srtant consideration than the

zed polvuncleotides it 1s ditlicult
the pure component nucleotides to
; measure the spectra at known concentra-
tions. The efiect of concentration can be eliminated with
normalization by dividing each point by the vector length,
the area under the curve or the absorbance at a fixed
wavelength (e.g. 26007, The solution of the normalized
misture vector iz then obtained in fractional parts.
This linear programming method which minimizes the
small, nonsystematic, experimental errors leads to a
much improved numerical solution of the chemically
kuown polvnucleotides over the classical least squares
methods. The advantages appear to lie in disallowing
negative solutions and in the choosing of significant points
on which to base the solution while allowing the possibility
of small positive or negative errors to be reflected as slack.

T
I

ACKNOWLEDGMENT

The authors wish to thank Dr. Philip Wolfe of The RAND
Corporation for helpful suggestions as to the formulation of the
1 I 44
problem.

REFERENCES

1. Mewnox, M. G (Ep) Analytical Absorption Spectroscopy,
Ch. 7, 350ff. John Wiley (1930).

2, Sreprxsera J. C., Stroes, H. S, axp Scuwexpemax, R. H.
<pectrophotometric analysis of multi-component systems
using the least squares method in matrix form. Aral. Cher.
32 {1960), 8+-90.

3. R, J. C., axp Pratr, A. W, Vector analysis of ultraviolet
rmixture spectra: the composition of ribonucleic acid. Bio-
chew . Bilophys. Res. Com. 3 (1960), 337-342.

A contribution to this department must be in the form of
an Algorithm, a Certification, or 2 Remark. Contributions
should be sent in duplicate to the Iditor and should be
written in a styvle patterned after recent contributions
appearing in this department. An algorithm must be written
in ALGoL 60 (see Commamications of the ACM, January
1963) and accompanied by a statement to the Editor indicat-
ing that it has been tested and indicating which computer
and programing language was used. For the convenience
of the printer, contributors are requested to double space
material and underline delimiters and logical values that
are to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the Editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the Editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

Algorithms'

J. H. WEGSTEIN, Editor

ALGORITHM 150

SYMINW2

H. RvTiSHATSER

Lidg. Technische Hochschule, Zurich, Switzerland

procedure syminv2{a,n) result: {a) exit: (fail); value n; in-

teger n; array a; label fail;

comment symine2 obtaing inverse of a symmetrie matrix a of
order n by a method which is similar to that given by Busing
and Levy [Comm. ACH 5 (1962), 446] but requires no inter-
changes of rows and columns nor storage space for an ad-
ditional matrix @, vet is numerically equivalent. The pro-
cedure requires the upper triangular part of a to be given and
overwrites it by the upper triangular part of the inverse which
is again denoted by a. All pivots are chosen on the diagonal,
and if all further diagonal elements which are eligible as
pivots vanish (this is impossible for a positive definite matrix
a) then exit through fail oceurs;

begin
real bigajj;
integer ¢, j, k;
real arvay p, ¢ll:nl;
Boolean array r[l:n];

for ¢ := 1 step 1 until n do r[i{] := true;
grand loop:

for i :=1 step 1 until = do

begin

search for pivot:
bigaj; 1= 0;
for j := 1 step | until n do
begin
if #[7] A abs(als,j1) > bigajj then
begin
bigaji := abs(alj,jl);
k=7
end;
end;
if bigaji = 0 then go to fail;
preparation of elimeination step %:
rlk] := false;
glk] = 1/alk k};
plk] =1
alk k] := 0;
for j := 1 step 1 until £—1 do
begin
pljl = alikl;
glil := Gf r[j] then —aljk| else aljk]) X ¢lk];
aljk] =90

end;

for j := k41 step 1 until n do

begin
plil := if 7{j] then alk,j] else —alk,j];
qlil := —alk,s] X qlkl;
alk,j} =0

end;

elimanation proper:
for j := 1 step 1 until n do

Communications of the ACM 67

for & = j step 1 until n do

aljk] = alj k] + plii X qlk
end grand loop

end syminv2

ALGORITHM 151

LOCATION OF A VECTOR IN A LEXICO-
GRAPHICALLY ORDERED LIST

Hexry F. WALTER

United States Steel Corp., Applied Research iaboratory,

Monroeville, Penn.

