¢[2] : = numec/denc;
for j : = 1 step 1 until jmazx do
ql2, 41 1= yli] — el2];
for m : = 3 step 1 until mmaez do begin
numec := denc : = dend : = 0.0;
for j : = 1 step 1 until jmazr do begin
nume : = numc + wlj] X y[il X ¢lm—1,5 1T 2;
denc := denc + w[i] X ¢lm—1, 5] T 2;
dend : = dend + w[j] X ¢im—2,35]1 7 2 end;
clm)] : = numec/denc; dim] := denc/dend;
for j : = 1 step 1 until jmaz do
glm, 5] : = (yljl—clm]) X glm—1, j] — dIm] X ¢[m—2, j] end;
comment evaluate contribution of each orthogonal polynomial
to the minimization of the residuals;

]

for n : = 1 step 1 until nmaz do begin
denpaln] := 0.0;
for 7 : = 1 step 1 until imaz do

denpaln] : = denpaln] + uli] X pln, 7] T 2 end;
for m := 1 step 1 until mmaz do begin
denga[m] := 0.0;
for j := 1 step 1 until jmazx do
denqa[m] := denqa[m] + w[j] X ¢lm, 5] T 2 end;

for n := 1 step 1 until nmaz do begin
for m := 1 step 1 until mmaz do begin
alph := 0.0;

for 7z : = 1 step 1 until imaz do begin
for j := 1 step 1 until ymaz do
alph := alph + uli] X wlj] X 2[Z, 71 X p[n, 1] X ¢lm, 5]
end;
alphaln, m] : = alph/(denpaln]Xdengalm]);
beta[n, m] : = alpha[n, m] X alph; end end;
comment application of Gauss’ criterion to determine the de-
gree polynomial which yields the closest fit to the given data.
Gauss’ criterion is, strictly speaking, applicable only to cases
where the weights «[7] and w[j] are unity;

sumzsq : = 0.0;
for ¢ : = 1 step 1 until ¢max do begin
for j : = 1 step 1 until jmax do

sumzsq = sumzsq + u[i] X wlj] X z[lZ, 51 T 2 end;
s:=t:=1;
for n : = 1 step 1 until nmax do begin

betasum : = 0.0;
for m : = 1 step 1 until mmazr do begin
for r := 1 step 1 until n do
betasum : = betasum + beta[r, m];
if betasum > sumzsq then trialgausserit : = 0.0
else

trialgausscrit : = (sumzsq— betasum)/(EmaxX jmaz—nXm);
if n = 1 Am = 1 then gausscrit : = {rialgausscrit;
if gausscrit = trialgausscrit then begin

if n X m < s X t then begin

s 1= n;
t := m end end;
if gausscrit > trialgausscrit then begin
gausserit ;= trialgausscrit;
s 1= mn;
t := m end end end;
nmazx 1= s;
mmaz = i
minsqd : = (gausscritX (smaxX jmaz—nmazX mmazx)/ (¢max X jmaz))
T4
comment evaluation of orthogonal polynomial coefficients;
for n := 1 step 1 until nmaez do begin
pcln, m] 1= 1.0;
for s := 1 step 1 until » — 1 do begin
peln, 8] := —aln] X pefn—1, s;

if s ¢ 1 then pcln, s] := pecln, s] + pcln—1, s—1];
if s # n — 1 then pcn, s] := pcln, s] — b[n] X pcln—2, 5]
end end;

Volume 6 / Number 4 / April, 1963

for m : = 1 step 1 until mmazr do begin
gc[m, m] : = 1.0;
for t : = 1 step 1 until m — 1 do begin
gelm, t] := —e¢[m] X ¢elm—1, t];
if ¢ # then gc[m, t] : = gc[m, t] + ge[m—1, t—1];
if t # m — 1 then gc[m, t] : = ¢clm, t] — dim] X ¢clm—2, 1]
end end; ,
comment evaluation of approximating polynomial coefficients;
for s := 1 step 1 until nmaz do begin
for ¢ : = 1 step 1 until mmaz do begin
phifs, t] : = 0.0;
for n := s step 1 until nmaxr do begin
for m := t step 1 until mmaz do ‘
phils, t] := phils, t] + alphaln, m] X pcln, s] X gclm, 1)
end end end;)
comment evaluation of dependent variables using the approxi-
mating polynomial;
minsqdcomp : = sumdifcomp : = mazidifcomp : = 0.0;
for 7 : = 1 step 1 until imax do begin
for j : = 1 step 1 until jmaz do begin
zeomplt, 51 : = 0.0;
for s : = nmazx step — 1 until 1 do begin
poly : = phi[s, mmazx];
for ¢ : = mmax — 1 step 1 until 1 do
poly := poly X yljl + phils, tl;
zcompli, §] 1= zcompli, j1 X z[¢] + poly end;
rescomp = z|t, j| — zcomplt, j];

