ALGORITHM 160

COMBINATORIAL OF M THINGS

TAKEN N AT A TIME

M. L. Worrson anp H. V. WrigHT

United States Steel Corp., Monroeville, Penn.

integer procedure combination (in, n);

value n; integer m, n;

comment calculates the number of combinations of m things
taken n at a time. If n is less than half of m, then the program
calculates the combinations of m things taken m — n at a time
which is the exact equivalent of m things taken n at a time;

begin integer p, r, 7;

pi=m— n;

if n < pthenbeginp :=n; n:=m — pend;
if p = 0 then begin r := 1; go to exit end;
ri=n+41;

fori:=2stepluntil pdor := (r X (n+1))/7;
exit: combination 1= r
end combination

ALGORITHM 161

COMBINATORIAL OF M THINGS

TAKEN ONE AT A TIME, TWO AT A TIME,
UP TO N AT A TIME

H. V. WrrcaT AND M. L. WoLFsoN

United States Steel Corp., Monroeville, Penn.

procedure combination vector (m, n, v);

integer m, n; integer array v;

comment calculates all combinations of m things taken from 1
to n at a time. The result is a vector, », within which the first
element is the combination of m things taken 1 at a time, the
second element is the combinations of m things taken 2 at a time,
the third element taken 3 at a time, -+, and the nth element
taken n at a time.

begin integer 7;
v[l] : = m;
for ¢ := 2 step 1 until n do

ofd i = (li—1] X (m—i+41))/1;

end combination vector

ALGORITHM 162

XYMOVE PLOTTING

Frep G. StockTON

Shell Development Co., Emeryville, Calif.
procedurexymove (XZ,YZ XN, YN); valueXZ,YZ,XN,YN;
integer XZ, YZ XN, YN;

comment zymove computes the code string required to move the

pen of a digital inecremental X,Y-plotter from an initial point
(XZ, YZ) to a terminal point (XN, YN) by the “best’’ approxi-

Volume 6 / Number 4 / April, 1963

J. H. WEGéTEIN, Editor

mation to the straight line between the points. The permitted
elemental pen movement is to an adjacent point in a plane
Cartesian point lattice, diagonal moves permitted. The eight
permitted pen movements are coded

1=+4Y, 2=4X+Y, 3=4X, 4=+X-V7,
5=—-Y, 6=—-X-Y, 7= -X, 8=-X+V.

The approximation is “best’’ in the sense that each point tra-
versed is at least as near the true line as the other candidate
point for the same move.
zymove does not use multiplication or division.;

begin integer A, B, D, E, F, T, I, move;

comment code (J) is a procedure which returns a value of code
according to the following table:

J 1 2 3 4 5 6 7 8
code 1 2 3 2 3 4 5 4
J 9 10 11 12 13 14 15 16
code 5 6 7 6 7 8 1 8

plot (move) is a procedure which sends move to the plotter as a
plotter command.;
if XZ = XN AYZ = YN then go to return;
A:=XN—-XZ; B:=YN-YZ; D:=A+B; T:=
B—A4; I:=0;
if B=0thenl:=2;

if D= thenl =1+ 2;

if7=20thenl:=1+4+2;

ifA=Z0then!:=8 —Ielsel:=1+ 10;
A:=abs(A); B:=abs(B); F:=A+4+B; D:=B— A4;
if D2 0thenbegin? :=A; D:= —Dendelse? := B;
E:=0;

repeat: A =D+ E; B:=T+ E+ A;

if B = 0 then begin E := A; move := code(l);
F:=F — 2end
else begin E := E + 1; F:=F — 1;
move := code(I—1) end;
plot(move);
if F > 0 then go to repeat;
return:
end

ALGORITHM 163

MODIFIED HANKEL FUNCTION

Henry E. Frrris

Aeronautical Research Laboratories, Wright-Patterson
Air Force Base, Ohio

procedure EXPK (P,X, E); real P, X, E;

comment this procedure calculates the modified Hankel Fune-
tion e?K,(z) to within a given accuracy E from the integral
representation:

0
e*Kp(x) = f ex-cok O cogh (pt)dt;
0

Communications of the ACM 161

beginreal F/,G,H, R, S,17,U, Y, Z, ZP;

