J.H.WEGSTEIN, Editor
ALGORITHM 74
CURVE FITTING WITH CONSTRAINTS
CFL L PeECk,

J
University of Alberta, Calgary, Alberta, Canada

procedure Curve fitting (k,a.b.m,x v w,nalpha beta s.sgmsq.x0,
Zanung, e, rl;

This procedure finds, by the method of least squares;
the polynomial of degree n, k < n < k+4m, whose graph con-
(b)) and approximates (s, yi), -,
N where w; is the weight attached to the point (x;. vi.
The details will be found in the reference cited below, where a
- potation is uged. A nonlocal label “error” is assumed;

comment

Tains fagc. b, -,

i,

s

integer k, ni, n. r; real x0, gamma;

v.w, alpha, beta, 5, sginsq, e, z;

begin integer i, j; arvcay wlil:k]; real p,{, lambda;

comment We shall first define several procedures to be used
in the main program, which begins at the label START;

value a,. x; v, w; array

a, b, x,

procedure Evalue (X, nui;

comment Thiz procedure evaluates f = sgps + sipe + -+ +
x) o= 0, pix) = 1, 38 = 0 and puax)

i=0,1,---,»—1. The value of

where [

@ lp XD — Bipeailxd,
SN0 remains in p;

real X; integer nu;

begin real pd, temp; integeri;
for i .= Ostep { untif nu—1{ do

pO:=0; p:=1; f:=32{0];

begin temp 1= p;
p o= ix—alphali]) X p—betaiij X p0;

pO = temp; o= -+ p X &fi+1]end i

end Fyulue;

procedure Coda in, ¢3;
comment This procedure finds the ¢’s when ¢ + eix + -«-
CoXt = SDLING T b RS

integer n, array ¢;

begin inlegeri.r; real t1,i2; array pm.pl0inj;

for v .= 1 step | until n do
i pir] = pir] := 0
| =05 pl)) o= 1: 0] 1= ={0];

fir 1 1= O step L until n—1 do
begin t2 1= (;
for r ;= 0 step 1 until i-+1 do
i= (t2—alphali} X piri—betalii X pmir]
o= r] .= tl;

/lambda ;

begin 11
£

201 .
end 1
end Coda;

procedure GEFYT (n,n0,x.yv,w,mj;

This i< the heart of the main program. It computes
the o850 using the method of orthogonal polynomials, as
described in the reference;

comment

integer n.nllm;
begin real dsq,wpp,vppl,wxpp,wyp.temp;
integer i,j.freedom; array p.plil:m]; boolean exact;
if n—ni > m Y n < nd then go to error;
betain0] := dsq := wpp := 0; exact := n—n0 > m—1;

array X,v,w;

for] := 1 step 1 until m do
:=1; pO§l:=0; wpp := wpp + w(il;
if — exact thendsqy = dsq + wlj] X vij} X v{j] end initialise;

begin plj}

for i := nl step 1 until n do
begin freedom = m—1—{i—nl); wyp := wxpp := 0;
for j := 1 step | until m do
begin temp = w[j] X plj};
if i < n then wxpp := wxpp + temp X x{j] X plj]
if freedom > 0 then wyp := wyp + temp X v[jjend j;
if freedom > 0 then s(i} := wyp/wpp;
if — exact then begin dsq := dsq — s{i] X s[i] X wpp;
sgmsqlil 1= dsq/{reedom end if;
if i < n then begin alpha(i] ;= wxpp/wpp;
wpp =

wppl 1= wpp;

