ALGORITHM 154

COMBINATION IN LEXICOGRAPHICAL ORDER
CHARrLEs J. M1rsup

Armour Research Foundation, ECAC Annapolis, Md.

procedure COMB1 (n,r]); integer n, r; integer array I;

comment The distinct combinations of the first n integers
taken r at a time are generated in 7 in lexicographical order
starting with an initial combination of the 7 integers 1, 2, --- ,
r. Each call of the procedure, after the first, must have in I
the previous generated combination. The Boolean variable
Jirst is nonlocal to COM B1 and must be true before the first call,
Thereafter first remains false until all combinations have been
generated. When calling COMB1 with I containing n — r + 1,
n — 71+ 2, --- n, Iis left unchanged and first is set true;

begin integer s, j;

if first then begin for j := 1 step 1 until r do

I{j] == j;
first := false; go to EXIT end
begin if I[r] < n then begin I[r] := I[r] 4+ 1; go to EXIT

end;
for j := r step —1 until 2 do
if Ij—1]<n —r 4 7 — 1 then
begin I{j—1] := I[j—1] + 1;
for s := j step 1 until r do

I[s] := I[j-1] + s — (j—1);

first := true;

EXIT : end

go to EXIT end end;

ALGORITHM 155

COMBINATION IN ANY ORDER

CHARLES J. MIFsUD

Armour Research Foundation, ECAC Annapolis, Md.

procedure COMB2 (m,Mn,;rs,S,TOTAL); integer array m,
M, S; integer n,r, 5,TOTAL;
comment Fach call of COMB2 generates a distinet combina-
tion 8, (if possible) of the n integer values of J taken r (r>1)
at a time if J consists of m[l1] integers each equal to M1}, and
m[2] integers each equal to M[2], and so on, there being s integers
available. TOT AL must be set to zero before the first call of
COMB2 and thereafter TOT AL is increased by one after each
new combination is generated. To speed up the machine opera-

tion arrange the s integers in M such that m[1] = m2lz - =
m[s];
begin integer ¢, j, {, p; own integer array J[l:n], ITl:r]; own

Boolean first;
if TOTAL = 0 then begin
t:=1; p:= 0
for j := 1 step 1 until s do
begin p := p + m[j];
for i := ¢ step 1 until p do
begin J[i] := M[j];
t:=1%¢t+41end end;
first := true end;
1: COMB1 (n,rI);
if first then go to EXIT;
if I[1] = 1 then go to 2 else go to 3;
2: for j := 2 step 1 until do
if (JULN=JIl]-11) A I[)>1[j—1]+1) then go to 1;
go to 4;
3: lfJ[I[l]]—J[[] 1] then go to 1 else go to 2;
4: for j := 1 step 1 until 7 do

S[7] = JU[51];
TOTAL := TOTAL + 1;
EXIT: end

J. WEGSTEIN, Editor

ALGORITHM 156

ALGEBRA OF SETS

CeARLES J. MIFsup

Armour Research Foundation, ECAC Annapolis, Md.

procedure INOUT (An,SUM); real array A;

integer n;

real SUM;

comment SUM = 3, Ai — Yo AsA; + D5 AjA 4, — - &
A1d, -+ A, is formed where the symbols Y 1, s, Xog, -+ ,
D n-1 stand for summation of the possible combinations of the
numbers Ay, As, --+, A, taken one, two, three, , (n—1)
at a time;
begin real j, part, T'; integer 7, r; integer array I1:n];
Boolean first;

=8UM :=0; j:=—1,

B: first := true; r := 1 + 1; part := 0;
A: COMBI1 (nyr1I);
if first then begin j := —1 X j; part :
SUM := SUM + part;
if r < n then go to B else go to EXIT end;
T:=1;
for ¢ := 1 step 1 until r do
T := A[IF]] X T;

= 5 X part;

ALGORITHM 157

FOURIER SERIES APPROXIMATION

CuarrLes J. Mirsup

Armour Research Foundation, ECAC Annapolis, Md.