2compli, j] : = zcomplt, i} + meanz;
minsqdcomp = minsgdcomp + u[t] X w[j] X rescomp T 2;
sumdifcomp 1= sumdifcomp + abs(rescomp);

if abs (rescomp) > maxdifcomp then
mazdifcomp : = abs(rescomp) end end;
minsqdcomp . : = . (minsqdcomp/ (imax X jmaz)) T¥4;
sumdifcomp := sumdifcomp/(Tmazx X jmax);
end surfacefit

ALGORITHM 165

COMPLETE ELLIPTIC INTEGRALS

Henry C. THACHER, JR.*

Reactor Eng. Div., Argonne National Lab., Argonne, Ill.

* Work supported by the U.S. Atomic Energy Commission.

procedure KANDE(ml, K, E, tol, alarm);

value ml, tol;

real ml, K, E, tol;

label alarm;

comment this procedure computes the complete elliptic inte-
grals K(m1) = [T (1 — (1 — ml) sin%)™? dv and E(ml) =
f;lg 1 — (1 — ml) sinw)V2 dv by the arithmetic-geometric-
mean process. The aceuracy is limited only by the accuracy of
the arithmetic.

Except for the provision of tests for pathological values of the
parameter, the calculation of K is only a slight modification of
the second procedure of Algorithm No. 149 (Comm. ACM. &
(Dec. 1962), 605). These integrals may also be approximated to
limited (6D) accuracy by Algorithms 55 and 56 (Comm. ACM. 4
(Apr. 1961), 180). Unless the square-root is exceptionally fast,
the latter algorithms are probably more efficient for 6D-accu-
racy.

The complementary parameter, ml, is chosen as the inde-
pendent variable, rather than the parameter, m, the modulus,
k or the modular angle «, because of the possibility of serious
loss of significance in generating ml from the other possible
independent variables when ml is small and dK/dml is very
large. These variables are related by ml =1 —m =1 — k2 =
cos’x.

Communications of the ACM 163

The formal parameter, tol, determines the relative aceuracy
of the result. To prevent entering a nonterminating loop, tol
should not be less than twice the relative error in the square
root routine. If m1 = 0 or if ml > 1, the procedure exits to
alarm. K(0) = « while E(0) = 1.00000000.

The body of this procedure has been tested using the Dart-
mouth ScarLp processor for the LGP-30. With ¢l = 5, — 7,
results agreed with tabulated values to within 3 in the seventh
significant digit;

begin real a, b, ¢, sum, temp;
integer fact;
if m1l >1Vml £0 then go to alarm;
a = fact := 1;
b 1= sqri(ml);
temp 1= 1 — ml;
sum.:= 0;
iter: sum 1= sum + temp;
c:= (a — b)/2;
fact 1= fact + fact;
temp 1= (a + b)/2;
b= sqrt (a X b);
a = temp;
temp = fact X ¢ X c;
if abs(c) = tol X a V temp > tol X sum then go to iler;
sum := sum + temp; '
K := 3.141592654/(a + b);
comment pi must be given to the full aceuracy desired;
E:=KX (1 — sum/2)
end

ALGORITHM 166
MONTECARLO

R. D. Ropman

Burroughs Corp., Pasadena, Calif.

procedure montecarlo (n, a, row, tol, mam, inv, test, count);

value n, row, tol, mxm; integer n, row, mrm, count;

real {ol; real array a, inv, test; -

comment this procedure will compute a single row of the
inverse of a given matrix using a monte carlo technique.
n is the size of the matrix, array a is the matrix, row indicates
which inverse row is to be computed, tol is a tolerance factor
and thus a criterion for terminating the process, mam is 1000
times the maximum number of random walks to be taken,