integer procedure LOCATE (min, n, ¢, ¢, combinatorial);
value v; integer min, n, ¢; integer arrvay v;

b

integer procedure combinatorial;

comment This procedure locates the position, LOCATE, of a

given vector in a list of vectors without searching the list. The
list consists of all the combinations of n consecutive digits taken
d at a time. Min is the smallest of the n integers. Each vector
(combination) is written in ascending order from left to right,
ag, for example, 378 and the vectors are listed lexicographically,
by which is meant, that, considered as d digit numbers, the

vectors are listed in ascending order. For example, with min =

d = 3, and n = 6, the vectors in order are 123, 124 125, 126, 134,
135, ..., 456. Given the vector, v = 356, the procedure locates

this vector as the 19th in the list;
begin integer i, r, mazx, part, whole;

ri=1; v [0] ;= min — 1; max := mn — l+n;
for i := 0 step 1 until ¢c—1 do
begin part :== ¢ — 7 — 1;
ask: if vit+1] — v[Z] > 1 then
begin whole := mazx — v[i] — 1;
r = 7 + combinatorial (whole, part);
eli] = ol + 1
go to ask
end;
end;
locate 1= 1

end;

ALGORITHM 152

NEXCOM

Joux HorrLEY

Peat, Marwick, Mitchell & Co., London, England
procedure nexcom {char, n, setcomplete, nullvector) ;
array char; integer n;

label sefcomplete, nullvector;

comment char is a column vector containing n elements each of
which is either 1 or 0. Nexcom transforms char into another
veetor containing the same number of 1’s and 0’s, but in a
different sequence. Starting with char in the state of having 1
in each of the element positions 1, ..., 7 and zeros elsewhere then
repeated application of nezcom generates all *Cr patterns of
char. The procedure terminates if the presented vector char has
] in each of the positions n, n—1, ... n—r+1 and zeros else-
where. Termination is indicated by exit through the formal label

‘setcomplete’. If char is the null vector then procedure exists

through the formal label ‘nullvector’;
begin integer 7, p, 1;
comment find the first 1 in char;
for n = 1 step I until V do if
char [n]

go to nullvector;

| = 1 then go to 4;

68 Communications of the ACM

comment Low manyv adjacent 1's;

A opo=10

for 7 := n + | step 1 until NV do

if char] = 1 then p = p + 1 else go 1o 5;
comment Have all combinations been generated;

B: it p + n = N then go to selcomplele,

comment Set up next combination; charin-+p+1] = 1
for m = n + p step — 1 until n do char [} = 0);

for m = | step 1 until p do char (m] = 1;

end nexcom;

ALGORITHM 153

GOMORY

F. L. BAUER

Johannes Gutenberg-Universitit, Mainz, Germany

procedure Gomory (a, n, n) result: {(a) exit: {(no solution);
value m, n;
integer m, n;
integer array «;
label no solution;

comment Gomory algorithm for all-integer programming. The
objective of this procedure is to determine the integer solution
of a linear programming problem with integer coeflicients only,
The tableau-matrix a consists of m 4+ 1 rows and = columns,
The top row of a is the objective row, the last column represents
the right-hand sides. The tableau-columns, with the exeception
of the last column, have to be lexicographically positive. The
algorithm is finished if all entries in the last column, except the
top most entry, are nonnegative. Then the top most entry of
the last column represents the value of the objective function.
The other entries of the last column define the coordinates of
the optimal solution. There are always the same variables con-
nected with the same rows. The exit no solution is used if a row
is found which has a negative entry in the last column, but
otherwise only nonnegative entries;

begin integer i, k, j, [, r;

real lambda;
integer array t[l:n—1], ¢[1:n];

1: for ¢ := 1 step | until m do if ali,n] < 0 then
begin r := 7; go to 2 end;
go to end;

2: for k := 1 step 1 until n—1 do if alr,k] < 0 then
go to 4;
go to no solution;

4: l:=k;

for j := k+1 step 1 until n—1 do if alr,;] < 0 then
begin ¢ := 0;
3: ifali,7] < ali,l] then ! ;= j else
if ali,j] = ali,l] then
begin i := t4+1; go to 3 end
end;
for j := 1 step 1 until n—1 do if af[r,;} < 0 then
begin if a[0,/] &= 0 then [j] := entier(a]0,j1/al0,l])
else t[j] :=1
end;
lambda := abs(alr,1]/t{1]);
for j := 2 step 1 until n—1 do if a[r,;1 < 0 then
begin if abs{alr,jl/tlj]) > lambda then
lambda := abs(alr,j1/tlj]) end;
for j := 1 step 1 until n do if j5=! then
begin c[j] := entier(alr,j]|/lambda);
if ¢[5] == 0 then
for i := 0 step 1 until m do aft,j] := alt,j] + clyl X
alil]
end;
go to 1;
end: end;

MUIZTIN - Bon Freeman, Comm. 4CM, Feb. 1961]
Hexwy C. Toamies, Ju*

teactor Fngineermg Div., Argonne National Laboratory,
Argonne, [1L

*Work supported by the U. 8. Atomic Energy Commission.

