COLLECTED ALGORITHMS

FROM CACM

ALGORITHM 76

SORTING PROCEDURES

IvaN FLORES

Private Consultant, Norwalk, Connecticut

comment The following ALcoL 60 algorithms are procedures for
the sorting of records stored within the memory of the computer.
These procedures are described in detail, flow-charted, com-
pared, and contrasted in ‘‘Analysis of Internal Computer Sort-
ing”’ by Ivan Flores [J. ACM 8 (Jan. 1961)]. Although sorting is
usually a business computer application, it can be described
completely in Avcon if we stretch our imagination a little.
Sorting is ordering with respect to a key contained within the
record. If the key ¢s the active record, the sorting is trivial. A
means is required to extract the key from the record. This is
essentially string manipulation, for which no provision, as yet,
has been made in ALgorL. We circumambulate this difficulty by
defining an integer procedure K(I) which “creates’ a key
from the record, I. AvrcoL does provide for machine language
code substitutions, which is one way to think of K(I). This
could be more accurately represented by using the string nota-
tion proposed by Julien Green [“Remarks on ALcoL and Sym-
bol Manipulation,” Comm. ACM 2 (Sept. 1959), 25-27]. The
function sub ($,i,g) represents the procedure, K(I). $ corre-
sponds to the record I, 1 corresponds to the starting position of
the key and g corresponds to the length of the key. Both i and g
are values which must be specified when the sort procedure is
called for as a statement instead of a declaration.

Another factor, which might vex some, is that the key might
be alphabetic instead of numeric. Then, of course, K(I) would
not be integer. It would, howevér, be string when such is defined
eventually. Note, also, that keys are frequently compared. This
is done using the ordering relations ‘“>’’ for ‘‘greater than,”
ete. These are not really defined in the ALGoL statement [NAUR,
PeTER, ET AL. “Report on the Algorithmic Language aLcoL
60”". Comm. ACM 3 (May 1960), 294-314]. They can simply be
definedsothat Z>Y > .- > A>9> .-« > 1> 0. Also the
assignment X([i] := z should be interpreted as ‘‘Assign the key
‘z” which is larger than any other key.”” For any sort procedure
(I,N,S), “I” is the set of unsorted records, ‘“N’’ is their num-
ber, and ““S’’ the sorted set of records.

Caution, these algorithms were developed purely for the love
of it: No one was available with the combined knowledge of
sorting and ALcoL to check this work. Hence each algorithm
should be carefully checked before use. I will be glad to answer
any questions which may arise;

Sort insert (I,N,S); *value N; array I[1:N], S[1:N];
integer procedure K(I); integer N;
begin integer i, j, k;
S[1] = I[t];
for i := 2 step 1 until N do begin
forj :=1—1, j — 1 while K(I[i]) > K(S[j]) do
for k := i step — 1 until j + 1 do
Sk] := S[K — 1];
S{j + 1] := I[i] end end

Sort count (I,N,S); value N; array I[1:N}], S[1:N];
integer procedure K(I); integer N;
begin integer array C[1:N]; integeri,j;

76-P 1- 0
for i := 1 step 1 until N do C[i] := 0;
for i := 2 step 1 until N do
for j := 1 stepl untili — 1 do
if K(I[i]) > K[j]) then C[i] := C[i] + 1

else C[j] := C[j] + 1;
fori := 1 step 1 until N do
S[C[i]] := I[i] end

Sort select (I,N,S); value N;
integer procedure K(I);
begin integer i,j,Ah;

for i := 1 step 1 until N do begin

h .= K{I[1D;

for j := 2 step 1 until N do

if h > K(I[j]) then begin h := K(I[j]);
S[i] := IfA];

I[A] := z end end

Sort select exchange (ILN); value N; array I[1:N];
integer procedure K(I); integer N;
begin integer h,i,j,H; real T;
for i := 1 step 1 until N do begin
H := K{d[]); h:=1i;
for j :=1i + 1 step 1 until N do
if K(I[j]) < H then begin
H := K(I[j}); h:=jend
T := Ili]; I[i] := Ih]; I[A] := T end

end

Sort binary insert (I,N,S);
integer procedure K(I);
begin integer i,k,j,l;

if K(I[1])) < K(I[2]) then begin
S[] := I[1]; Si2] := I[2] end
else begin S[1] := I[2]; 8[2] := I[1] end;
start: for 1 := 3 step 1 until N do begin
ji=0+1+2
find spot: fork := i+1) = 2,(k+1)+2whilek > 1do
if K(I[i]) < K(S[j]) then j :=j — k
else j :=j + k;

if K(Ifi]) > K(8[j]) then j :=j — 1;

for ] := i step — 1 until j do
Sl + 1] := S[l];

array I[1:N], S[1:N];

integer N;

