ALGORITHM 84

SIMPSON’S INTEGRATION

Pavr E. Hexnion

Giannini Controls Corporation

Astromechanics Research Division, Berwyn, Penn.

real procedure SIM (n, a, b, y);
value n, a, b; real a, b; integer n; array y;
comment This is a method for obtaining the approximate value
of the definite integral of a continuous function when the in-
tegral cannot be evaluated in elementary funetions. Given
y = f(x) and the f> v dx to be evaluated. Plot the curve f(x),
and divide [a, b] evenly into n equal parts, erecting the ordi-
nates yo, y1, -, ¥u. Then the approximate value of the
definite integral by Simpson’s rule states that:
4 .,
f f(x) dx = bq 2 (yo + 4ys + 2ys + - + dyas + v
&

on

begin real s; integer i;
s 1= (y[0] — y[])/2;
fori:= Istep2untiln — ldos :=s + 2 X yii] + yi+1};
SIM :=2 X (b — a) X s/(3 X n)

end

ALGORITHM 85
JACOBI
TroMmas G. Evans ‘
Bolt, Beranek, and Newman*, Cambridge, Mass.

* This work has been sponsored by the Air Force Cambridge
Research Laboratories, OAR (USAF), Detection Physics Lab-
oratory, under contract AF 19(628)-227.

procedure JACOBI (A, 8, n, rho);

value n, rho; integer n; real rho; real array A, S;

comment This procedure finds all eigenvalues and eigenvectors
of a given square symmetric matrix by a modified Jacobi (itera-
tive) method (ef. J. Greenstadt, “The determination of the charac-
teristic roots of a matriz by the Jacobi method,”” in Mathematical
Methods for Digital Computers, A. Ralston and H. 8. Wilf, eds.).
JACOBI is given a squaresymmetric matrix of order n stored in
the array A. The initial contents of the array S are immaterial,
as Sisinitialized by the procedure. At exit the kt® column of the
array 8 contains the k*® of the n eigenvectors of the giverimatrix,
and the diagonal element Afk, k] of the array A is the corre-
sponing kth eigenvalue. The parameter rho is the “accuracy
requirement”’ introduced in the above reference, where a de-
tailed flow chart of the method is given. The significance of rhois
that the iteration terminates when, for every off-diagonal ele-
ment Ali, j],abs (Afi, jI) < (rho/n) X norml, where norml is a
function only of the off-diagonal elements of the original matrix;

begin real norml, norm2, thr, mu, omega, sint, cost, intl, v1,
v2, v3;
integer i, , p, ¢, ind;
comment Set array S = n X n identity matrix;
for i := 1 step 1 until n do

208 Communications of the ACM

for j 1= 1 step 1 until i do
if i =] thea S, j] := 1.0
else Bli, j1 := 8, i} := 0.0;
commeni Calculate initial norm (norml), final norm {norm2),
and threshold (thr);
mtl = 0.0,
for i :=2 step 1 until n do

for | := step 1 until i—1 do
intl = intl + 2.0 X Al jI T 2;
norml := sqrt (intl); norm2 := (rho/n) X normli;
thr := norml; ind := 0;
main: thr := thr/n;

comment The sweep through the off-diagonal elements be-
gins here;
mainl: for q := 2 step 1 until n do
for p := 1 step 1 until g—1 do
if abs (Alp, ql) 2 thr then
begin ind := 1; vl := Alp, pl; v2:= Alp, q};
v3 1= Alqg, q]; mu := 0.5 X (vl—v3);
omega := (if mu = 0.0 then 1 else sign (mu)) X
(—v2)/sqrt(v272 + mul2);
sint := omega/sqrt(2.0 X (1.0 4+ sqrt(1.0 —

omegal2})});
cost := sqrt (1.0 — sint12);
for i := | step 1 until n do

begin intl := A[i, p] X eost — Ai, q] X sint;
Afi, q] := A[, p] X sint + A, q] X cost;
Ali, p] := intl;
intl := Sfi, p] X cost — Sli, q] X sint;
S{i, ql := S[i, p] X sint 4+ S[i, q] X cost;
S, p] := intl
end;
for i := step 1 until n do
begin Alp,i] := Afi, p}; Alg,i] := Afligq] end;
Alp, p] := vl X cost?2 4+ v3 X sint{2 — 2.0 X
v2 X sint X cost;
Alg, q] = vl X sint]2 + v3 X costl2 4 2.6 X
v2 X sint X cost;
Alp, q] := Alq, p] := (vl — v3) X sint X cost +
v2 X (eost2 — sint]2)
end;
comment Now test to see if current tolerance exceeded and,
if not, whether final tolerance reached;
if ind = 1 then begin ind := 0; go to mainl end
else if thr > norm2 then go to main
end JACOBI

]

ALGORITHM 86

PERMUTE -

J. E. L. Prcx anp G. F. ScHRACK

University of Alberta, Calgary, Alberta, Canada

procedure PERMUTE (x, n);

array X; integer n;

comment Each call of PERMUTE executes a permutation of
the first n components of x. It assumes a nonlocal Boolean
variable ‘first’, which when true causes the procedure to initial-
ise the signature vector p. Thereafter “first’ remains false until
after n! calls;

begin own integer array p[2:n]; integer i, k;
if first then
begin for i := 2 step 1 until n do

pli] :=1i; first := false

end initialise;
for k := 2 step 1 until n do

begin integer ki real t
kier= k- 1y
§

Patep 1 antil km de
c=ox{iH10;

xik] pik] = plk] — 1:
if pik]) then go to EXIT;
ikl =k
end k;
first = true;

