EXIT: end PERMUTE

ORITEHN 87
AMUTATION GENFRATOR
. HoweLL

VLG
PR
Jonx
tirlando Acrospace

Orlando, Florida
procedure PERMUTATION (N, K;
value N, N

Division, Martin Marietta Corp.,

integer I; integer array N;

comment This procedure generates the next permutation in
texicographic order from a given permutation of the K marks
0,1, ---, {K=1) by the repeatced addition of {K—1; radix K.
The radix K arithmetic is simulated by the addition of 9 radix
10 and a test to determine if the sum consists of only the original
I digits. Before each entry into the procedure the I marks
are assumed to have been previously specified either by input
data or as the result of a previous entry. Upon each such entry a
new permutation is stored in N[1} through N{K}. In case the
given permutation s (K—13, (K—2i, -+ | 1, 0, then the next
permutation iz taken to be 0, 1, .-+, (K — }). A Forrrax
subroutine for the IBM 7090 has been written and tested for
several examples;

begin integer 1, j. carry;
for i := 1 step | uatil K do

if Niil — K + 1 # 0 then go to add;
fori:= | step | until K do N{i] :=1 — 1;
go to ()f\'it-;

add: NIK) 1= NIK! + 9;

for i := | step | until K—1 do
begin if K > 10 then go to B3
carry = N[K—i+1{+10; go to C;
B: carry = N[K~i+1!+K;
(O3 if carry = 0 then go o test;
NiK—i] := N{K—1} ~+ carry;
NiK—i-+1] = NIK—i+1] —10 X carry
end i;
test: for 1= | step 1 until K do if N[il — (K — 1) >0
then go to add;
for i := 1 step 1 until K—1 do
for j := i+1 step [until K do

if N{i]—=Nlj] = 0 then go to add;
exit: end PERMUTATION GENERATOR

CERTIFICATION OF ALGORITHM 35
SIEVE (T. €0 Wood, Comm, ACIT, March 1961)
. J. Browy
University of North Carolina, Chapel Hill, N. C.
SIEVE was transliterated into GAT for the Uxsivac 1105
and suecesstully run for a number of cases.
The statement:
go to if n/plil = n + pfi] then bl else b2;
was changed to the statement:
go to if n/pli] — n + plil < .53/Nmax then bl else b2;
Roundoff error might lead to the former giving undesired results.

CERTIFICATION OF ALGORITHM 71

PERMUTATION (R. R. Coveyou and J. G. Sullivan,
Comm., ACH, Nov. 1961)

P.J. Browy

Uutversity of North Carolina, Chapel Hill, N. C.

PERMUTATION was transliterated into GAT for the Uxt-
vae 1103 and successtully run for a number of cases.

CERTIFICATION OF ALGORITHM 71

PERMUTATION (R, R. Coveyou and J. G. Sullivan,
Comm. ACJI, Nov. 1961)

Jo B L Peek axo G F. Scarack

University of Alberta, Calgary, Alberta, Canada

PERMUTATION was translated into Forrrax for the IBM
1620 and it performed satisfactorily. The own integer array
xilmi may be shortened to x[l:n}, provided corresponding cor-
rections ave made in the first two for statements,

However, PERMUTE (Algorithm 86) is superior to PERMU-
TATION in two respects,

(1) PERMUTATION, using storage of order 2n, is designed to
permute the specific vector 0, 1, 2, --- , n — 1 rather than an
arbitrary vector. Thus storage of order 3n is required to permute
an arbitrary vector., PERMUTE, in contrast, only needs storage
of order 2n to permute an arbitrary vector,

(2 PERMUTE is built up from eyclic permutlations. The
number of permutations actually executed internally (the re-
dundant ones are suppressed) by PERMUTE is asymptotic to
(e — n! rather than n!. In spite of this, PERMUTE is dis-
tinetly faster (1316 against 2823 seconds forn = 8) than PERMU-
TATION. If t, is the time taken for all permutations of a vector
with n components, and if ry = t,/nty1, then one would expect
ruy to be close to 1. Experiment with small values of n gave the
following results for ry, .

n 6 7 8
PERMUTE 0.96 0.99 1.00
PERMUTATION 1.10 1.13 1.12

Is there yet a faster way to do it?

See also: C. Tompkins, “Machine Attacks on Problems whose
Variables are Permutations’’, Proceedings of Symposia in Applied
Mathematics, Vol. VI: Numerical Analysis (N. Y., McGraw-Hill,
1956).

The Calculation of Easter...
By Donald Knuth

California Institute of Technology, Pasadena, California

Here are two programs, written to demonstrate AvcowL
and Cosor. Object: to determine the month and day of
TFaster, given the year. The ArcoL program (1) is written
as a procedure, which sets up “month” and “day” given
the value of “year.” The CopoL program (2) prepares a
printed table of Faster date, from 500 to 4999 A.D.

