```
ALGORITHM 92
SIMULTANEOUS SYSTEM OF EQUATIONS AND
  MATRIX INVERSION ROUTINE
Derek Johann Roek
Applied Physics Laboratory of Johns Hopkins University,
  Silver Spring, Maryland
procedure SIMULTANEOUS (U, W, C, X, B, n, kount, eps,
  absf)
array U, W, C, X, B ; integer n, kount ;
  real eps; real procedure absf;
comment This procedure solves the problem Ux := b for the
  vector x. It assumes the problem written in the form x'U' := b',
  where 'denotes transpose. The procedure is completed in n
  cycles and may be iterated kount times (kount \leq 6). The trans-
  pose of U is in U[,] and the row vector b' is in B. The integer n
  is the dimension of U, and the solution row vector x' is in X.
  The matrix C is a check of accuracy. It should have b' in its
  first row, the first element b<sub>1</sub> of b' along its main diagonal,
  and zeros elsewhere. The real number eps checks to see how close
  the actual result is to this theoretical one. Also if we let \mathbf{b}' :=
  (1, 0, \dots, 0), then this procedure finds the inverse W[,] of U.
  The function absf finds the absolute value of its argument. The
  procedure chooses the column vectors of U as the row vectors of
  W in the 0^{\mathrm{th}} cycle of the first iteration. For all subsequent itera-
  tions, the row vectors of W, computed at the nth cycle of the
  last iteration, are the row vectors of W in the 0^{\mathrm{th}} cycle ;
begin integer i, j, k, p; real bh, b1, Z;
  for j := 1 step 1 until n do
       for i := 1 step 1 until n do W[j, i] := U[i, j];
  S1: for j := 1 step 1 until n do
          for i := 1 step 1 until n do C[i, j] := 0;
   for j := 1 step 1 until n do
       begin for k := 1 step 1 until n do
         \mbox{\bf begin } C[j,\,j] := C[j,\,j] + W[j,\,k] \times U[k,\,j] \mbox{ end;}
         if j = 1 then Z := B[j]/C[j, j] else Z := 1/C[j, j];
         for k := 1 step 1 until n do
             begin X[k] := Z \times W[j, k];
               W[j, k] := X[k]
             end k:
         for k := 1 step 1 until n do
             begin if k = j then go to S2 else
               for p := 1 step 1 until n do
                   C[k, j] := C[k, j] + U[p, j] \times W[k, p];
             if j = 1 then bh := B[j] else bh := 1;
              \textbf{if} \ k = 1 \ \textbf{then} \ b1 := B[\textbf{j}] \ \textbf{else} \ b1 := 0; \\
             for p := 1 step 1 until n do
             \mathbf{begin} \quad X[p] := bh \times W[k, p] + (b1 - C[k, j]) \times
             W[j, p];
               W[k, p] := X[p]
             end p;
              if k = j \wedge j = n then go to S3
   S2:
             end k;
         end j;
   S3: for j := step 1 until n do
            \textbf{if} \ absf(absf(C[j,j]) - absf(B[1])) > eps \, \textbf{then go to} \ S4;
   S4: if kount > 0 then go to S5 else go to S6;
   S5: kount := kount - 1;
         go to S1;
```

S6: for j := step 1 until n do X[j] := W[1, j]; S7: end SIMULTANEOUS