The procedure was transcribed inte the ACT-TII language for
the LGP-30 computer, and was tested on the integrals:
a1l pl ol
proptoploel o
j { kicos 1 — 7w sin u
s H :
{1) ve vo Jo Jo
— Bu® cos u + wdsin ul dw dz dy dz = sin k

where # = kuwxyz, and

___dedyds
2t 4yt + (2 — k)?

1/1 11+ k|
=al24 (> ~Fk)log——]
(25 () e)

The Avcor procedures for the second integral are:

real procedure Low (jx);

Low = 0;

real procedure Upp{(j,z); comment z==z[3], y=1z[2], z =
z(1);

begin

integer 7; real femp;

temp 1= 1.0;

for ¢ := j—1 step — 1 until 1 do

temp = temp — z{5] X z{5l;

Upp = sqrt{iemp)

end;

real procedure Funev(j,x);

comment The real parameter & is global;

Funev = if j < 3 then 1.0 else 1/(x{1|Xz{1]4+x2]Xz2]4 (x[3]—k)
T2);
The first integral was tested only with s[j] = 1, and with various

Caussian forraulas for integrals over the interval (—1,4+1). Re-

sults were as follows:

k /2 T 3n/2 27
true 1.0000000 0.0000000 —1.0000000 0.0000000
p=2 0.993704 —0.0333603 -+0.020166 6.881490
p =23 1.000032 0.0000848 —1.061651 —0.597419
p=4 0.999999 0.0000001 —0.998407 +0.0027035
p =25 1.000000 —0.0000002 —1.000028 —0.0007857

For the second integral, two values of s = s[1] = s[2] = s[3]
were used, and two values of p. Results were as follows:

k 1/2 2
true 11.46027376 1.10609687
s 1 2 1 2
p=2 5.454460 11.838651 1.0368770 1.1184305
p=3 9.361666 12.408984 1.1343551 1.1094278

The effect of the pole at (0,0,k) is obvious.

For the algorithm to run in any compiler, the semicolon follow-
ing z(T']; in the fourth line above the end of the comment must be
deleted. The array bounds on the arrays r and d must be increased
to {1 : T+1].

For a system which permits variable array bounds, the intro-
duction of the integer T appears superfluous. For such a system,
T may be replaced by n throughout with a probable gain in effi-
ciency. For most translators, the presence of undefined elements
in an array will not cause difficulties, provided these elements do
not appear in an expression before they are assigned a value.

The statement “for 7 := 1 step 1 until 7" do z[ji := 0.0;" is thus
superfluous. The semicolon before the end which precedes the
lubel “sum’ also appears unnecessary.

In spite of these minor corrections, the algorithm appears to be
extremely convenient for multiple quadratures over arbitrary
regions using the Cartesian product of any explicit one-dimen-
sional formula (and not merely a Gaussian formula) for inte-
grating over the range {—1,1]. If endpoints are used in the formula,
it will, of course, repeat the calculation for each section of the
range.

CERTIFICATION OF ALGORITHM 73

INCOMPLETE ELLIPTIC INTEGRALS [David K.
Jefferson, Comm. ACM 4, Dec. 1961]

NOELLE A. MEYER

E. 1. du Pont de Nemours & Co., Wilmington, Del.

Ellint was hand-coded in ForTraN for the IBM 7070. The follow-
ing corrections were made:
The statement
E := 2Xn—1)/(2XN);
should be
E = 2Xn—1)/2Xn);
The statement
F = abs(k) X sqrt(1—sinphi 12) X (1—k T2Xsinphi 12) 1
(@Xn—=1)/(2Xn));
should be
F = (abs(k)Xsqri(l—sinphi T2) X
(1—k72Xsinphi 12) 7 (n—.5))/2Xn)
The statement
L2} := L1} + 1/(nX2Xn—1));
should be
L2] := L{1] 4+ (/X 2Xn—1));
In order to accommodate negative ¢ the following changes were
made:
The statement
if abs ((sigmalll+del{l]) —sigmall]) > 0 A phi X sinphi T
(2Xn) > A[2] then go to sicp 1;
was changed to
if abs((sigmalll+del[1]) —sigmall]) >0Aabs (phiX sinphi T (2Xn))
> abs(A[2]) then go to step 1;
Also the following was inserted before the last statement

(stop: end)
if phi < 0 then go to wait else go to stop;
wait: F := —F;
E := —E;

The revised algorithm yielded satisfactory answers when com-
pared with the DiDonato and Hershey tables. Differences occurred
in the eighth significant digit as shown in the following difference
tables.

DIFFERENCE TABLES

F-TABLE
8 (in degrees)

(in dggrees) 0 30 60 90
0 0. 0. 0. 0.
30 -1 X 1078 —1 X 1078 —1 X 107% -3 X 1078
60 1 X 1078 1 X 1078 2 X 1078 -3 X 1078
90 0. 2 X 1078 6 X 107% 0.

E-TABLE

0 0. 0. 0. 0.
30 —1 X 10% -1 X108 —1 X 1078 —1 X 1073
60 1 X 1078 1 X 1078 -7 X 1078 3 X 1078
90 0. 0. 1 X 1078 0.

Communications of the ACM 69