{1
procedure Easter (year, month, day); value year;
vear, month, day;
comment This procedure calculates the day and month of

Easter given the vear. It gives the actual date of “Western

Easter’” (not the Eastern Iaster of the Eastern Orthodox

churches) after A.D. 463. “golden number’’ is the number of the

vear in the Metonic cyele, used to determine the position of the
calendar moon. “Gregorian correction’ is the number of preced-
ing vears like 1700, 1800, 1900 when leap year was not held,

“Clavian correction’ is a correction for the Metonic eycle of about

integer

Communications of the ACM 209

8 days every 2500 years. ‘“epact’’ is the age of the calendar moon
at the begnning of the year. “‘extra days’’ specifies when Sunday
oceurs in March. “epact’’ specifies, when full moon occurs. Baster
is the first Sunday following the first full moon which oceurs
on or after March 21. Reference: A. De Morgan, A Budget of
Paradoxes;

begin integer golden number, century, CGregorian correction,
Clavian correction, extra days, epact;

integer procedure mod (a, b); value a, b;
mod := a — b X (a + b);

integer a, b;

golden number := mod (vear, 19) 4+ 1; if year £ 1582 then go
to Julian;
Gregorian: century := year + 100 + 1;
Gregorian correction := (3 X century) + 4 — 12;
Clavian correction := (century ~ 16 — (century — 18) =+ 25)
+ 3;

extra days := (5 X year) + 4 — Gregorian correction — 10;
epact := mod (11 X golden number 4+ 20 + Clavian correc-
tion — Gregorian correction, 30);
if epact = 0 then epact := epact + 30;
if (epact = 25 A golden number > 11) V/ epact = 24 then
epact := epact + 1;
go to ending routine;
Julian: extra days := (5 X year) + 4;
golden number —4, 30) + 1;
ending routine: day := 44 — epact;
day -+ 30;
day := day + 7 — mod (extra days + day, 7);
if day > 31 then begin month := 4; day := day — 31 end
else month := 3 end Easter

@)
000100 IDENTITICATION DIVISION.
000200 PROGRAM-ID. DATE OF EASTER.
000300 AUTHOR. D E KNUTH.
000400 DATE-WRITTEN. JANUARY 22, 1962.
000500 DATE-COMPILED. JANUARY 23, 1962,
000600 ENVIRONMENT DIVISION.
000700 CONFIGURATION SECTION.
000800 SOURCE-COMPUTER. COBOLIAC.
000900 OBJECT-COMPUTER. COBOLIAC-2, PRINTER.
001000 SPECIAL-NAMES.
001100 PRINTER-OVERFLOW I8 SKIP-TO-NEXT-PAGE.
001200 INPUT-OUTPUT SECTION.
001300 FILE-CONTROL.
001400 SELECT ANSWER-TABLE, ASSIGN TO PRINTER.
001500 DATA DIVISION.
001600 FILE SECTION.
001700 FI» ANSWER-TABLE; LABEL RECORDS ARE STANDARD; DATA
RECORD IS EASTER-DATES.

epact := mod (11 X

if day < 21 then day :=

001860 0 EASTER-DATES.

001900 02 EASTER-DAY; OCCURS ¢ TIMES.

002000 03 MONTH; SIZE I8 5 ALPHABETIC DISPLAY
CHARACTERS,

002100 03 FILLER; SIZE IS | CHARACTERS.

002200 03 DAYS; PICTURE IS 79,.

002300 03 YEARS; PICTURE IS 7Z7999.

002400 03 FILLER; SIZE IS 6 CHARACTERS,

002500 WORKING-8TORAGE SECTION.

002600 77 TEMP; SIZE 6 NUMERIC COMPUTATIONAL.

002700 77 TEMP-1; SIZE 6 NUMERIC COMPUTATIONAL.

002800 77 BASE-YEAR; SIZE 4 NUMERIC COMPUTATIONAL.

002000 77 LINE; SIZE 2 NUMERIC COMPUTATIONAL.

003000 77 COLUMN; SIZE 1 NUMERIC COMPUTATIONAL.

003100 77 COLUMN-YEAR; SIZE 4 NUMERIC COMPUTATIONAL.

003200 77 YEAR; SIZE 4 NUMERIC COMPUTATIONAL.

003300 77 GOLDEN-NUMBER; SIZE 2 NUMERIC COMPUTATIONAL.,

003400 77 CENTURY; SIZE 2 NUMERIC COMPUTATIONAL.

003500 77 GREGORIAN-CORRECTION; SIZE 2 NUMERIC
COMPUTATIONAL.

003600 77 CLAVIAN-CORRECTION; SIZE 2 NUMERIC
COMPUTATIONAL.

003700 77 EXTRA-DAYS; SIZE 4 NUMERIC COMPUTATIONAL.

003800 77 EPACT; SIZE 2 NUMERIC COMPUTATIONAL.

003900 77 DAY, SIZE 2 NUMERIC COMPUTATIONAL.

