```
ALGORITHM 70
INTERPOLATION BY AITKEN
Charles J. Mifsud
General Electric Co., Bethesda, Md.
procedure AITKEN (x, f, n, X, F); real array x, f;
            integer n; real X, F;
comment If given x_0, x_1, \ldots x_n, n+1 abscissas and also given
  f(x_0), f(x_1), ... f(x_n), n+1 functional values, this procedure
  generates a Lagrange polynomial, F(X) of the nth degree so that
  F(x_i) = f(x_i). Hence, for any given value X, a functional value
  F(X) is generated. The procedure is good for either equal or
  unequal intervals of the xi. Aitken's interative scheme is used
  in the generation of F(X). Since the f array is used for tem-
  porary storage, as the calculation proceeds its original values
  are destroyed;
begin integer i, j, t;
  for j := 0 step 1 until n-1 do
    begin t := j+1
      for i := t step 1 until n do
        f[i] := ((X-x[j]) \times f[i] - (X-x[i]) \times f[j])/
               (\mathbf{x}[\mathbf{i}] - \mathbf{x}[\mathbf{j}])
                             \mathbf{end}
         F := f[n]
end
CERTIFICATION OF ALGORITHM 70
INTERPOLATION BY AITKEN [C. J. Mifsud, Comm.
ACM 4 (Nov. 1961)]
A. P. Relph
The English Electric Co., Whetstone, England
  Algorithm 70 was translated using the Deuce Algol compiler
and gave satisfactory results after semicolons had been added to
               t := j+1 to make it t := j+1;
and
          (x[i]-x[j]) end to make it (x[i]-x[j]) end;
  The identifier t can be eliminated and the algorithm shortened
by the following changes:
Replace begin integer i, j, t;
                                 by begin integer i, j;
Replace t := j+1;
                                 by for i := j+1 step 1 until
         for i := t step 1 until
                                        n do
           n do
```