Observations and Conelusions

The following observations and inferences are hased on
the initial experiences with a multiprogramming system:

1. It has been possible to make a significant improve-
ment in the utilization of the main-frame time of the
computer with large classes of real problems running at
Lewis Research Center.

2. The interrupt feature is the basic tool that permits
the automatic time sharing of independently coded and
unrelated problems.

3. A cloek that interrupts periodically would be a
highly desirable tool to be used in the management of
more general multiprogramming systems. Such a eclock
would be useful in preventing a “looping” problem from
“hogging” the computer, as well as for running-time
accounting.

4. Multiprogramming provides the incentive for more
efficient problem and system codes by removing the
output barrier. Previously, there was little motivation
to prepare efficient codes in output-limited problems,
since there was little advantage to be gained. The multi-
programming system has provided a method of exploiting
such gains and has produced pressure for more efficient
codes.

3. Operator attention to the input-output devices,
such as a tape change, no longer need delay the computer.
The computer can push ahead any problem that is not
using the device undergoing the change.

6. Multiprogramming seems to develop a trend to-
wards splintering of problems and their input-output
tasks. This appears to have two advantages for multi-
programming in computers of limited store and input
devices. First, it provides a much better opportunity to
obtain a feasible mix of problems in the high-speed
memory. Splintering of problems or data-reduction tasks
will increase the possibility of getting compatible prob-
lems for a parallel-operation schedule.

7. Scheduling of parallel problems could be facilitated
by an inexpensive procedure for code relocation. It would
be desirable to relocate the codes of a current problem in
the high-speed memory without more than a nominal
delay in computation.

8. On-line debugging of problems is costly of computer
time and an inefficient use of computer capabilities.
However, from an individual problem standpoint, it is
often an effective method of debugging. Parallel operation
during on-line debugging, if it could be made safe, may
reduce the cost of on-line debugging to a point where it
is feasible.

REFERENCE

1. Terxer, L. R., axp Rawiinags, J. H. Realization of randomly
timed computer input and output by means of an interrupt
feature. IRE Trans. EC-?7, no. 2 (June 1958), 141-149.

286 Communications of the ACM

ALGORITHMS ~ Continved
ALGORITHM 92
SIMULTANEOUS SYSTEM OF EQUATIONS AN1s
MATRIX INVERSION ROUTINE
Derex Jonaxx Roex
Applied Physies Laboratory of Johns Hopkins Universics-
Silver Spring, Marvland o

procedure SIMULTANEOUS (U, W, C, X, B, n, kount. eyhu
absf; C

array U, W, C, X, B ; integer n, kount
real eps; real procedure absf;

comment This procedure solves the problem Ux := b for ihe
veetor x. It assumes the problem written in the form x'U7 = a7
where ’ denotes transpose. The procedure is completed in i,
cycles and may be iterated kount times (kount £ 6). The trap«.
pose of U is in U{,] and the row vector b’ is in B. The integer n
is the dimension of U, and the solution row vector x’ iz in N.
The matrix C is a check of accuracy. It should have b’ in i:x
first row, the first element b, of b’ along its main diagonai,
and zeros elsewhere. The real number eps checks to see how: ¢lose
the actual result is to this theoretical one. Also if we let b’ =
(1, 0, .-+, 0), then this procedure finds the inverse W/[,] of .
The function absf finds the absolute value of its argument. The
procedure chooses the column vectors of U as the row vectors of
W in the 0*b cycle of the first iteration. For all subsequent iters -
tions, the row vectors of W, computed at the nt cyele of the
last iteration, are the row vectors of W in the 0% cycle

begin integer 1, j, k, p ; real bh, bl, 7% ;

for j := 1 step | until n do
for i := | step 1| until n do W{j, i] := Ui, j};
Sl: for j := I step 1 until n do

fori:= 1 step 1 until n do Cli, jl := 0;
for j := 1 step 1 until n do
begin for k := 1 step 1 until n do
begin C{j, }] := Clj, j] + W(j, ki X Ulk, j] end;
ifj = 1 then Z := B[jI/C[j, j| else Z := 1/C[j, jl;
for k := 1 step 1 until n do
begin X[k] := Z X W[j, kJ;
Wi, k] := X[k]
end k;
for k := 1step 1 until n do
begin if k = j then go to S2 else
for p := 1 step 1 until n do
Clk, j] := Clk, jl + Ulp, jl X Wik, pi;
if j = 1 then bh := B[j] else bh := 1;
if k = 1 then bl := Blj] else bl := 0;
for p := 1 step 1 until n do
begin X[p] := bh X W[k, p] + (bl — C[k, jI» X

Wi, pj;
Wik, p] := X{p]
end p;
S2: ifk = j Aj = n then go to 83
end k;
end j;

$3: for j := step 1 until n do
if absf (absf (C[j, j]) — absf(B{1])) > eps then go to Si:

go Lo S6;
$4: if kount > 0 then go to 55 else go to S6;
85: kount := kount — 1;

go to S1;

86: for j := step 1 until n do
X[o= WL, jJ;
87: end SIMULTANEOUS