004000 PROCEDURE DIVISION.
00400t CONTROIL SECTION.
004002 OUTER-LQOOP.

210 Communications of the ACM

004100 OPEN OUTPUT ANSWER-TABLE,

004200 PERIFORM MIDDLE-LOOP VARYING BASE-YEAR FROM 500
BY 300

004300 UNTIL BASE-YEAR EQUALS 5000.

004400 STOP RUN.

004500 MIDDLE-LOOP.

004600 PERTORM INNER-LOOP VARYING LINE FROM 0 BY 1
UNTIL LINE EQUALS 50.

004700 INNER-LOOP.

004800 PERFORM COMPUTATION VARYING COLUMN FROM |
BY 1| UNTIL COLUMN

004900 EXCEEDS 6. IF LINE IS NOT EQUAL TO 49, WRITE
EASTER-DATES;

005000 OTHERWISE WRITE EASTER-DATES BEFORE

SKIP-TO-NEXT-PAGE,
005100 COMPUTATION SECTION,
005200 FIND-YEAR.

005300 MULTIPLY COLUMN BY 50 GIVING COLUMN-YEAR; ADD
COLUMN-YEAR,
005406 BASE-YEAR, LINE, AND ~50 GIVING YEAR,

005500 FIND-GOLDEN-NUMBER.

005600 DIVIDE 19 INTO YEAR GIVING TEMP; MULTIPLY 19 BY
TEMP;

005700 SUBTRACT TEMP FROM YEAR GIVING
GOLDEN-NUMBER THEN

005800 ADD 1 TO GOLDEN-NUMBER.

005900 I YEAR IS LESS THAN 1583 GO TO JULIAN.

006000 GREGORIAN.

006100 DIVIDE 100 INTO YEAR GIVING CENTURY; ADD 1 TO
CENTURY.

006200 MULTIPLY CENTURY BY 3 GIVING TEMP; DIVIDE 4
INTO TEMP;

006300 SUBTRACT 12 FROM TEMP GIVING
GREGORIAN-CORRECTION.

006400 SUBTRACT 18 FROM CENTURY GIVING TEMP; DIVIDLE
25 INTO TEMP;

006500 SUBTRACT TEMP AND 16 FROM CENTURY GIVING
TEMP;

006600 DIVIDE 3 INTO TEMP GIVING CLAVIAN-CORRECTION.

006700 MULTIPLY YEAR BY 5 GIVING TEMP; DIVIDE 4 INTO
TEMP;

006800 SUBTRACT 10 AND GREGORIAN-CORRECTION FROM

TEMP GIVING EXTRA-DAYS.
006900 FUDGE-EPACT.

007000 MULTIPLY GOLDEN-NUMBER BY Il GIVING TEMP;
SUBTRACT

007100 GREGORIAN-CORRECTION FROM TEMP; ADD 19,
CLAVIAN-CORRECTION, TEMP;

007200 DIVIDE 30 INTO TEMP GIVING TEMP-1; MULTIPLY 30
BY TEMP-1;

007300 SUBTRACT TEMP-1 FROM TEMP; ADD TEMP, 1 GIVING
EPACT.

007400 IF EPACT EQUALS 24 OR 25 AND GOLDEN-NUMBER IS
GREATER THAN I1)

007500 ADD 1 TO EPACT.

007600 GO TO ENDING-ROUTINE,

007700 JULIAN.

007800 MULTIPLY YEAR BY 5 GIVING TEMP; DIVIDE 4 INTO
TEMP GIVING EXTRA-DAYS.

007900 MULTIPLY GOLDEN-NUMBER BY 11 GIVING TEMP;
SUBTRACT 4 FROM TEMP;

008000 DIVIDE 30 INTO TEMP GIVING TEMP-1; MULTIPLY 30
RY TEMP-1; .

008100 SUBTRACT TEMP-1 FROM TEMP; ADD TEMP AND 1

GIVING EPACT.
008200 ENDING-ROUTINE.

008300 SUBTRACT EPACT FROM 44 GIVING DAY; IF DAY I8
LESS THAN 21 ADD
008400 30 TO DAY.

008500 MAKE-DAY-SUNDAY.

008600 ADD DAY, EXTRA-DAYS GIVING TEMP; DIVIDE 7 INTO
TEMP GIVING TEMP-1;

008700 MULTIPLY 7 BY TEMP-1; SUBTRACT TEMP-1 FROM TEMP;

008800 SUBTRACT TEMP FROM 7 GIVING TEMP; ADD TEMP TO

DAY.
008900 TRANSTFER-ANSWER.

009000 IF DAY EXCEEDS 31 THEN SUBTRACT 31 FROM DAY;

009100 MOVE “APRIL” TO MONTH(COLUMN); OTHERWISE
MOVE “MARCH” TO MONTH(COLUMN).

009200 MOVE DAY TO DAYS(COLUMN); MOVE YEAR TO

YEARS(COLUMN).

Note. Each line of the COBOL algorithm sbove which has a blank sequence
number represents a continuation of the preceding line. In the standard COBOL
reference format these two lines would actually be punched onto a single card.
They are broken into two parts here for typographical reasons only.

