
ship between the two permi t t ing  the translation of "state- 
ments" into "actions" on call by appropriate control proc- 
essors. Thus declarative "definitions" (i.e. descriptive 
specifications) can be transformed into imperative "gener- 
ators" (i.e. command specifications). The call for such a 
transformation shifts interpretation from descriptive to 
command, just as a jump instruction shifts the interpre- 
tation of a word from object to instruction (command 
syntax) ;  it  therefore belongs to the control syntax. 

In  general, the control syntax determines (selects) se- 
quench~g, scope, or context;  it  selects the processor. 
Because of control  syntax  we do not  need an infinite 
hierarchy of syntax  languages over syntax  languages 
o v e r . . . ,  etc. For  example, a theorem abou t  a class of 
programs for processing a fixed class of da ta  is expressed 
in the descr ipt ive  syntax  of the command  syntax  of an 
object  language. These can all be in one language if the 
control syn tax  permits  us to shift the context  (i.e. interpre-  
ta t ion)  of an  object  expression to give it a syntact ica l  or 
even a control in terpre ta t ion .  N a t u r a l  languages can do 
this by  quota t ion  marks  and  words like "mean"  and  
"define". Machine  languages can do it via  the control 
instruct ions.  Both  are examples of languages with "un- 
stratified control".  

We can now recognize quite a var ie ty  of meanings  for 
the word "specify". The  specification of a language or 
processor in descriptive syntax  m a y  be an  explicit defi- 
n i t ion  or an  implicit  definit ion by  recursion;  in command  
syntax it may be a program or a manual of instructions 
(the producers). The specification may also be structural 
or behavioral. A flow chart is a structural command 
specification of a processor; its logical design is a structural 
descriptive specification. 

An important control processor for structural specifi- 
cations is one which permits us to make big processors out 
of small ones by "linkage". Such a processor is called an 

assembler. The linkage of two processors may be at object 
level or at control level or at both. Some of the output data 

of one may be inputs to the other; this is data linkage, via 
inputs and outputs. Similarly, some of the "exits" from one 
may be made "entrances" to the other; this is control 
linkage. Programmed switches are often achieved by trans- 
forming data links into control links by setting a variable 
exit. 

Corresponding to the descriptive "variable" is the 
command meaning "storage". An input which has not 

been l inked is called a free variable. As soon as a substi-  

t u t ion  links it, the storage is called a bound variable. 
We can now summarize  the terms int roduced in t abu la r  

form (Table I).  
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r e a l  p r o c e d u r e  A u g ( x , y ) ;  v a l u e  x ,y ;  i n t e g e r  x ,y ;  
comment  This algorithm makes use of the implicitly defined re- 

cursive properties of ALGOL procedures to compute the augment 
of x by y, using the basic technique of incrementation by unit 
step size ; 

b e g i n  A u g  :=  i f x  = 0 t h e n  ( i f y  > x t h e n  ( A u g ( y  - 1, x) + 1) 
e l s e  y)  

e l s e  A u g ( x  -- 1, y q- 1) e n d  A u g  

C E R T I F I C A T I O N  OF A L G O R I T H M  52 
A S E T  OF T E S T  M A T R I C E S  (J. R. Herndon ,  Comm. 

AC21I, Apr. 1961) 
H. E. GILBERT 
University of California at San Diego, La Jolla, Calif. 

The statement 

c := t × ( t+ l )  × ( t + t - 5 ) / 6 ;  
was changed to 

c := n X" (n--kl) N (n-t-n-5)/6; 
to make the inverse have the form described in the algorithm. The 
algorithm was translated to FORTRAN and tested with a matrix 
eigenvalue program on the CDC 1604 computer at UCSD. 

The eigenvalues for the 20 N 20 test matrix are: 
1. 1.000000 
2. 1.000000 
: : 

19. .01636693 
20. -- .02493833 

C o n t r i b u t i o n s  to  t h i s  d e p a r t m e n t  m u s t  be in t h e  fo rm  
s t a t e d  in t he  A l g o r i t h m s  D e p a r t m e n t  po l i cy  s t a t e m e n t  
(Communications, February, 1960) except that ALGOL 60 
notation should be used (see Communications, May, 1960). 
Contributions should be sent in duplicate to J. H. Wegstein, 
Computation Laboratory, National Bureau of Standards, 
Washington 25, D. C. Algorithms should be in the Publica- 
tion form of ALGOL 60 and written in a style patterned 
after the most recent algorithms appearing in this depart- 
ment. 

Although each algorithm has been tested by its con- 
tributor, no warranty, express or implied, is made by the 
contributor, the editor, or the Association for Computing 
Machinery as to the accuracy and functioning of the al- 
gorithm and related algorithm material and no responsibil- 
ity is assumed by the contributor, the editor, or the Asso- 
ciation for Computing Machinery in connection therewith. 

The reproduction of algorithms appearing in this depart- 
ment is explicitly permitted without any charge. When 
reproduction is for publication purposes, reference must be 
made to the algorithm author and to the Commnunications 
issue bearing the algorithm. 
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