for j := | step 1 until m do
begin temp := (x[j]—alphali]) X p{j] — betali] X pO{j[;
wpp = wpp + wij] X temp X temp;
pOfi! := plil; pli] := temp end j;
betali+1] := wpp/wpp0 end if
end 1
end GEFYT;
START: for] :=1step L until k do
begin wiij} :=1; aljj = (afj]—x0)/gamma end j;
GEFYT {k,0,a,bwl.k);
comment This finds the polynomial of degree k—1 whose graph
contains (ay,by), -, (ar,bi) supplying the a;,8 0<1<k;
begin real rho; rho := 0;
for j := 1 step | until m do
begin rho := rho 4+ wijf;
<j] == (fjl — x0)/gamma end j; rho := m/rho;
comment The factor p is used to normalize the weights. We shall
now put s, = 0 in order to evaluate py{x) and the polynomial of
degree k—1 simultaneously;
sfk] = 0;
for j := 1 step 1 until m do
begin Evalue (x[jl,k);
if p = 0 then go to errvor;
viil == (i) = H/p;
wljl ;= wl[j| X p X p X rhoend j
end rho;

comment We have now normalized the weights and adjusted
the weights and ordinafes ready for the least squares approxi-
mation;

GEFYT (n,k.x,y,w,m);

comment The coefficients a;,8:;, 0 <1< n,ands;, 0<i<n
are now ready. The polynomial may be evaluated for x = z1,2s,
-+« Ze, but the variable must be adjusted first. Note that we
may evaluate the best polynomial of lower degree by decreas-
ing n;
bhegin real x;

for j := 1 step 1 until rdo
begin x := (z[j|—x0)/gamma;
Evalue (x,n); comment the values of z; and { should now be

printed; end j;

comment We may now adjust the coefficients for scale and then
find the coefficients of the power series ¢p + X + <+ - + X" =
sope(X) + o + 8aPa(x);

fori:= Ostepl untiln—1do
begin alphafi] := alphali] X gamma + x0;
betali] ;= betafi] X gamma end i; lanbda := gamma;

Coda (n,¢);

comment
power series;

for j := 1 step 1 until r do
begin x := z{jl; [:= ¢[n];
for i ;= n—1 step —1 until ¢ do

f:=1f X x4+ cli];

comment the values of x and f should now be printed;

We may now re-evaluate the polynomial from the

end j
end x
end Curve fitting

Rererexce: Peck, J. E. L. Polynomial curve fitting with
constraint, Soc. Indust. Appl. Math. Rev. (1961).

Communications of the ACM 47

ALGORITHM 75

FACTORS

J. E. L. Peck,

University of Alberta, Calgary, Alberta, Canada

procedure factors (n,a,u,v,r,c);
comment This procedure finds all the rational linear factors of
the polynorial agx® -+ ax® '+ -+ + acax -+ an, with integral
coeflicients. An absolute value procedure abs is assumed;
value n,a; integer r,n,c; integer array a,u,v;
begin comment We find whether p divides 25, 1 < p < Jag) and
q divides as, 0 < ¢ < laa]. If this is the case we try (px = q);
integer p,q,a0,an;
r:=0; ¢:=1; comment r will be the number of lincar factors
and ¢ the common constant factor;
TRY AGAIN: a0 := a[0]; an := an};
for p 1= 1 slep 1 until abs(a0) do
begin if (all + p) X p = a0 then
begin comment p divides ao;
for ¢ 1= 0 step 1 until abs(an) do
begin if ¢ = 0/ (an + q) X q = an then
begin comment ¢ divides a, (or ¢ = 0). If p = g we
may have a common constant factor, therefore; if ¢
>1Ap =1 then
begin integer |;
for j := 1step 1 until n—1 do
if (afj] + q) X q # afj] then go to NO CONSTANT;
for j ;= O step | until n do
aljj = aljl/q;
¢:=c X q; gotoTRY AGAIN
end the search for a common constant factor;
NO CONSTANT:
begin comment try {(px — q) as a factor;
integer f,gi; = a0; g = 1;
comment we try x = ¢/p;
fori:= 1 step ! until n do
begin g := g X p; f=1{X g-+ali] Xg
end evaluation;
if f = 0 then
begin comment we have found the factor (px — q);
ros e 1oufr] o= opy v i= g
comment there are now r linear factors;
begin comment we divide by (px — q);

integer i,t; t ;= ();

for i := 0 step 1 until n do
begin ali] := t := (afi] + t)/p; t =1t X ¢
end 1;

