ALGORITHM 77
INTERPOLATION, DIFFERENTIATION, AND IN-
TEGRATION

Pavn E. HexvxtoN
Grumman Aireraft Engineering Corporation, Bethpage,

real procedure

comment

begin real

L. 1., New York

AVINT (nop, jt, xarg, xlo, xup, xa, ya);

value nop, jt, xarg, xlo, xup; real xarg, xlo, xup;
integer nop, jt; real array xa, ya;

This procedure will perform interpolation, differen-
tiation, or integration operating upon functions of one vari-
able which over part or all of the interval of interest are ade-
quately described by a di-parabolie fit.

The routine was originally programmed as an open subrou-
tine for the IBM 704 in Forrran LI and occupied 323 memory
loeations. It is based upon a Lagrange interpolation scheme
specialized for averaged second order parabolas. The tech-
nique finds the slope of a funetion numerically defined at
points 1, 2, 3 and 4 by fitting a parabola through the points
1, 2, 3, and another parabola through the points 2, 3, and 4.
The slope then, at point 2,1is the average analytical derivative
of the two parabolas, it.e. the coeflicients of the parabola
through points 1, 2 and 3 (a2 -+bixe+¢() and the coefficients
of the parabola through points 2, 3, and 4 (a:xx2®+baxs+-c2)
are determined by applying Lagrange’s equations as shown be-
low. The arvithmetic mean of these coeflicients a = (a;4-a4)/2,
b = (bi+b.)/2, e = (ci+ey)/2 are used to supply the slope
in the interval from 2 to 3, namely (2ax + b).

The interpolation is caleulated in similar fashion, except the
final formula is that a parabola {(ax? 4+ bx 4+ ¢).

The integration is performed likewise by a curve fitting
process, e.g. the integral between any two points say 2 and 3
is the average integral of the two parabolas between the inde-
pendent coordinate limits for points 2 and 3. The averaging
process is done for each interval along the abscissa as the
results obtained are accumulated to evaluate the definite
integral.

Applying Lagrange’s equations, the coefficients a, b, and ¢
may be found by defining: T; = vi/ L s (X5 — Xi) where
y =1f(x), n =23 j=1,2"--,n thena = 320 T,
b= 2pa Tioin a Xs, 0= 200 T [i X5
sa, cb, ce, a, b, ¢, syl, syu, terml, term2, termd, da,

dif, sum;

i

integer jm, js, jul, ia, ib;
start: switeh alpha := L1, L1, L12; switch beta := 19,
L5, L6;
switch gamma := [10, L1l; switch delta := LS8,
118, 1113;
comment For interpolation, differentiation or integration set
it = 1,2, or 3 respectively;
go to alpha [jt];
L1: if xarg > xa [nop] then go to L2;

96

if xarg > xa [nop—1] then go to 1.2;
if xarg < xa [1] then go to L3;
if xarg < xa [2] then go to L3; go te I4;

Communications of the ACM

1.2:
Ij:)) N
comment

14:

comment

I5:
L6:

L? :

18:

119 :
comment

L10:
comment

Tlll :
comment

112

L.16:
comment

comment

term:
comment

exitl:
exit2:

o

%%%

3§
[

] Editor

jm 1= nop—1;

jm o= 25 s o=

Locate argument;

for ia = 2 step 1 until nop do begin

if xa [ia] > xarg then go to L7; jm :=

Before loop is complete xarg < xa [ial;

ea = a; ch = b; cc 1= ¢; s 1= 3
jm-+1; go to term;

a = (cat+a)/2; b = (ch+b)/2; ¢ =
go to LY;

is = 2; go to term;

go to beta [js];

go to gamma {jt];

Interpolation, jt = 1;

da := a X xarg T 2 4+ b X xarg + c¢;

Differentiation, jt = 2;

dif 1= 2 X xarg -+ b;

Integration, jt = 3;

sum = 0; syl :=
ib 1= 2;

for jm :=ib step 1 until jul do begin;

Lagrange formulae;

terml := va [jm — 1}/((xa [jm — 1] — xa[jm]} X
(xaljm — 1] — xaljm + 11));

term?2 := ya [jm]/((xa [jm] = xs
(xaljm] — xa [jm + 1]));

term3 : = ya [jm -+ 1]/ ((xa [jm + 1] — xa [jm — 1) X
(xa [jm + 1] — xa [jm]));

a := terml -+ term2 + terms;

b= —(xa [jm] + xa [jm -+ 1)) X terml — (xa
[jm — 1]+ xa [jm + 1]) X term2 — (xa [jm — 1]+
xa {jm]) X term3;

¢:= xa[jm] X xa [jm + 1] X terml + xa [jm ~ 11X
xa [jm + 1] X term2 + xa [jm — 1] X xa [jm] X
term3; go to delta [jt};

if jm # 2 then go to Ll4;

cat=a; chbi=Dh; ceci=c¢; go toLld;

ca 1= (a + ea)/2; ¢b 1= (b 4+ cb)/2; coi=
(& + ce)/2;

syu = xa [jm];

sum = sum 4+ ca X (syu T 3 — syl T 8)/3 +ebX
(svu T 2 — syl T 2)/2 + ce X (syu — syl);

cat=a; cbi=1b; ceci=¢; syl:= synend;

