Algorithms

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960 except that ALGOL 60
notation should be used (see Communications, Muy 19607,
Contributions should be sent in duplicate to J. H., Wegstein,

. Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Reference
form of ALGOL 60 and written in a style patterned after the
most recent algorithms appearing in this department. For
the convenience of the printer, please underline words that
arc delimiters to appear in boldface type.

Although each algorithm has been tested by its contrib-
utor, no warranty, expressed or implied, is made by the con-
tributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the algo-
rithm and related algorithm material, and no responsi-
bility 1s assumed by the contributor, the editor, or the
association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

ALGORITHM 80

RECIPROCAL GAMMA FUNCTION OF REAL
ARGUMENT

Wirniam HowsTeN
University of California at San Diego, La Jolla, California

real procedure RGR(x); real x; real procedure RGAM;
comment Procedure RGAM computes the real reciprocal
Gamma function of real z for —1 < z < 1, utilizing Horner’s
method for polynomial evaluation of the approximation poly-
nomial. RGR extends the range of RGAM by use of the formulae
(1) 1/Gamma(z—1)=(z—1)/Gamma(x) for 2<—1,
(2) 1/Gamma(z+1)= 1/zXGamma(z) for z<1.;
begin real yv;
if x = 0 then begin RGR := 0; go to EXIT end
if x = 1 then begin RGR :=1; go to EXIT end
if x < 1 then go to BB;
yi=1
AA: x:=x—1; y:=y X x; if x> 1 then go to AA;
if x = 1 then begin RGR := 1/¥; go to EXIT end
RGR := RGAM(x)/y; go to EXIT;
BB: if x = —1 then begin RGR := 0; go to EXIT end
if x > —1 then begin RGR = RGAM(x);
go to EXIT end
v o= x;
CC: x:=x+1; if x < —1 then begin y := y X x;
go to CC end
RGR := RGAM((x) X y;
EXIT: end RGR;

166 Communications of the ACM

H.oJ WEGSTEIN, Edito,
real procedure RGAM{x}; real x; integer i;
real array Bi0:13};
comment The algorithm for this routine was adapred
“University of Illinois Digital Computer, Auxiliary Lib,
Routine B-17-3287, by John Ehrman. Reference may als
made to Algorithm 34, dated February, 1961, Approxin
aceuracy is =429 ;

begin real z;

B[0] ;= 1.00000 00000 00; B[1} := ~ 42278 13330 92,
B[2] := —.23300 37363 65; Bl 3] := +.19109 11011 42;
B 4} := —.02455 21908 &7; = — . 01764 52421 18,
B 6] := 4 .00802 32781 13; = ~—.00080 £3413 35
Bl 8 := —.00036 0851+ 96; = -+ 00014 36213 24
Bi10} := —.00001 75279 17; Bl ;= —.00000 26257 21
Bi12] := +.00000 13285 51; BH3i := —.00000 01812 20;
z: = B[13];

fori:= 12 step —1 until 0 do z ;= z X x + Biil;

RGAM =z X x X (x + 1)
end RGAM;

ALGORITHMI 81

ECONOMISING A SEQUENCE 1

Briax H. Mayon

Digital Computer Laboratory,
Urbana, Tl

University of Hlinois,

procedure LCONOMISER 1 (desired property, costs, n, Cl;

array costs; integer n;
Boolean procedure desired property;

Boolean array C;

begin comment Given a finite, monotonely '
sequence of positive numbers, looked upon as prices, BCONU:
MISER 1 sclects the cheapest subsequence with a given prop-
erty. The formal parameters are: Desired property,. a fum-m‘»xf
designator to answer the question: Does the suhsequcn(-c.} id
in array C possess the required property? n is (numh.e.r of ele-
ments in the sequence) 4+ 1. Costs is an array of size {1
Costs[1] to costs[n—1] hold the numbers of the sequendce
costs{n] is any arbitrary number greater than the sum of 2
other elements of costs. ('is an array of the same size ;md. inli-
cates a subsequence by the rule: C[i] = element 7 of the ()E’1g1:\1=1
sequence is in the subsequence. At exit from ECONOMISER lf
¢ indicates the cheapest subsequence. It is supposed that the
original sequence has the desired property.;
integer d, j, k, £; real i; '
forj := lstep luntil ndo Cj] :=j=1; d :=0;
reenter: d := d+1;
INSIDE: begin own real array prices [I:d];

v

ill(‘l'(':t:ira;

own Boolean array alternatives[l:d, L:inj;
procedure EXTER SUCCESSORS;
begin k := n—1;
A: if - C[k] then
begin k := k—1; go to A end;
for j := 1step 1 until n do

j o=

begin alternatives|,j]
= j s kAj#k-~1=C[]];
if alternatives{{,j] then
i= 14 costs[j]
end;
B: k= k-1;
go to if k = 0 then find cheapest
else if Clk] then (if k=1 then
find cheapest else B)
else if k=1 then I
else if Clk—1] then D
else find cheapest;
D: Clk—1] := false;
E: Clk] ;= true; go to reenter
end of ENTER SUCCESSORS;
i:=0; forj := 1step 1 until n do
begin alternatives[d,j] := C[j}; if C[j] then
i= 14 costs[j]
end; prices[d] := i;
find cheapest: i:=0; forj:= 1stepluntilddo
begin if prices{j] < i then
begin ¢ ;= j; i := prices[f] end
end;
for j := 1 step | until n do
Cli] := alternatives{¢,j];
if — desired property then
ENTER SUCCESSORS
end of INSIDE;
end of KCONOMISER 1;