n:=n-—1

end reduction of polynomial. Therefore;
go to if n = 0 then REDUCED else TRY AGAIN
end discovery of px — g as a factor. But '
if we got this far it was not a factor so try px + q;
q = —q; ifq < 0then go to NO CONSTANT
end trial of px =+ q,
end ¢ divides a, and
end of q loop.
end p divides ag, also
end p loop, which means;
REDUCED: ifn = 0 then
begin ¢ ;= ¢ X a0; a0 :=1
endifn =0
end factors procedure. There are now r (r > 0) rational linear
factors (uix — v;), 1 < i< r, and the reduced polynomial of
reduced degree n replaces the original. The common constant
factor is ¢. Acknowledgments to Clay Perry.

48 Communications of the ACM

ALGORITHM 76

SORTING PROCEDURES

Ivax Frores

Private Consultant, Norwalk, Connecticut

comment The following Arcor 60 algorithms are procedures for

the sorting of records stored within the memory of the computer.
These procedures are described in detall, Aow ¢harted, com
pared, and contrasted in “Analysis of Internal Computer Sort.
ing” by Ivan Flores [J. ACH 8 (Jan. 1961)]. Although sorting is
usually a business computer application, it can be described
completely in Arcor if we stretch our imaginaiion a little.
Sorting is ordering with respect to a key contained within the
record. If the key ds the active record, the sorting is trivial. A
means is required to extract the key from the record. This is
essentially string manipulation, for which no provision, as vet,
has been made in Arcor. We circumambulate this difficults by
defining an integer procedure K(I) which “ereates” o key
from the record, 1. Avcor does provide for raachine language
code substitutions, which is one way to think of K({I). This
could be more accurately represented by using the string nota-
tion proposed by Julien Green [*Remarks on arcor and Svime
bol Manipulation,” Comm. ACM 2 (Sept. 1959), 25-27]. The
function sub (§,i,g) represents the procedure, K(I). £ corre
sponds to the record I, 1 corresponds to the starting position of
the key and g corresponds to the length of the key. Bothiandg
are values which must be specified when the sort procedure is
called for as a statement instead of & declaration.

Another factor, which might vex some, is that the key might
be alphabetic instead of numeric. Then, of course, K(L) would
not be integer. It would, however, be string when such is defined
eventually. Note, also, that keys are frequently compared, This
is done using the ordering relations “>7° for *“‘greater than”
ete. These are not really defined in the ALcon statement [Nave,
Perer, BT AL “‘Report on the Algorithmic Language ancosn
60", Comm. ACM 38 (May 1960), 204-314]. They can simply be
defined so that Z > Y > - > A > 9> - > 1> 0 Also the
assignment X[i] := z should be interpreted as ‘*Assign the key
‘2’ which is larger than any other key.” For any sort procedue
(LN,8), “T"is the set of unsorted records, “*N°" is their mun-
ber, and S’ the sorted set of records.,

Caution, these algorithms were developed purely for the love
of it: No one was available with the combined knowledge of
sorting and aLcon to check this work., Hence ench algorithm
should be carefully checked before use. T will be glad to answer
any questions which may arise;

Sort insert (IN,8); value N; arreay I[L:N], S{L:N];

integer procedure K(I); integer N;
begin integer i, |, k;
8iy = I
for i ;= 2 step 1 until N do begin
forj:=1i—1, j— I while K{I[iJ) > K] do
for k := i step — 1 until j + 1 do
S[k] = S{K — 1};
S 4+ 1] := I[i] end end

Sort count (I,N,8); wvalue N; array I[1: N1, S[1:N]

integer procedure K(I); integer N;
begin integer array C[1:N]; integer i,};

fori = 1step 1 until N do C[i] := 0;
for i := 2 step 1 until N do
for] := 1step 1 untili — 1 do
if K(I[i]) > K] then C[i] := Cll + 1

else Cli] := C[j] + 1;
for i := 1 step 1 until N do
SICR]] := I]i] end

Sort select (I,N,8); value N;
integer procedure K(1);
begin integer 1,j,A h;

for i := 1 step 1 until N do begin

array I[1:N], S[1:N];
integer N;

