ALGORITHM 8%

EVALUATION OF ASYMPTOTIC EXPRESSION
FOR THE FRESNEL SINE AND COSINE INTE-
GRALS

Jou~ L. Coxpirr

Engincering FExperiment Stafion, Georgia Institute of

Technology, Atlanta, Ga.

real procedure FRESNEL (ui Hesult: value

(uj;

(freos, fesing;

comment This procedure evaluates the Fresnel sine and cosine

integruls for large « by expanding the anvimptotic series given
by

S0 1 cos ())
) == o e s
2 \/er

and

o = & 13 1357

Aud o= — N el - -
) 2 (2030 (er

in whichr = m1u2/2. Reference: Pearcey, T, Table of the FFresnel

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (sce Communications, May 19607,
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, . C. Algorithms should be in the Reference
form of ALGOL 60 and writien in a style patterned after the
most recent algorithms appearing in this department. For
the convenience of the printer, please underline words that
are delimiters to appear in boldface type.

Although each algorithm has been tested by its contrib-
utor, no warranty, expressed or implied, is made by the con-
tributor, the editor, or the Association for Computing
Machinery as to the accurney and functioning of the algo-
rithm and related algorithm wmaterial, and no responsi-
bility is assumed by the contributor, the editor, or the
association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

280 Communiecations of the ACM

H.J. WEGSTEIN, Editor

Integral to Six Decimal Places. The Syudies of the Cuambridge

University Press, Melbourne, Australia (1956

; p = : . = 1
begin ploi= 3014159265, arg 1= ;i X T2:/2; temp =
argsy o= (1 X farg 23 term = —3 X argsq;
serfes 1= | 4 termy; D
first: if temp = series then go to second; temp = senes;

termi c= term;
term = —terml X G XN — T3 X UXN — 55 X fargsgs:
if abs{term) > abs{termi; then go to second;

N+ 1;

c= () lerm := series2;

series = temp + term; N go Lo first:

r= 1 X arg; temp

secoud: series:
N =2
if series2 = temp then go lo exit; termi = term;
tertn o= —termi X argsq X @XN=5) X XN -3;
if ubs(term; > abs(termi; then go to exit;

loop:

temp = series?; series2 = temp - term;
N := N 4 1; go to loop;

exit: if U < 0 then half ;= —} else half = 3;
freos s= half + (sinfarg) X series — cos(arg) + serie
(pi X uy;)
frsin = half — (cos{arg) X series2 - sin{arg) X series;.
(pi X u:

end FRESNEL;

ALGORITHAM &89

EVALUATION OF THE FRESNEL SINE INTEGRAL
Joux L. CuNpiry

Engineering Fxperiment Station, Georgia Institute of

Technology, Atlanta, Ga.
real procedure FRESNELSIN {u) Result: (frsini; value u;
comment This wlgorithm computes the Fresnel siue integral
defined by,

where = = wu?/2. Reference: Pearcey, T. Table of the
Fresnel Integral to Six Decimal Places. The Syndies of the
Cambridge University Press, Melbourne, Australia (1956).;
begin Pi2 = 1.5707963; x := Pi2 x {ui2); frsin := 3;
frsqr X N = 3; term := (—x X frsqr}/0;
frsini := frsin + term/7;

Loop: if frsin = f{rsini then go to exit; frsin := frsini;
term := —term X frsqr/(2XN—1) X 2XN-2));
frsini := frsin 4+ term/(dXN—-1); N = N + 1;
go to Loop;

exit: frsin := frsini X u

end FRESNELSIN;

ALGORITHAL 96

EVALUATION OF TIIE FRESNEL COSINE INTE-
GRAL

Joux L. Cuxprrr

lingineering Experiment Station, Georgia Institute of
Technology, Atlanta, Ga.

real procedure FRESNELCOS (u) result: {freos); value (u;

This algorithm computes the Fresnel cosine integral

defined by

contment

. on 7 z! @
Clw) = 4/ =211 — 4 =T e |
V- [52 94 136l]

where z = 7ru?/2. Reference: Pearcey, T. Table of the Fresnel
Integral to Stz Decimal Places. The Syndies of the Cambridge
University Press, Melbourne, Australia (1956).;

begin pi2 := 1.5707963; x := pi2 X (uf2); freos := 1,
xsqr := x7T2; N := 3; term := —xsqr/2;
treoi := 1 -+ (term/5);

loop: if frcoi = frcos then go to exit; term := —term X
xsqr/{(2XN -2 X (2XN-3)); frcos := freoi; freoi :=
frcos 4+ term/(4XN-3); N := N + 1; go to loop;

exits: freos := u X freos

end FRESNELCOS;