End of loop on {jm] index;

sum 1= sum + ca X (xup T 3-syl T 3)/3 + cb X
(xup T 2yl T 2)/2 + ce X (xup — syl); ge
to exitd;

ib 1= jm; jul :=ib; go to L16;

The results for interpolation, differentiation, and
integration are da, dif, and sum respectively;

AVINT := da; go to exit;

go to term;

go to term;

o end;
jm =

(ce+e}/2;

go to exitl;
go to exit2;
jul 1=

xlo; nop — 1;

fim — 1]) X

AVINT := dif; go to exit;
AVINT := sum;

end

ALGORITHM 78

RATIONAL ROOTS OF POLYNOMIALS WITH IN-
TEGER COEFFICIENTS

(. Perry

University of California at San Diego, La Jolla, California

comment This Avcor procedure, named ratfact, for finding
rational roots of polynomials with integer coeflicients is a
pedagogical example tllustrating the use of the for statement
deseribed in section 4.6.3. Also, an extension suggested by
J. Peck of the well-known polynowmial evaluation by nesting,
i.e. Horner's method, is used. The polynomial {(x)=a, + a;x-+
“+a,xt with integer coefficients and with aga,#0 has a
lowest term rational root p/q if and only if aq® 4 ayq™'p +
©agaag P A agpt= 0, also q must be a factor of a, and
p a factor of ay . Procedure Rartracr outputs the nonzero
rational roots p/q by execution of the procedure whose formal
name is print. The output procedure uses the string whose formal
name is format for control of the output format;
procedure ratfact (a, n, print, format);
integer array al0:n]; integer n; procedure print; string
format ;
begin integer i, p, q, v, t, f, g;
p loop: for p := 1 step 1 until abs (a[0)) do
begin comment if p is not a faector of a [0} or ¢ is not a factor
of a[nf then skip to the end of the loop for advance in the
respective for list;
it af0] # (al0}+p)Xp then go to 1

else ¢ loop: for = | step 1 until abs (a{n]) do
begin if a[n] # (aln]+)X q then go to 2
else

begin comment root test and print;
comment start polynomial evaluation;
{ =g :=al0]; t:=p;

fori:= 1step 1 until n do
begin v := alijXt;
f o= X qtr;
g = —gXqtr;
AN ¢
end polynomial evaluation;
comment computing r saves one subseript
evaluation;

if {=0 then print (format, p, q);
if g=0 then print (format,—p, q);
comment print is the formal name of the procedure
to be used to output the variables in the format
specified by the string whose formal name is format;
end root test and print;
2: end g loop;
1: end p loop;
end ratfact, without overflow test.

ALGORITHM 79

DIFFERENCE EXPRESSION COEFFICIENTS

Tromas P. Graywvo

Space Technology Laboratories, Inc., Los Angeles, Cali-
fornia

procedure dicol (k, n, xp, xtab, coef);

value k, n; integer k, n; real xp;

array xtab, coef;

comment dicol produces the coefficients for the n ordinates
(corregponding to the abscissae, xtab) in the n-point finite
difference expression for the k-th derivative evaluated at xp.
The method used is to determine the analytic expression for
the k-th derivative of each coefficient in the n-point Lagrangian
interpolation formula and evaluate it at xp. Note that k=0
will produce the Lagrangian interpolation coefficients them-

selves;

begin integer array xuse {1 : n—1}; real factk, sum, denom,
part;

integer i, terms, J, m, high;

factk := 1.0; for i := 2 step 1 until k do factk := iXxfactk;

terms = n—k—1; if terms<0 then go to Z;

for | := 1 step 1 until n do

loop: begin sum := 0; denom := 1.0; part := 1.0;

fori:= 1 step 1 until n do
if i # j then denom = denomX (xtab [j} — xtab [i]);
if terms = 0 then go to Y;
m = 1; high = 1;
A if (high =)V (xtab [high] = xp) then
Al: begin high := high + 1; go to A end Al;
if high > n then A2: begin m := m—1; if m>0
then
A3: begin high =
go to X end A2;
xuse [m] := high; m = m+1;
if mgterms then begin high
Aend;
for i := 1 step | until terms do
part 1= partX (xp — xtab [xuse [i]]);
sum ;= sum + part; m := terms; part := 1.0;
high := xuse [terms] + 1; go to A;
Y sum ;= 1.0;
X: coef [j] := sum X factk/denora end loop;
go to EXIT;
Z: fori:= lstep 1 until n do coef [i] := 0;
EXIT: end dicol

suse (mj-+1; go to A end A3;

;= high -+ 1;

go Lo

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communacations, February, 1960) except that ALGOL 60
notation should be used (see Communications, May 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Reference
form of ALGOL 60 and written in a style patterned after the
| most recent algorithms appearing in this department. For
| the convenience of the printer, please underline words that
are delimiters to appear in boldface type.

Although each algorithm has been tested by its contrib-

utor, no warranty, express or implied, is made by the con-
tributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart- .
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
igzsue bearing the algorithm.

Communiecations of the ACM 97