procedure FOURIER (N,fab); realarrayf,a,b; integerN;
comment Fourier determines 2N +1 constants a, (p=0,1,---,N),
by (p=1,2,---,N) in such a way that the equations fo = 1/2a, +
> a=1(ap cos 2xnp/ @N+1) + b, sin 2rnp/(@N+1)) are satisfied,
where the f, are given numbers. The f, may be thought of as the
2N+1 values of a function f(z) at the points z, = 2rn/(2N+1).
The method used to generate a,, b, was formulated by G.
Goertzel in “Mathematical Methods for Digital Computers”
(John Wiley and Sons, Ine., 1960);
begin real array S, C[1:2], u[0:2]; veal TEMP, pi;
integer p, ;
pi 1= 3.14159265; C[2] := 1; S8[2] := 0;
Cll] := cos(2Xpi/(@2X N+1));
S[1] := sin(2X pi/(2XN+1));
for p := 0 step 1 until N do
begin u[l] := u[2] := 0
for ¢ := 2 X N step —1 until 1 do
begin «[0] := fli] + 2 X C[2] X w[1] — u[2];
w[2] = u[l]; wu[l] := ul0lend;
alp] 1= 2/@XN+1) X (f0]+u[l]1X C[2]—u[2]);
blp] := 2/(2XN+1) X u[l] X S[2];
TEMP := C[1] X C[2] — S[1] X 8[2];
8[2) := C[1] X S[2] + S[1! X C[2];
Cl2] := TEMP end end

Communications of the ACM 103

A contribution to this department must be in the form of
an Algorithm, a Certification, or a Remark. Contributions
should be sent in duplicate to the Editor and should be
written in a style patterned after recent contributions
appearing in this department. An algorithm must be written
in ALgoL 60 (see Communications of the ACM, January
1963) and accompanied by a statement to the Editor indicat-
ing that it has been tested and indieating which computer
and programming language was used. For the convenience
of the printer, contributors are requested to double space
material and underline delimiters and logical values that
are to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the Editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the Editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

ALGORITHM 158 (ALGORITHM 134, REVISED)

EXPONENTIATION OI SERIES

Hexry BE. Frrris

Aeronautical Research Laboratories, Wright-Patterson
Air Force Base, Ohio

procedure SERIESPWR (A,B,P,N);

array A, B; integer N;

comment This procedure calculates the first N coefficients

Bli] of the series g(z) = f(z) T P given the first N coefficients
of the series

J@) =14+ 2 Al X =z 14

P may be any real number. Setting P := 0 gives the coefficients
for LN (g(=));
begin integer ¢, k;
real P, S;
if P = 0 then BJ1] = A[l];
else B[1] ;= P X A[l];
for ¢ := 2 step 1 until N do
begin 8 := 0;
fork := 1 step 1 until 7 — 1 do
S =8 + (PX(N—k)—k) X Blk] X AIN—E];
B[] := P X A[] + (S/1)
end for 7;
end SERIESPWR

value A, P, N;

(7;=1:2:_$_yN)'

ALGORITHM 159

DETERMINANT

Davip W. Dicry

Oregon State University, Corvallis, Ore.

real procedure Determinant (X,n);

value ny, integer 7n,; array X;

comment Determinant calculates the determinant of the n-by-

n square matrix X, using the combinatorial definition of the
determinant. This algorithm is intended as an example of a

104 Communications of the ACM

recursive procedure which is somewhat less trivial than Factorial
(Algorithm 33);
begin real D; integer 7; Boolean array B[l:n];
procedure Thread (P,ei);
value P, e, 7; real P; integer ¢, 7;
ifi>nthenD := D+ P X (—1) T eelseif P # 0 then
begin integer j, f;
fi=10;
for j := n step —1 until 1 do
if Bljlthen f := f 4 1 else
begin
Blj] := true;
Thread (PXX[i,5],e+f,i+1);
Blj] := false;
end of loop;
end of Thread;
for i := 1 step 1 until n do
Blt] := false;
D = 0;
Thread (1,0,1);
Determinant 1= D;
end Determinant;

CERTIFICATION OF ALGORITHM 79

DIFFERENCE EXPRESSION COEFFICIENTS
[Thomas Giamo, Comm. ACM , Feb. 1962]

Eva 8. CLarg

University of California at San Diego, La Jolla, California
The procedure was translated into ForTRAN and run on the

CDC 1604. Reasonable accuracy was obtained fork = 0,4 £ n £ 12,

For increasing » and increasing k, the accuracy diminished. It was

found that the execution time increased rapidly as n was increased.
For k = 0, the following results were obtained:

Approximate Number of Machine.Operations

_

st
N O 0o T oW

The author indicated in a letter that the procedure was de-
veloped for use with small #» and small %.

