 10 = 0 should be

f(x) = (.10098) 108 x* — (.98913) 108 x®* — (.10990) 106 x* +
(.10000) 108 x + (.10000) 10! = 0

With these corrections the results obtained agree with those
given in the example.

For equations of higher order it was found necessary to avoid
repeated scaling of the reduced equation in order to prevent
floating point overflow. The range on the exponent in the ACT II1
system is —32 < e < 31.

Further floating point overflow difficulties were experienced
when certain coefficients in the reduced equation became small
but not zero. The following additions were made to avoid this
fault:

(a) forj := Ostep luntilndoh;:=d; was replaced by

for j := 0 step 1 until n do begin if abs (h;/d;) < K then
h; := djelse h; := 0 end
(b) for j := 0 step 1 until ndo h; := b; was replaced by

for j := 0 step 1 until n do begin if abs (h;/b;) < K then
h; := Dbj else h; := 0 end
With the above changes the following results were obtained:
xt—3x*4+20x2+44x+54 =0
X —.9706390 4+ 1.0058081
X 2.470639 + 4.6405331
X0 - 2x54+2x4+x34+6x2—-—6x+8=0

x = —.9999999 £ .9999999%1

x = 1.500000 == 1.3228761

x = .5000002 + .86602511
X+ xt =8 —16x2 +7x +15=0

x = 3.000001

x = —2.000000 £ 1.0000011

X = —.9999997

x = .9999998

* Work supported by the U. 8. Atomic Energy Commission