R :=0.0;
H:=10;
tteration: begin
G := R;
T:=.5XH;
S:=0;
Z = exp(T);
U:=ZX Z;

integration: begin
Y:i=XX 1-.5X(Z+1/Z));
if P=0then ZP :=1
else ZP := 7 1 P;
F:= 5 X exp(Y) X (ZP+1/ZP);

S:=8-+ F;
Z:=7ZXU,;
end;

if F = FE then go to integration
else R := H X §;
H:= 5XH;
end;
if abs (R—G) = E then go to ileration
else EXPK: = R
end EXPK

ALGORITHM 164

ORTHOGONAL POLYNOMIAL LEAST SQUARES
SURFACE FIT

R. E. Crark, R. N. Kusik, L. P. PaiLLips

The Babecock & Wilcox Co., Atomic Energy Div.,
‘Lynchburg, Va.

procedure surfacefit (x, u, y, w, z, nmax, mmaz, Tmaz, jmax)
result: (beta, phi, zcomp, minsqd, minsgdcomp, sumdifcomp,
mazdifcomp);

real arvay z, u, y, w, 2, phi, beta, zcomp;

integer nmaz, mmazx, 1max, jMox;

real minsqd, minsqdcomp, sumdifcomp, maxdifcomp;

comment this is a transliteration of an operating program writ-
ten in Burroughs ArcoL for the B-220. It fits, in the least squares
sense, a polynomial function of two independent variables to
values of a dependent variable specified at points on a rectangu-
lar grid in the plane of the independent variables. The use of
orthogonal polynomials leads to a particularly simple system of
linear equations rather than the ill-conditioned system which
arises from the usual normal equations. It also provides a meas-
ure of the improvements resulting from each new term included
which further leads, in this algorithm, to an automatic selection
of a “Dbest’’ degree polynomial function as determined by
Gauss’ eriterion. The initial normalization of the variables re-
sults in significant reduction of round off errors in many cases.
This algorithm is developed more fully in BAW-182. For a very
similar approach to this and related problems see Cadwell,
J. H., “Least Squares Surface Fitting Program’’, The Compuler
J. 8 (1961), 266 and Cadwell, J. H., and Williams, D. E., “Some
Orthogonal Methods of Curve and Surface Fitting,”” The Com-
puter J. 4 (1961), 260. A further reference is Gauss, C. F., “Theo-
ria Combinationis Observationum Erroribus Minimis Obnoxial,”’
Gauss Werke 4 (Gottingen 1873), 3-93. z[i] and y[;j] are the inde-
pendent variables, z[z, ;] is the dependent variable. wu[i] and
w[j] represent the weights corresponding to xz[7] and y[j], re-
spectively. nmaz is one more than the maximum degree of = to be
considered. mmaz is one more than the maximum degree of y to
be considered. 7maz is the number of z’s, and jmaz is the number
of y’s. betaln, m] is a measure of the improvement resulting
from the inclusion of the z*y™th term. phi[n, m] is the poly-

162 Communications of the ACM

nomial coefficient for the z7ymth term. Note the degree of the
resulting polynomial may be less than the maximum degree
specified as a result of the application of Gauss’ criterion.
zecomp is the computed dependent variable.

Youlilwljl-zli, 512 — 3 beta in,m\ "2
minsgd =

.7 n,m

imazx-jmar

. g
minsqdcomp = < :

1maz ymazx

> ulil-wlijl(els, 7} — zcompli, .7'])2>”2

2 | 2li, 51 — zcompli, 41 |

7

sumdifcomp = - -
1mas -jmax
maxdifcomp = maz | 2@, j) — zeomp((z, J) |

minsgd and minsgdcomp are equal if computation is exact. In
practice they will not be equal due to the imprecise nature of
calculation. A wide discrepancy indicates excessive errors in
calculation;

begin

real array a, b, denpall:nmazl, ¢, d, denga[l:mmaz),
alpha[l:nmaz, 1:mmaz), pll:nmaz, 1:imazl, q[l:mmaz, 1:jmazx],
pell:nmaz, 1:nmaz], ge[l:mmazx, 1:mmaz];

integer n,m,1,7,8,¢t,7;

real sumz, sumy, sumz, meanz, meany, meanz, numa, dena, denb,
nume, denc, dend, alph, sumzsq, gausscrit, trialgausscrit, betasum,
rescomp, poly;

comment normalization of variables;

sumz = sumy := sumz := 0.0;