A = jend,;

value N; array I[1:N], S[1:N]J;
integer N;

move items:

enter this
one: S(j] := I[i] end end

Sort address calculation (I,N,SF); value N;
array S[1:M], I[1:N]; integer procedure F(K), K(I);
integer N,M;
begin integer 1,j,G,H,F M;
M := entier(2.5 X N)
for i := 1 step 1 until M do S[i] = 0;

Address: for i := 1 step 1 until N do begin
F := F(KALD);
if S[F] = 0 then begin S[F] := I[i];
go to NEXT end
else if K(S[F]) > K(I[i]) then go to SMALLER;
LARGER: for H := F, H + 1 while K(S[H]) < K(I[i}) do
for G := H, G + 1 while K(S[G]) = 0 do
for j := G step —1 until H + 1 do
8(j] := 8 — 1J;
S[H] := I[i]; go to NEXT;
SMALLER: for H := F, H — 1 while K(S8[H]) > K(I[i]) do



COLLECTED ALGORITHMS (cont.)

for G := H, G — 1 while K(S[G]) = 0 do
for j := G step 1 until H — 1 do
S[il = 8[j + 1J;
S[H] := I[i];
NEXT: end end
Sort quadratic select (ILN,S); value N; array I[1:N], S[1:N];
integer procedure K(I); integer N;

begin integer 1,j,k,C,D,J M;
integer array C[1:M], D[1:M];
array I[1:M, 1:M];
M := entier (sqrt (N)) +1; j :=k :=
for i := 1step 1 until N do begin
Ifj,k] := I[i]; k :=k 4+ 1;
if k > M then begin k :=
=j + 1 end end
Ij,k] :=2z; k:=k +1;
if k > M then begin k := ji=j+ lend
if ] < M then go to Fill up inputs;
for ] := 1 step ] until M do begin
Clil := KI[j, 1)); DI[j] :=
for k = 2 step 1 until M do
if C[j] > K(I[j,k]) then hegin

Divide inputs:

Fill up inputs:

Set controls:

Cli] := K{I[j,k]); DI[j] := k end end;
i:=1;
Find least: C:=C[l]; D:=D[1]; J:=1;
for j := 2 step 1 until M do
if C > C[j] then begin C := C[j];
D :=D[j]l; J:=] end;
Fill file: Sfi} := IJ,D]; i:=1+1; IJD]:=

ifi = N 4+ 1 go to STOP;
for j := J do begin
Cljl := K[, 1); D] := 1
for k := 2 step 1 until M do
if C[j] > K([j,k]) then begin C[j] :=
K(I{j,k]; DJ[j] := k end end;
go to Find least;
STOP: end

Reset controls:

Presort quadratic selection (I,N,S); value N;
array I[1:N], S{1:N]; integer procedure K(I);
begin integer i,j,k,C,J,M;
integer array C[1:M], D[1:M];
array I[1:M,1:M];
Divide inputs: M := entier (sqrt(N)) + 1; j := k := 1;
for i := 1step 1 until N do begin
I(j,k] .= I[i]; k:=k 4+ 1;
if k > M then begin k := 1;
=j + 1 end end
I[j,k] := z; =k +1;
ifk > M then begink :=1; j=]+ 1end
if j < M then go to Fill up inputs;
for j := 1 step 1 until M do
sort select exchange (I[j,k],M);

integer N;

Fill up inputs:

First sort:

Set controls: for j := 1 step 1 until M do begin
C[]] = K(I[j,11); D[j] := 1 end
=1
Find least: C =C[l]; J:=1;
for j := 1 step 1 until M do

if C > CJj] then begin C := C[j];
J :=j end;
Fill file: S(i] := IJ,DJJ}; 1i:=1+1;
ifi = N + 1 go to STOP
for j := J do begin
Dfj] := Dl + 1;
if D[j] > M then C[j] := z else C[j] :=
K(I[j, D[jl}) end
go to Find least;
STOP: end