= K({1]);
for j = 2 step 1 until N do
ifh > KA then begin h := K{[j]); A := j end;
Sl = I{A]
1[A] := z end end

Sort select exchange (I,N); value N; array I[L:N];
integer procedure K(1); integer N;
begin integer h,i,j,H; real T;
for i := 1 step 1 until N do begin
M = K(I[i]); h:=1i;
for j := i + 1 step 1 until N do
if K([{']) < H then begin
= K(IfD); h:=]end
T = I[i]; I[i] := 1/h]; I[A] :=

end

T end

Sort binary insert (IN,S); value N;
integer procedure K(I); integer N;
begin integer i,k,j,l;

if K1) < K(I[2) then begin
S[t] := If1}; S[2] := [[2] end

arvay I[1:N], S[I1:NJ;

else begin S[1] = I]2]; 8[2] := I[1] end;
start: for i ;= 3 step 1 until N do begin
= ({i+1) + 2

tmk = (i 4+ 1)+ 2, (k+1)+2whilek > 1do
if K(I[i}) < KB[j]) thenj :=] — k
elsej ;=] + k;

if K{I[i}) > K(S[J ythen j :=j — I3

move items: for 1 :=istep — 1 until j do

S+ 1] = S(;

find spot:

enter this
one: 8i1 = Ili]l end end

Sort address ealeulation (LN,S,F); value N;
arvay S{L:M], I[L:N]; integer procedure F(K), K(Iy;
integer N,M;
begin integer i,j,G H,F M;
M = entier(2.5 X N)
for i := 1 step 1 until M do 3[i} = 0;
Address: for i := | step 1 until N do begin
F = F(K{I[ED);
if $[F] = 0 then begin S[F] := I[i];
go to NEXT end
else if K(S[F]D) > K(I[i]) then go to SMALLER;

TARGER: for H := F, H 4 | while K(S[H]) < K(I[i]) do
for G 1= H, (¢ + 1 while K(B[G]) = 0 do
for j 1= G step —1 until H + 1do

8l := Sl — 113
S[H] := I[i]; go to NEXT;

SMALLER: for H := F, H — | while K(8[H]) > K(I[i}) do
for G := H, G — | while K(S[G]) # 0 do
forj := G qtep 1 until H — 1 do

Sfil = 8l + 15
[HI = I[i];
NEXT: end end

Sort quadratic select (IN,8); value N; array I[LiN], S[1:N7;
integer procedure K(I); integer N;
begin integer 1,j,k,C,D,J,M;
integer array C[1:M], D[1:M];
array I[1:M, 1:M];
Divide inputs: M := entier (sqrt (N)) + 1; j:=k:=1;
for i := 1 step 1 until N do begin
Ik} = I0l; =k 4+ 1;
if kK > M then begin k :=1
= j -+ 1 end end

1jj k] := 2 =k 4+ 1;
ifk>M then begln k=1, j:=j+lend
if j < M then go to Fill up inputs;
Set controls: for j := 1 step 1 until M do begin
Cljl := K(1fj, 1I); Dl :=
for k = 2 step 1 until M do
if (“[J] > K(I[j ,k}) then begin
Ch = Kd[, I\ D; DOl := k end end;

Fill up inputs:

1= l;
Find least: C:=C[l]; D:=Dl}; J:=1;
for j := 2 step 1 until M do
if C > C[j] then begin C := Cl[j];
D := Djj]; J:=]end;
Fill file: S} := I, D}; 1:=1+1; IUJD]:=z;
ifi =N

J + 1 go to STOP;
Reset controls: for] ;= J do begin
Clj} := K, 1D; Djl := 1;

for k := 2 step 1 until M do

if Cfj) > K{I{j,k]) then begin C[j] :=
K{Ij,k]; D[l = k end end;

go to Find least;