ALGORITHM 82
ECONOMISING A SEQUENCE 2
Briax H. Mavou
Digital Computer Laboratory, University of
Urbana, T1l.
procedure ECONOMISER 2 (desired property, costs, n, C, r,
Reject list); Boolean procedure desired property;
integer n, r; array costs; Boolean array Reject list;
begin comment In some applications of ECONOMISER 1, it
is simple to establish that some subsequences are redundant in
the sense that any sequence containing them is certainly not
the cheapest subsequence with the desired property. For such
applications ECONOMISER 2 avoids all unnecessary calls of
desired property. The new formal parameters are: r a variable
whose value is initially 0 and is increased by 1 every time that
desired property discovers a mnew redundant subsequence.
Reject list an array of size [L:r,1:u]. Reject list [a,b] carries the
answer to: Is element b of the original sequence in the att
redundant subsequence found by desired property?;
real i; integer d, j, k, {; Boolean gapfilled, first time;
procedure INSIDE (entrymaker); Boolean entrymaker:
begin own real array prices{l:d[;
own Boolean array alternatives{l:d,i:n];
procedure ENTER SUCCESSORS;
begin integer ¢; Boolean array ssq[linl;
for j := 1 step 1 until n do ssqfj] := C[jl;
¢ :=n-—1;
A: if — ssqgfc] then begin ¢ := ¢—1; go to A end:
Cle] := false; Cle+1] := true;
INSIDE (true);
gapfilled := true;
B: ¢c:=c—1;
go to if ¢c=0 then F else if ssql¢] then
(if ¢=1 then F else B) else if ¢=1 then
E else if ssqlc—1] then D else F;
D: ssqfe—1] := false;

Illinois,

E: forj := 1step 1 until n do C{j] := ssqli] = jsc;
INSIDE (true);
F: end of ENTER SUCCESSORS;
if entrymaker then
begin for j := 1 step 1 until r do
begin for k := 1 step 1 until n do
begin if — Clk] A Reject list{j k] then
go to G end;
ENTER SUCCESSORS; go to H;
G: end;
i:=0; if gapfilled then d := d-+41;
for] := 1 step 1 until n do
begin alternatives[if gapfilled then
d else ¢, j] := C[j;
if C[j] then i := i + costs[j]
end; prices[if gapfilled then d else ¢} := i
end; if first tiime \V/ — entrymaker then
begin i := 0; gapfilled ;= first time := false;
for j := 1 step 1 until d do
begin if prices{j] < i then
begin £ := j; 1 := prices[(] end
end;
for j := 1 step 1 until n do
C[j] := alternatives{(,j);
if desired property then go to found;
ENTER SUCCESSORS; go to reenter
end;
H: end of INSIDE;
for j := 1 step 1 until n do Cfj] := j=1;

d = 0; first time := gapfilled 1= true;
reenter: INSIDE (first time);

found:
end of FCONOMISER 2;

ALGORITHM 83

OPTIMAL CLASSIFICATION OF OBJECTS

Brian H. Mayon

Digital Computer Laboratory, University of Iilinois,
Urbana, Ii.

procedure OPTIMUM COVERING FINDER (Pattern, popu-
lation, set number, set prices, chosen sets, bounds, overflow);
Boolean array Pattern, chosen sets; integer population,
set number, bounds; array set prices; label overflow;
begin comment The number of objects in some given set is
given by population. The procedure is given a classification of
these objects by a collection of overlapping subsets. A cost
is assigned to each subset. Then OPTIMUM COVERING
FINDER selects the cheapest subcollection such that every
object is contained in at least one of the subsets of the sub-
collection. set prices[i] carries the cost of subset ¢. Pattern
is an array of size [1:set number,1:population]such that Pat-
ternfa,b] = does subset a include object b. chosen sets(i] finally
carries the answer to the question: Is set ¢ in the cheapest
subeollection? The programmer must restrict the amount of
space available to the procedure by setting bounds. From ex-
perience bounds = set number 1 2 suffices to avoid most alarm
exits to overflow.;
Boolean array C[l:ipopulation], D{l:bounds, l:population],
R, S[1:bounds,1:set number];
integer a, b, d, r, s;
Boolean procedure HAVE WE A COVERING;
begin procedure ADD to (Q,q,f); integer q;
real {; Boolean array Q;
begin if q=bounds then go to overflow else q := q+1;
for a := 1 step 1 until set number do Q[q,a] := f
end; for a := 1 step 1 until population do