Reset control:

76-P 2- 0

Sort binary merge (I,N,S);
integer procedure K(I);
begin real array S[1:NJ;
integer array A[0:1, 0:J[a]], B[0:1, 0:K[b]], Aloc[0:1, 0:J[a]],

Bloc[0:1, 0:K[b]], J[0:1], K[0:1], j[0:1], k[0:1];
integer a,b,i,jk;
distribute: a:=Db :=j[0] :=j[l] :=
for i := 1 step 1 until N do begin
if K(I(i]) < K(I[i—1] then
ifa = 1thena :=0elsea :=1;
Ala, jla]] := K([i]); Alocla, jla]] := i;
jla] := j[a] + 1 end;
J[0] == j[o]; J0I := jQ1];

value N; array 1|1:N];
integer N;

next sort: begin a := b := j[0] := j{1] := k[0] :=,
k(1] :=
two inputs: if All, j[1]] £ A[0, j[0]] then a := 1 else
a:=0;
Blb, k[b]] := Ala, jall;

Bloc[b, k[b]] := Aloc|a, j[a]l;

jlal :=jla] + 1; k[b] := k[b] + 1;

if Afa, j[a]] > Ala, j[a] — 1] then go to two
inputs else

ifa = 1 then a := O else a := 1;

Blb, k[b]] := Ala, j[a]];
Bloc[b, k[b]] := Alocla, j[a]];

jla] := jla] +1; Kk[b] := k[b] + 1;

single step:

if Ala, j[a]] > Ala, j[a] — 1] then go to
single step;
switch file: ifb=1thenb :=0elseb :=
check rollout: for a := 0,1 do

if j[a] = J[a] then go to rollout;
go to two inputs;
Blb, k[b]] := Ala, jlall;
Bloc|b, k[b]] := Aloc [a, j[a]];
k[b] := k[b] + 1; jla] := jla] + 1;
if j[a] = J[a] then go to interchange files;
if Ala, j[a]] < Ala, jla] — 1] then
ifb=1thenb :=0elseb :=
go to rollout;
interchange files: K[0] := k[0]; KJ[1] := k[1];
if K[0] = 1 then go to output end
for b := 1, 0 do begin
for k[b] := 1 step 1 until K[b] do begin
A[b, k[b]] := Bb, k{b]];
Aloc[b, k[b]} := Blocb, k[b]];
J[b] := K[b] end end
go to next sort;
fori := 1 step 1 until N do
S(i] := I[Bloc(0, i]];

end

rollout:

output:

REMARK ON ALGORITHM 76

SORTING PROCEDURES (Ivan Flores, Comm. ACM
5, Jan. 1962)

B. RANDELL

Atomic Power Div., The English Electric Co., Whetstone,
England

The following types of errors have been found in the Sorting



COLLECTED ALGORITHMS (cont.)

Procedures:

1. Proc:dure declarations not starting with procedure.

2. Bound pair list given with array specification.

3. = used instead of :=, in assignment statements, and in a for
clause.

4. A large number of semicolons missing (usually after end).

5. Expressions in bound pair lists in array declarations depend-
ing on local variables.

6. Right parentheses missing in some procedure statements.

7. Conditional statement following a then.

8. No declarations for 4, or z, which is presumably a misprint.

9. Inseveral procedures attempt is made to use the same identi-
fier for two different quantities, and sometimes to declare an
identifier twice in the same block head.

10. In the Presort quadratic selection procedure an array, de-
clared as having two dimensions, is used by a subsecripted variable
with only one subscript.

11. At one point a subscripted variable is given as an actual
parameter corresponding to a formal parameter specified as an
array.

12. In several of the procedures, identifiers used as formal
parameters are redeclared, and still assumed to be available as
parameters.

13. In every procedure K is given in the specification part, with
a parameter, whilst not given in the formal parameter list.

No attempt has been made to translate, or even to understand
the logic of these procedures. Indeed it is felt that such a grossly
inaccurate attempt at ArcoL should never have appeared as an
algorithm in the Communications.

76-P 3-

0