CERTIFICATION OF ALGORITHM 96
ANCESTOR [Robert W. Floyd, Comm. ACM, June, 1962]
Hexry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Il

* Work supported by the U.S. Atomic Energy Commission

The body of this procedure was tested on the LGP-30 using the
Dartmouth translator. After inclosing conditional statements in
begin end brackets (apparently necessary for this translator),
the procedure operated satisfactorily for the following matrices:

#=>5, Time: 815"

FTTFF FTTTT
FFFFT FFFFT
FFFTF — FFFTT
FFFET FFFFT
FFFFF FFFFF

n = 6, Time: 13’15"

FTTFFF FITTTT

FFFTFF FFFTFT

FFFFTF FFFTFT

FFFFFT FFFFFT

FFEFFF FFFFFF

n =9, Time 312"

FTTFFFFFFE Frrerrrrr
FFFFTFFFF FFFFTTTTF
FFFTTFFFF FFFTTTTTT
FFFFFFFFT FFFFFTTTT
FFFFFTTFF FFFFETTTF
FFFFFFFTFEF FFFFFFFTF
FFFFFFFTF FFFFFFFTF
FFFFFFFFF FFFFFFFEF
FFFFFTTFF FFFFFTTTF

The correctness of these results was confirmed by inspection
of the network diagrams.

CERTIFICATIONS OF ALGORITHMS 117 and 118

MAGIC SQUARE (ODD AND EVEN ORDERS)
[D. M. Collison, Comm. ACM, Aug. 1962]

K. M. BosworTtH

I.C.T. Ltd., Blyth Road, Hayes, Middlesex, England

The statement within the Booleon procedure beta should be
changed from

z[r,e] = if h then [nn—aXn+r) else (aXn+l1—r);
to
zlr,al := if h then (nn—aXn+r) else (aXn-+1-—7);

The procedures were then tested on magic squares of order
3 to 17 inclusive without fault.

REMARK ON ALGORITHM 133

RANDOM [Peter G. Behrenz, Comm. ACM 11, Nov.
1962)

DonaLp L. LauGHLIN

Missouri School of Mines and Metallurgy, Rolla, Missouri

Algorithm 133 was translated into Forrran II for the IBM
1620 and run successfully. The starting value was changed to
21 348 759 609 and significant results followed.

For N = 500 and 1000, the resulting values were: 0.4990157688,
0.4986269653 and 0.3318717863, 0.3290401482.

NATIONAL JOINT COMPUTER CONFERENCES

SPRING JCC May 21-23, 1963
FALL JCC

DETROIT
November 12-14, 1963 LAS VEGAS
SPRING JCC May 26-28,1964 WASHINGTON

Sponsored by the American Federation of Information Processing Societies
(AFIPS)

Note on the Proof of the
Non-existence of a Phrase

Structure Grammar for ALGOL 60

PeTER J. BrowN
University of North Carolina, Chapel Hill, N. C.

The proof of the non-existence of a phrase structure
grammar for Avrcor 60 by Robert W. Floyd [Comm.
ACM 5 (Sept. 1962)] depends on the assumption that a
syntactically correct ALcor program must be a block.
The concept of “program’ is defined ambiguously in the
AvrcoL Report, as pointed out by Naur [1], but it is gen-
erally accepted that a program is defined as a self-con-
tained statement. If this definition is taken, Floyd’s proof
becomes incomplete in that it ignores the fact that the
following are syntactically correct AnLGoL programs:

(1) begin; end
(2) begin end
(3) (dummy statement)

The proof can be easily extended to include these cases.
Writing (as in the notation of Floyd’s proof) P; as the
concatenation of the strings QROST®U and taking P, as
the string

begin real z™; ™ := 2™ end
it is apparent that if P, is the string

begin; end
then @ is the string begin
R (43 (€4 (%4 real x(n)
S (44 i (3 ;
T(: 143 « .’L'(") o= :v(")
U (%9 (19 (14 end

and thus it follows that P is the string

begin real z™ real z™; a® := x@) ;= 2™ end
which is not a syntactically correct program.

If Py is the string

begin end
then since S cannot be a null string (it is defined as a
proper substring of RST), S must be either the string
begin
or the string
end.

In either case, @, B, T and U can be derived and it
follows that P, is not a syntactically correct program.

Lastly, it is obvious that P, cannot be the null string
since S cannot be null. Hence P, cannot be any of the
substrings of P, that are programs but not blocks.

A further small point about the proof might be worthy
of note. The assumption that all variables must be de-
clared implies that the version of ALcorn being considered
contains no standard functions (such as carriage return,
pt). This latter assumption can be made without loss of
generality.

REFERENCE

1. Naur, P. Remark concerning the Definition of a Program.
ALGOL Bulletin No. 10.

Communications of the ACM 105