STOP: end

Presort quadratic selection (IN,8); value N;
array 1f1:N], 8[1:N]; integer procedure K(I); integer N;
begin integer i,},k,C,J,M;
integer array C{1:M], D{1:M];
array I[1:M,1:M];
Divide inputs: M := entier (sqrt()) + 1; j:=k:=1;
for i := 1 step 1 until N do begin
Ij,k] = Ifil; =k+1;
if k > M then begin k :=
j:=1]+ 1lend end
I[J,k] =1z; ki=k+1;
ifk > Mthenbegink :=1; j =]+ lend
if j < M then go to Fill up inputs;
First sort: for j := 1 step 1 until M do
sort select exchange (I[j,k],M);
Set controls: for j := 1 step 1 until M do begin
Cli} := K{[j,1]); D[] := 1 end
=1,
C:=C[l]; J:=1;
for j := 1 step 1 until M do
if ¢ > C[j] then begin C := Clj};
J =] end;
Trill file: Sfi] := J,DU; i:=1+1;
ifi = N + 1 go to 8STOP
Reset control: for j := J do begin
Dfjl = D[jl + 13
if Dj] > M then C[j]
K, DGID end
go to Find least;
STOP: end

Fill up inputs:

Find least:

= z else Cfj] =

Sort binary merge (IN,8); value N; array I[1:NJ;
integer procedure K(I); integer N;
begin real array S[1:N]J;
integer array A[0:1, 0:J[a]], B[0:1, 0:K[b]], Aloc[0:1, 0:J{all,
Bloe[0:1, 0:K[b}], J[0:1], K[0:1}, j[0:1], k[0:1];
integer a,b,i,jk;
distribute: a = b = j0] := jll] := 1;
for i := 1 step 1 until N do begin
if K(I0D < K(I[i—-1] then
ifa = 1then a := Oelsea :=1;
Ala, jlal] := K(Ifil); Aloc[a, jlal] :=1;

jla] := jla] -+ 1 end;
J{o] = jlol; I = jl1);
next sort: begin = b = [O] := jl1] = K[0] :=
k{1] :=1;

Communications 6f the ACM 49

. two inputs: if AlL j1] € A0, j{0]] then a = 1 else
a 1= 0,
Blb, k{b]] := Ala, jlal};
Bloclb, k(b]] := Alocla, jla]};
jlal := jlal + 1; kib] := k[b] - 1;
if Ala, jlall > Ala, jla] — 1] then go to two
inputs else
ifa = 1 then a := 0 elsea = 1;
Bib, k{b]] := Ala, jlall;
Bloelb, k[bll := Alocla, jlall;
jlal i= jla] +1; kbl o= k[b] -+ 1;
if Afa, jla)] > Ala, jla] — 1] then go to
single step;
switch file: ifb =1thenb :=0Qelseb = 1;
check rollout: fora := 0, | de
if jla] = Jla] then go to rollout;
2o to two inputs;
Blb, kib]] := Ala, jfall;
Bloc(b, k[bj] := Aloc [a, jlall;
kib] 1= kib] -+ 1; jla] := jla] + 1;
if jla] = Jia] then go to interchange files;
if Afa, jlal]l < Ala, jla] — 1] then
ifb =1thenb :=0elseb :=1;
go to rollout;
K] := k0}; K[1] := k[1];
if K{0] = 1 then go to output end
for b := 1, 0 do begin
for k([b] := 1 step 1 until K[b} do begin
Alb, k[b]] := Blb, k(bll;
Aloclb, kibl] := Blocib, k[b]];
Jib] := K[b] end end
o to next sort;
for i := | step 1 until N do
S[i} := I{Blocf0, i]};

end

single step:

rollout:

interchange files:

output:

CERTIFICATION OF ALGORITHM 30

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION [K. W. Ellenberger, Comm. ACM 3
(Dec. 1960), as corrected in the previous Certification
by William J. Alexander, Comm. ACM 4 (May 1961)]

Kaumax J. CoHEN

Graduate School of Industrial Administration,
Institute of Technology, Pittsburgh, Pa.