ALGORITHM 91

CHEBYSHEY CURVE-FIT

ALBERT NEWHOUSE

University of Houston, Houston, Texas

procedure CHEBFIT (in, n, X,Y); integer m, n; arrayX,Y;
comment This procedure fits the tabular funetion ¥ (X) (given
as m points (X, ¥)) by a polynomial P = Y. 4; X¢. This
=0
polynomial is the best polynomial approximation of Y (X) in
the Chebyshev sense. Reference: StiEreL, K. Nwmerical
Methods of Tchebycheff Approximation, C. of Wise. Press (1959),
217-232;
begin array X{l:m], Y[l:mj, T{l:m], A[0:n], AX[{ln+2],
AY[1:n+2], AH[1:n+2], BY[1:n+42}, BH[1:n+2];
integer array IN [1:n+2]; real TMAX, H; integer i,
j, k, imax;
comment Initialize;
k:= (m—1)/(n+1);
for 1 := 1 step 1 until n+1 do IN fi] := —1)Xk + 1;
IN[n+2] := m;
START: comment Iteration begins;
for i := 1 step 1 until n4+2 do
begin AX[i] := X[IN[i]};
AY] = Y[IN[]];
AH := (-1 T (1-1)
end i;

DIFFERENCE: comment divided differences;

for 1 := 2 step ! until n+2 do
begin
for] := i—1 step 1 until n+42 do

begin BY[j] := AY][j];
BHIj| := AHfj]
end };

for } := 1step | until n+2 do
begin AY[j] := (BY[j] —=BY[j—1])/
(AX[j] —AX[j—i4+1D;
AH[j} = {BH[j] —BH{j—1])/
(AX[j] —AX[j—i+1D

end j;
end 1;
H := —AY[n+2]/AH[n+2];
POLY: ecomment polynomial coefficients;

for i := 0 step 1 until n do

begin A[i] := AY[| +AH[i] XH;

BYi{i) := 0

end i;
BY{1] := 1; TMAX := abs(H); imax := IN{l};
for 1 := 1 step 1 until u do

begin

for) := 0 step 1 until i—1 do

begin
BY[i+1—j] := BY[i+1—j] —BY[i—j] X X[IN[i]];
Al == AT +AL XBY[i+1—]j]
end jf;
end i;
ERROR: comment compute deviations;
fori := 1 step 1 until m do
begin T[i] := Aln};
for j := O step 1 until n do T[i] := T{i] X[i] +An—j];
T{] := Th] - Y[iJ;
if abs(T[i]) € TMAX then go to Li;
TMAX = abs(TR]);

imax := i
L1: end i;
fori := 1 step 1 until n42 do
begin

if imax < IN[i] then go to L2;
if imax = IN{i] then go to FIT end
end i;
L2: if Tlimax] X T[IN[i]] < 0 then go to L3;
IN[i] := imax;
go to START;
L3: if IN]l] < imax then go to L4;
fori := I step | until n+1 do IN[n+3—i] := IN[n+2~iJ;
IN[i] := imax;
go to START;
L4: if IN[n+2] < imax then go to L3;
IN{i—2] := imax;
go to START;
L5: fori := 1step 1 until n+1 do IN[i] := IN[i41];
IN[n+2] := imax;
go to START;
FIT: end CHEBFIT

CERTIFICATION OF ALGORITHM 60

ROMBERG INTEGRATION (. L. Bauer,
ACM, June 1961)

Karr Herxz BucHNER

Lurgi Gesellschaft fur Mineraloltechnik m.b.H., Frank-
furt, Germany

Comm.

Since August 1961, the Rombert Integration has been success-
fully applied in ForTrRaN language to various problems on an
IBM 1620. Due to its elegant method and the memory saving
features, the Romberg Integration has succeeded other methods
in our program library, e.g., the Newton-Cotes integration of
order 10.

Reference is made to Stiefel, Numerische Mathermatik (Teubner
Verlag. Stuttgart). Stiefel discusses in his book various methods
of numerical integration including the Romberg algorithm.

{ALGORITHMS ARE CONTINUED ON PAGE 286]

Communications of the ACM 281

Observations and Conelusions

The following observations and inferences are hased on
the initial experiences with a multiprogramming system:

1. It has been possible to make a significant improve-
ment in the utilization of the main-frame time of the
computer with large classes of real problems running at
Lewis Research Center.

2. The interrupt feature is the basic tool that permits
the automatic time sharing of independently coded and
unrelated problems.

3. A cloek that interrupts periodically would be a
highly desirable tool to be used in the management of
more general multiprogramming systems. Such a eclock
would be useful in preventing a “looping” problem from
“hogging” the computer, as well as for running-time
accounting.