BEXTIT: end PERMUTTE

ALGORITIIM 87
PERMUTATION G
Jou~x R. Howrnn
Orlando Aerospace
Orlando, Florida

procedure PERMUTATION (N, K

value K, N; integer K

comment This procedure generates the next permutation in
lexicographic order from a given pmmm.ni(m of the K marks
0,1, -+, (K=1) by the repeated addition of (K~ 1) radix K.
The radix K arithmetic is simulated by the addition of 9 radix
10 and & test to determine if the sum consists of only the original
K digits. Before each entry into the procedure the K marks
are assumed to have been previously specified either by input
data or as the result of a previous entry. Upon each such entry o
new permutation is stored in N{1} through N[KL In case the
given permutation iy (K—1), (K—2), -+, 1, 0, then the next
permutation is taken to be 0, 1, -, (K — 1). A Forrrax
subroutine for the [BM 7090 has been written and tested for
several examples;

begin integer i, j, carry;

ENERATOR

Division, Martin Manetta Corp.,

integer array N

for i := 1 step | until K do
if N[i] — K 4 i 2 0 then go to add;
fori = 1 step 1 until K do N[i] 1= i — 1;

go to exit;
add: NI[K} = N{K| -+ 9;
fori := I step 1 until K—~1 do
begin if K > 10 then go to B;

carry = N[{K—i+1]+10; go to C;
B: carry 1= N{K~i+41]+K;
C: if carry = 0 then go to test;

N{K =i} ;= N[K—i] 4 carry;
N{K i1} 1= NK=i+1] — 10 X earry
end i;
test: for i := 1 step | until K do if N[i] — (K — 1) >0
then go vo add;
for i ;= | step | until K~1 do
for j = i-+1 step | until K do
if N[i]—Nlj] = 0 then go to add;
exit: end PERMUTATION GENERATOR

CERTIFICATION OF ALGORITHM 35
SIEVE (T. C. Wood, Comm. ACM, March 1961)
P. J. Browx

University of North Carolina, Chapel Hill, N. C.

SIEVE was transliterated into GAT for the Usivac 1105
and successfully run for a number of cases.

The statement:

go to if n/pli] = n + pli] then bl else b2;
was changed to the statement:

go to if n/pli] — n + pli] < .5/Nmax then bl else b2;
Roundoff error might lead to the former giving undesired unultm

CERTIFICATION OF ALGORITHM 71

PERMUTATION (R. R. Coveyou and J.
Comm. AC3, Nov, 1961)

P J. Browx

University of North Caroling, Chapel Hill,

G, Sullivan,

N. (L
PERMUTATION was translitersted into GAT for the Usi-

vae 1103 and suecessfully run for a8 number of cases,

CERTIFICATION OF ALGORITHM 71

PERMUTATION (R, R. Coveyvou and J. G

Comm. AC3], Nov, 196D
JoED L Prex avo G P Sesrack
University of Alberta, Calgary, Alberta, Canada

PERMUTATION was translated into Forreay for the 1BM
1620 and it performed satisfactorily, The oewn integer arvay
x[0:m} may be shortened to x{n], provided corresponding cor-
rections are made in the first fwo for statements.

However, PERMUTE (Algorithm 86) is superior to PERMU-
TATION in two respeets,

() PERMUTATION, using storage of order 2n, is designed to
permute the specific veetor 0, 1, 2, -+, n ~ 1 rather than an
arbitrary vector, Thus storage of order 3n is required to permute
an arbitrary veetor. PERMUTE, in contrast, ouly needs storage
of order 26 to permute an arbitrary veector.

(2) PERMUTE is built up from eyclic permutations. The
number of permutations actually executed internslly (the re-
dundant ones are suppressed) by PERMUTE is asymptotic to
{e — Dn! rather than nl. In spite of this, PERMUTE ix dis-
tinetly faster (1316 against 2823 seconds for n = 8) than PERMU-
TATION. If t, is the time taken for all permutations of a vector
with n components, and if r, = t./nt.., then one would expect
rn to be close to 1, Experiment with small values of n gave the
following results for vy .

Sullivan,

1 6 &
PERMUTE 0.96 1.00
PERMUTATION 1.10 1.13 112

Is there vet a faster way to do it?

See also: C. Tompkins, “Machine Attacks on Problems whose
Variables are Permutations”, Proceedings of Symposia in Applied
Muathematics, Vol. VI: Numerical Analysis (N. Y., MeGraw-Hill,
1956).

The Calculation of Easter...
By Donald Knuth

California Institute of Technology, Pasadena, California
Here are two programs, written to demonstrate ALGoL
and CoroL. Object: to determine the month and day of
Faster, given the year. The Aveon program (1) is written
as a procedure, which sets up “month” and “day” given
the value of “year.” The Coson program (2) prepares a
printed table of BEaster date, from 300 to 4999 A.D.

n

procedure Easter (year, month, day); value year; integer
year, month, day;

comment Thiz procedure calculates the day and month of
Baster given the year. It gives the actual date of “Western
Faster” {(not the Eastern Easter of the Eastern Orthodox
churches) after A. 1. 463, “golden number” is the nurber of the
vear in the Metonic cycle, used to deterraine the position of the
calendar moon. “Giregorian correction’ is the number of preced-
ing vears like 1700, 1800, 1900 when leap year was not held,

“Clavian correction’’ is a correction for the Metonic eycle of about

Communications of the ACM 209

