
ship between the two permi t t ing the translation of "state-
ments" into "actions" on call by appropriate control proc-
essors. Thus declarative "definitions" (i.e. descriptive
specifications) can be transformed into imperative "gener-
ators" (i.e. command specifications). The call for such a
transformation shifts interpretation from descriptive to
command, just as a jump instruction shifts the interpre-
tation of a word from object to instruction (command
syntax) ; it therefore belongs to the control syntax.

In general, the control syntax determines (selects) se-
quench~g, scope, or context; it selects the processor.
Because of control syntax we do not need an infinite
hierarchy of syntax languages over syntax languages
o v e r . . . , etc. For example, a theorem abou t a class of
programs for processing a fixed class of da ta is expressed
in the descr ipt ive syntax of the command syntax of an
object language. These can all be in one language if the
control syn tax permits us to shift the context (i.e. interpre-
ta t ion) of an object expression to give it a syntact ica l or
even a control in terpre ta t ion . N a t u r a l languages can do
this by quota t ion marks and words like "mean" and
"define". Machine languages can do it via the control
instruct ions. Both are examples of languages with "un-
stratified control".

We can now recognize quite a var ie ty of meanings for
the word "specify". The specification of a language or
processor in descriptive syntax m a y be an explicit defi-
n i t ion or an implicit definit ion by recursion; in command
syntax it may be a program or a manual of instructions
(the producers). The specification may also be structural
or behavioral. A flow chart is a structural command
specification of a processor; its logical design is a structural
descriptive specification.

An important control processor for structural specifi-
cations is one which permits us to make big processors out
of small ones by "linkage". Such a processor is called an

assembler. The linkage of two processors may be at object
level or at control level or at both. Some of the output data

of one may be inputs to the other; this is data linkage, via
inputs and outputs. Similarly, some of the "exits" from one
may be made "entrances" to the other; this is control
linkage. Programmed switches are often achieved by trans-
forming data links into control links by setting a variable
exit.

Corresponding to the descriptive "variable" is the
command meaning "storage". An input which has not

been l inked is called a free variable. As soon as a substi-

t u t ion links it, the storage is called a bound variable.
We can now summarize the terms int roduced in t abu la r

form (Table I).

REFERENCES

1. GORN, S. Common Programming Language Task. Final Re-
ports AD59UR1 and AD60UR1, U. S. Army Signal Corps
Contract No. DA-36-039-SC-75047, Part I, 1959, 1960.

2. GORN, S. The treatment of ambiguity and paradox in me-
chanical languages. In "Symposium on Recursive Function
Theory," April 7, 1961.

d . H . W E G S T E I N , E d i t o r

A L G O R I T H M 68
A U G M E N T A T I O N
H. G. RiCE
Compute r Sciences Corp., Palos Verdes, Calif.

r e a l p r o c e d u r e A u g (x , y) ; v a l u e x ,y ; i n t e g e r x ,y ;
comment This algorithm makes use of the implicitly defined re-

cursive properties of ALGOL procedures to compute the augment
of x by y, using the basic technique of incrementation by unit
step size ;

b e g i n A u g := i f x = 0 t h e n (i f y > x t h e n (A u g (y - 1, x) + 1)
e l s e y)

e l s e A u g (x -- 1, y q- 1) e n d A u g

C E R T I F I C A T I O N OF A L G O R I T H M 52
A S E T OF T E S T M A T R I C E S (J. R. Herndon , Comm.

AC21I, Apr. 1961)
H. E. GILBERT
University of California at San Diego, La Jolla, Calif.

The statement

c := t × (t+ l) × (t + t - 5) / 6 ;
was changed to

c := n X" (n--kl) N (n-t-n-5)/6;
to make the inverse have the form described in the algorithm. The
algorithm was translated to FORTRAN and tested with a matrix
eigenvalue program on the CDC 1604 computer at UCSD.

The eigenvalues for the 20 N 20 test matrix are:
1. 1.000000
2. 1.000000
: :

19. .01636693
20. -- .02493833

C o n t r i b u t i o n s to t h i s d e p a r t m e n t m u s t be in t h e fo rm
s t a t e d in t he A l g o r i t h m s D e p a r t m e n t po l i cy s t a t e m e n t
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May, 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Publica-
tion form of ALGOL 60 and written in a style patterned
after the most recent algorithms appearing in this depart-
ment.

Although each algorithm has been tested by its con-
tributor, no warranty, express or implied, is made by the
contributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material and no responsibil-
ity is assumed by the contributor, the editor, or the Asso-
ciation for Computing Machinery in connection therewith.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When
reproduction is for publication purposes, reference must be
made to the algorithm author and to the Commnunications
issue bearing the algorithm.

C o m m u n i c a t i o n s o f t h e A C M 339

