Contributions to this department must be in the form
stated in the Algorithms Department policy statement
{Communications, February, 1060) except that ALGOL 60
notation should be used (see Communications, May, 1960). |
Contributions should be sent in duplicate to J. H. Wegstein, ‘
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Publica-
tion form of ALGOL 60 and written in a style patterned
after the most recént algorithms appearing in this depart-
ment,

Although each algorithm has been tested by its con-
tributor, no warranty, express or implied, is made by the
| contributor, the editor, or the Association for Computing
Machinery as to the aceuracy and functioning of the al-
gorithm and related algorithm material and no responsi-
bility is assumed by the contributor, the editor, or the
Association for Computing Machinery in connection
therewith.

The reproduction of algorithms appearing in this de- |
partment is explicitly permitted without any charge, When
reproduction is for publication purposes, reference must be
made to the algorithm author and to the Communicalions
issue bearing the algorithm.

ALGORITHM 69
CHAIN TRACING
Briax H. Mavon
Regnecentralen, Gl. Carlshergvet. 2, Copenhagen.
procedure CHAIN tracing (iteration counter, number of
identifiers, number of identifier links, final linkage
matrix, couples);
Boolean array final linkage matrix;
integer array couples;
integer iteration counter, number of identifiers, number of
identifier links;
begin comment This procedure is given a list of pairs of inte-
gers, the second being related to the first in some way. It finds
those pairs of integers which are related to each other if the
relation is transitive. It is supplied with,
couples a matrix whose bound pairlist is {1:2, Linumber of
identifier links} where couples [2, i] is related to couples
{1, 1} in some way.
final linkage matrix a matrix whose bound pair list is
{1:number of identifiers, 1:number of identifiers] and into
which the procedure puts true if the second subscript
expression is an integer which is related to the integer
corresponding to the first subscript expression, if the
relation is irreflexive then the diagonal entries of this
matrix are false,
iteration counter a place for the procedure to put the
length of the longest chain it finds. CHAIN tracing can be
applied to any system which can be represented by a Turing
machine by letting the integers in couples correspond to

392 Communieations of the ACM

EDITOR

J.H. WEGSTEIN,

the Turing machine states. Two integers j, k ave related if
there is an input symbol which causes state j to change to
state k. If the Turing machine always stops whatever the
sequence of input symbols, then its final linkage matrix
will have false for all leading diagonal entries;
integer i, j;
Boolean array working linkage matrix [L:number of identi-
flers, Linumber of identifiers];
Boolean procedure PROGRESS;
begin PROGRESS := false;
fori := 1 step | until number of identifiers
do for j := 1 step 1 until number of identifiers
~ do begin if Working linkage matrix [i, J] = — Final
linkage matrix i, j] then PRO(;RL“S = true;
Final linkage matrix [i, j] := Working linkage
matrix {i, !
end of comparison
end of PROCGRESS;
BEGIN OF PROGRAM:
for iteration counter := —1, 0, iteration counter + 1 while
PROGRESS
do for i := 1 step 1 until number of identifier links
do for j := 1 step 1 until number of identifiers
do begin if iteration number = —1
thenFinal linkage Matrix [couples (1, i], j]
= Working linkage Matrix [couples {1, i], j]
;= couples {2, 1} = j
else Working linkage Matrix {couples {1, i}, j]
.= Working linkage Matrix [couples {1, i], j}
\/ Working linkage Matrix [couples (2, i}, j;
end of setting one linkage
end of CHAIN tracing;

CERTIFICATION OF ALGORITHM 40

CRITICAL PATH SCHEDULING (B. Leavenworth,
Comm. ACM, Mar. 1961)

Near P. ALEXANDER

Union Carbide Olefins Company, South Charleston,
West, Virginia

The Critieal Path Scheduling algorithm was coded in ForRTRAN
for the IBM 7070. The following changes were made:
(a) ti[k] ;= te [k] := 0y
should be
ti [k} o=
te [k} 1= 9999;
(by if te [I[k]] = 0 \/ te |I{k]] > min then
should be
if te [Ilkl] > min then
This change permits a value of 0 to be calculated for te {(Ik]] and
remain as the minimum value.
In the statement
if 81 [Jik} = 0 V ti [Jk}] < max then
the part of the statement ““ti [J[k]] = 0" is redundant and can be
omitted,