4. Multiprogramming provides the incentive for more
efficient problem and system codes by removing the
output barrier. Previously, there was little motivation
to prepare efficient codes in output-limited problems,
since there was little advantage to be gained. The multi-
programming system has provided a method of exploiting
such gains and has produced pressure for more efficient
codes.

3. Operator attention to the input-output devices,
such as a tape change, no longer need delay the computer.
The computer can push ahead any problem that is not
using the device undergoing the change.

6. Multiprogramming seems to develop a trend to-
wards splintering of problems and their input-output
tasks. This appears to have two advantages for multi-
programming in computers of limited store and input
devices. First, it provides a much better opportunity to
obtain a feasible mix of problems in the high-speed
memory. Splintering of problems or data-reduction tasks
will increase the possibility of getting compatible prob-
lems for a parallel-operation schedule.

7. Scheduling of parallel problems could be facilitated
by an inexpensive procedure for code relocation. It would
be desirable to relocate the codes of a current problem in
the high-speed memory without more than a nominal
delay in computation.

8. On-line debugging of problems is costly of computer
time and an inefficient use of computer capabilities.
However, from an individual problem standpoint, it is
often an effective method of debugging. Parallel operation
during on-line debugging, if it could be made safe, may
reduce the cost of on-line debugging to a point where it
is feasible.

REFERENCE

1. Terxer, L. R., axp Rawiinags, J. H. Realization of randomly
timed computer input and output by means of an interrupt
feature. IRE Trans. EC-?7, no. 2 (June 1958), 141-149.

286 Communications of the ACM

ALGORITHMS ~ Continved
ALGORITHM 92
SIMULTANEOUS SYSTEM OF EQUATIONS AN1s
MATRIX INVERSION ROUTINE
Derex Jonaxx Roex
Applied Physies Laboratory of Johns Hopkins Universics-
Silver Spring, Marvland o

procedure SIMULTANEOUS (U, W, C, X, B, n, kount. eyhu
absf; C

array U, W, C, X, B ; integer n, kount
real eps; real procedure absf;

comment This procedure solves the problem Ux := b for ihe
veetor x. It assumes the problem written in the form x'U7 = a7
where ’ denotes transpose. The procedure is completed in i,
cycles and may be iterated kount times (kount £ 6). The trap«.
pose of U is in U{,] and the row vector b’ is in B. The integer n
is the dimension of U, and the solution row vector x’ iz in N.
The matrix C is a check of accuracy. It should have b’ in i:x
first row, the first element b, of b’ along its main diagonai,
and zeros elsewhere. The real number eps checks to see how: ¢lose
the actual result is to this theoretical one. Also if we let b’ =
(1, 0, .-+, 0), then this procedure finds the inverse W/[,] of .
The function absf finds the absolute value of its argument. The
procedure chooses the column vectors of U as the row vectors of
W in the 0*b cycle of the first iteration. For all subsequent iters -
tions, the row vectors of W, computed at the nt cyele of the
last iteration, are the row vectors of W in the 0% cycle

begin integer 1, j, k, p ; real bh, bl, 7% ;

for j := 1 step | until n do
for i := | step 1| until n do W{j, i] := Ui, j};
Sl: for j := I step 1 until n do

fori:= 1 step 1 until n do Cli, jl := 0;
for j := 1 step 1 until n do
begin for k := 1 step 1 until n do
begin C{j, }] := Clj, j] + W(j, ki X Ulk, j] end;
ifj = 1 then Z := B[jI/C[j, j| else Z := 1/C[j, jl;
for k := 1 step 1 until n do
begin X[k] := Z X W[j, kJ;
Wi, k] := X[k]
end k;
for k := 1step 1 until n do
begin if k = j then go to S2 else
for p := 1 step 1 until n do
Clk, j] := Clk, jl + Ulp, jl X Wik, pi;
if j = 1 then bh := B[j] else bh := 1;
if k = 1 then bl := Blj] else bl := 0;
for p := 1 step 1 until n do
begin X[p] := bh X W[k, p] + (bl — C[k, jI» X

Wi, pj;
Wik, p] := X{p]
end p;
S2: ifk = j Aj = n then go to 83
end k;
end j;

$3: for j := step 1 until n do
if absf (absf (C[j, j]) — absf(B{1])) > eps then go to Si:

go Lo S6;
$4: if kount > 0 then go to 55 else go to S6;
85: kount := kount — 1;

go to S1;

86: for j := step 1 until n do
X[o= WL, jJ;
87: end SIMULTANEOUS