Communications of the ACM 167

Cla} := false;
=1 step 1 until set number do
begin if chosen setsfa] then
forb := 1 step 1 until population do
Clb} := Cib] v Pattern[a,b]
end; for a := 1 step ! until population do
begin if — Cla] then go to & end;
~ &o to found;
E: ford:=1 step 1 until s do
begin for b = 1 step 1 until population do
begin if Cib] A - D[d b} then go to try another end;
ADD to (R, r, chosen setsfal);
for b := 1 step 1 until set number do
begin if chosen sets]b] A — 8[d,b} then
ADD to (R, r, 8[d,a] V a=h)
end; go to F;
try another:
end of for statement labelled I
ADD to (8, s, chosen setsfa));
for a := 1 step 1 until population do Dis,a) := Cla};
F: HAVE WE A COVERING := false
end; r:= s := (;
ECONOMISER 2 (HAVE WE A COVERING, set prices,
set number, r, R, chosen sets);
found: end

for a

CERTIFICATION OF ALGORITHM 60

ROMBERG INTEGRATION (J°. L. Bauer,
ACM, June, 1961)

Hexry C. THACHER, JR.¥

Argonne National Laboratory, Argonne, Il

Comm.

* Work supported by the U. 8. Atomic Encrgy Commission.

This procedure was translated to the ACT III compiler lan-
guage for the Royal Precision L.GP-30 computer. This system pro-
vides 7+ significant decimal digits. The program was used to
integrate z¢ between the limits 0.01 and 1.1, and between the
limits 1.1 and 0.01. The results in Table 1 were obtained. The
pole at 0 for negative n affords a test of the reliability of the
method when the higher derivatives of the integrand are large.
The agreement between integrations in the forward and backward
directions is an indication of the effects of round-off error.

It is apparent that the procedure gives results well within the
noise level for the positive powers, and that even the effect of a
closely adjacent singularity for the negative powers can he over-
come.

The flexibility of the algorithm would be improved by adding
to the formal parameters a procedure, check, to decide if sufficient

r1.1 70,01
TABLE 1. INTEGRATION OF [um z'dr AND [i, x'dx

I3 1] +12 412 —1
True Value 1.0900000 26553032 —.26555932 4.7004831
Order 1 1.0899997 57076812 — 57076842 19.641113
Order 2 1.0899997 .30614608 —.30614626 10.656023
Order 3 1.0800091 .26555603 —.26555818 4.9017590
Order 10 4.7002345
” —1 -3 -5 T
True Value —4.7004831 .25000000 108 —18.166667 X108
Order 1 _19.641125 18.166655 X10° —.25000000 108
Order 2 —10.656020 8.4777719 X10* —8.4777766 X10°
Order 5 _4.0017805 1.0208634 X10° —1.0408640 X10®
Order 10 47004402 .25000715X10° —.25000727X 108
.24999201X 105 — 250013113 108

QOrder 12

aeeuracy had been obtain

P without o

t for this procedure would be:

iteration. A possible fory
procedure check (81, 12, f exit)-
real t1, t2; » ‘
label exit;
integer f;
beginifabs ((t2 — tl; X< 1) /
then go to exit end. '

11 < roleranee A~ 1 > mininuun ¢

[he global variables tolerance, which is the maximum re

tive

dIuL tne
minimum acceptable order should be selected by the programn
for the exigencies of the problem. A check of this sort is cle
not as sound as an a priori estimate of the neces
frequently an acceptable expedient.
The Romberg quadrature algorithn is unalvzed in the follow.
ing references:
lomberg, W. Vereinfachte
Kongelinge Norske
(1955), 30-36.
Stiefel, E., and Rutishauser, H. Remarques concernunt
Pintegration numerique. Comples Rendus Acad. Scil (Paris
252, (1961), 1899-1900.

iy order, bat is

numerische Integration. [es

Videnshaber Selskab Forhandlinger I3,

CERTIFICATION OF ALGORITHM 78

RATFACT (C. Perry, Comun. ACM 5, Feh. 1962)

M. H. Hatsteap

Navy Electronics Laboratory, San Diego, Calif.
RATFACT was copied in the Navy Eleetronies Luborutorn

International Arcotn Cornpiler, NEnrac, and tested on the Uxi.

vac M-490 Countess and the CDC 1604. Polynomials of order 2

through 6 were tested. No corrections were found necessavy. It

was noted that a polynomial whose coeflicients included u com-

mon factor would produce superfluous values of p/q, in which

this fraction was indeed a root, but one in which p and 4 contained

a common factor.

Reprints Of

“Report on the Algorithmic Language ALGOL 60”

By Peter Naur (Iid.) et al.

Communications of the ACH, Vol. 2, No 5 (May
1960), pp. 299-314
Are Now Available
from
Association for Computing Machinery
14 East 69 Street
New York 21, N Y.

* * * * £

Single copies to

individuals: No charge.
Single copies to
companies: 50 cts.

Multiple copies—
First ten: 30 cts, ea.
Next 100: 23 cts. ea.
All over 100: 10 cts. ea.

168 Communications of the ACM