- after which the process is terminated, array inv contains the
inverse row, array test contains the innerproduct of inv with
the rowth columnn of a, count is the number of random walks
executed upon termination. real procedure REANDOM must
be declared in the blockhead of procedure MONTE CARLO
and generates a single random number between 0 and 1. If
a is the matrix to be inverted, the absolute value of the largest
eigenvalue of the matrix I — @ (I is the unit matrix) must be
less than one to assure convergence. This procedure is easily
adapted to finding a single unknown from a set of simultaneous
linear equations;

begin integer ¢, j, k, nwk, lastwalk, walk; real res, p, g;

real array sum[lm], v[1m, 1:m];

start: p:i= (n—1)/n X n;
fori := 1 step 1l until ndo for j : = 1 step 1 until n do
vli,i] 1= if 7 # j then —ali,j)/p else (1—ali,5])/p;
nwk := 1000;
count 1= res 1= 0;
for k := 1 step 1 until n do test [k] := sum [k] : = 0;
164 Communications of the ACM

lastwalk : = row; ¢ :=1;

walk : = (RANDOM/p) + 1;

if walk > n then go to stop;

g : = v[lastwalk,walk] X ¢; lastwalk : = walk;

go to start2;

stop: count := count + 1; sumllastwalk] :
if count < nwk then go to startl;
fork : = 1 step 1 until n do inv[k] : = n X sumlk]/count;
for? := 1step 1l until n do fork : = 1 step 1 until n do
test[t] : = invlk] X alk,] 4 test[i];
for ¢ := 1 step 1 until row—1, row+1 step 1 until n do
res : = abs(test[t]) + res; res : = abs(lest[row]—1) + res;
if res < {ol then go to exit;
if count z 1000 X mam then go to exit;
nwk 1= nwk + 1000; res := 0;
for k := 1 step 1 until n do test [k] : = 0;
go to startl;

extt: end of monte carlo inversion procedure

startl:
start2:

I

sumllastwalk) + g;

ALGORITHM 167

CALCULATION OF CONFLUENT DIVIDED

DIFFERENCES

W. Kasan anp I. Farkas

Institute of Computer Science, University of Toronto,
Canada

real procedure DVDFC(n, X,V,B,W); integern;
real array X, V, B, W;

comment DVDFC ca.culates the forward divided difference

Af(X,, Xz, -+ X,). n is an integer which takes the values
n=1,2,3,-+ in turn. X is a real array of dimension at least
n in which X[¢{] = X;for4s =1,2, -+ ;n. The values X; need

not be distinet nor in any special order, but once the array X
is chosen it will fix the interpretation of the arrays B and V.
If X[1], Xi2}, --- , X[n] are in monotonic order, then the effect
of roundoff upon any nth divided difference is no more than
would be caused by perturbing each f(X[z]) by n units at most
in its last significant place. But if the X’s are not in mono-
tonic¢ order, the error can be catastrophic if some of the divided
differences are relatively large. V is a real array of dimension
at least n containing the values of the function f(X) and per-
haps its derivatives at the point X;. V[] = f(X;)/m! and
m = m;fori=1,2,3,---,n. m;is the number of times that
the value of X; has previously appeared in the array X. B is
a real array of dimension at least n containing backward divided
differences. Before a reference to DV DFC is executed one should
have B} = Af(X, Xiva, o, Xop) fore =1,2,+-- n—1.
After that reference to DVDFC is executed one will find B[{] =
AfXi, X, 0, Xas, Xa)fori=1,2,--- , n—1, n. When
n = 1 the initial state of B is irrelevant. W is a real array of
dimension (2 + M) at least, where 7 is the maximum value of
mifori=1,2 --- ,n. W is used for work space;
begin real DENOM; integer ¢, j, NK, NIN;
if n = 1 then go to L1;

NK :=1;
for ¢ := 1 step 1 until n do
begin

if XJi) = X|[n] then begin NK := NK + 1;
WINK] := V[i] end
end ¢;
for ¢ : = n step —1 until 2 do
begin W{l1] : = B[— 1]; B[] := W[2];
NIN :=ifn — i 4+ 2 < NK thenn — 7 + 2 else NK;
for j := NIN step —1 until 2 do
begin
DENOM := X[n) — X[i + j — 3];
if DENOM 0 then go to L2;

Volume 6 / Number 4 / April, 1963