Jarnegie

The ROOTPOL procedure originally published by Ellenberger
as corrected and modified by Alexander was coded for the Bendix
G20 in 20-GATE. Some serious errors were found in the third and
fourth lines above the statement labelled “REVERSE" in Ellen-
berger’s Algorithm which were not mentioned in Alexander’s
Certification. First, the function “log’’ is not a standard function
in ALcoL 60; it is clear from the context, however, that Ellenberger
intends this to be the logarithm function to the base 10. Second,
LEllenberger’s Algorithm failed to divide the accumulated sum of
the logarithms by n-1 before taking the antilogarithm.

The correct, and slightly simplified, manner in which the third
and fourth lines above the statement labelled “REVERSE”
should read is:

if hj 3¢ 0 then s := In(abs(h;))
end; s :=s/(n+1); s := exp(s);

With these corrections, the numerical results obtained essen-
tially agree with those reported by Alexander.

CERTIFICATION OIF ALGORITHMN 50

INVERSE OF A FINITE SEGMEN'T OF THE HIL.
BERT MATRIX [J. R. Hemdon, Comm. ACH 4
(Apr. 1961)]

B. Raxprry

Atomic Power Division, The English Electric Co., Whet-
stone, England

INVHILBERT was translated using the Dwces Ancon com-
piler and the following corrections being needed.
1. 8[1,1] = n X n, replaced by S[1, 1] := n X n;
2. 8f, i1 = SG, 1/G+1 — 1)
replaced by 8[, 1] o= 8, i/G+] — 1)
The compiled program, which used a 20 bit mamntissa floating point
notation then produced the following 4 X 4 segment

it

]

16.0 ~120.0 240.0002 —140.0
—120.0 1200.0 —2700.0 1680.0019

240.0 —2700.0 6480.0 —4200.0
—140.0 1680.0019 —4200.0 2800. 0039

CERTIFICATION OF ALGORITHM 66
INVRS (J. Caffrey, Comm. ACM. July 1961)
B. Ranpern, C. G. BRoyDpEN.
Atomic Power Division, The English Flectric Company,
Whetstone, Fngland.
INVRS was translated using the Duvce Apcorn Compiler, and
needed the following correction.
The repeat of the line,
begin pivot = 1.0/t1, 1];
was deleted.
The compiled program, which used a 20 bit mantissa floating
point notation, was tested using Wilson’s matrix

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

and gave results

67.9982
40,9991

9.9997
—5.9998

—16.9995
9.9997

—40.9991
24.9995

~16.9995 9.9997 4.9998 —2.9999
9.9997 —5.9998 —2.9999 1.9999

(The output routine completed the syrnmetric matrix)

INVRS will in fact invert non-positive sy mumetric matrices, the
only restriction appearing to be that the leading minors of the
matrix must be non-zero. The variable T{L, 1] takes as its succes:
sive values ratios of the (r + 1)th to the r th leadng minors of the
matrix, and if it becomes zero the variable ‘pivot’ cannot be com-
puted.

The following matrix, for which the successive values of T[L, 1
were +2, —2, —1, —0.6, -+5 gave results correct to one unit in the
fifth significant figure.

2 -3 1 —1 ‘
. 2 —~4 3 -2
1 —4 -3 2 :
—1 3 2 —2 -3
4 -2 4 —3 2

Sontributions to this department must be in the form
stated in the Algorithms Department policy statement (Com-
munications, February, 1960) except that ALGOL 60 notation
should be used (see Communications, May 1960). Contribu-
tions should be sent in duplicate to J. H. Wegstein, Compu-
tation Laboratory, National Bureau of Standards, Washington

25, D. C. Algorithms should be in the Publication form of
ALGOL 60 and written in a style patterned after the most re-
cent algorithms appearing in this department- For the conven-
ience of the printer, please underline words that are delimiters
to appear in boldface type.

50 Communications of the ACM