for 7 : = 1 step 1 until ‘mazx do
sumz ;= sumx + xz[i];

meanz ;= sumz/imazc;

fori := 1 step 1 until omazx do
z[2] : = z[i] — meanz;

for j := 1 step 1 until jmaxr do
sumy 1= sumy + yljl;

meany := sumy/jmaz;
for j := 1 step 1 until ymaz do
ylsl : = ylj] — meany;
for 7 : = 1 step 1 until ¢maz do begin
for j : = 1 step 1 until jmaxr do
sumz : = sumz + 2[,7] end;

meanz := sumz/(tmazx X jmax);
for 7 : = 1 step 1 until imax do begin
for j : = 1 step 1 until jmaoz do
z[z, 7] : = 2z[z, j] — meanz end;
comment evaluate orthogonal polynomials;

numa := dena : = 0.0;
for 7 : = 1 step 1 until imaxr do begin
pll, 7] : = 1.0;

numa = numa + u[t] X z[i];
dena : = dena + uli] end;

al2] : = numa/dena;

for 7 : = 1 step 1 until ¢max do
pl2, 7] 1= 2li] — af2];

for n := 3 step 1 until nmax do begin
numa := dena := denb : = 0.0;
for i := 1 step 1 until imaz do begin

numa ;= numa + ufi] X z[i] X prn—-1] T 2;

dena : = dena + ufi] X pln—1,14] T 2;

denb := denb + uli] X pln—2,7] 1 2 end;

aln) : = numa/dena; bln] := dena/denb;

for 7 : = 1 step 1 until ‘maz do

pln, 7] 1= (zli]—aln]) X pln—1,14] — bln] X pln—2, il end;

nume : = denc := 0.0;
for j : = 1 step 1 until jinazr do begin

aft, 51 :=1.0;

nume 1= numc + wii] X ylil;

denc : = denc + w[j] end;

Volume 6 / Number 4 / April, 1963

¢[2] : = numec/denc;
for j : = 1 step 1 until jmazx do
ql2, 41 1= yli] — el2];
for m : = 3 step 1 until mmaez do begin
numec := denc : = dend : = 0.0;
for j : = 1 step 1 until jmazr do begin
nume : = numc + wlj] X y[il X ¢lm—1,5 1T 2;
denc := denc + w[i] X ¢lm—1, 5] T 2;
dend : = dend + w[j] X ¢im—2,35]1 7 2 end;
clm)] : = numec/denc; dim] := denc/dend;
for j : = 1 step 1 until jmaz do
glm, 5] : = (yljl—clm]) X glm—1, j] — dIm] X ¢[m—2, j] end;
comment evaluate contribution of each orthogonal polynomial
to the minimization of the residuals;

]

for n : = 1 step 1 until nmaz do begin
denpaln] := 0.0;
for 7 : = 1 step 1 until imaz do

denpaln] : = denpaln] + uli] X pln, 7] T 2 end;
for m := 1 step 1 until mmaz do begin
denga[m] := 0.0;
for j := 1 step 1 until jmazx do
denqa[m] := denqa[m] + w[j] X ¢lm, 5] T 2 end;

for n := 1 step 1 until nmaz do begin
for m := 1 step 1 until mmaz do begin
alph := 0.0;

for 7z : = 1 step 1 until imaz do begin
for j := 1 step 1 until ymaz do
alph := alph + uli] X wlj] X 2[Z, 71 X p[n, 1] X ¢lm, 5]
end;
alphaln, m] : = alph/(denpaln]Xdengalm]);
beta[n, m] : = alpha[n, m] X alph; end end;
comment application of Gauss’ criterion to determine the de-
gree polynomial which yields the closest fit to the given data.
Gauss’ criterion is, strictly speaking, applicable only to cases
where the weights «[7] and w[j] are unity;

sumzsq : = 0.0;
for ¢ : = 1 step 1 until ¢max do begin
for j : = 1 step 1 until jmax do

sumzsq = sumzsq + u[i] X wlj] X z[lZ, 51 T 2 end;
s:=t:=1;
for n : = 1 step 1 until nmax do begin

betasum : = 0.0;
for m : = 1 step 1 until mmazr do begin
for r := 1 step 1 until n do
betasum : = betasum + beta[r, m];
if betasum > sumzsq then trialgausserit : = 0.0
else

trialgausscrit : = (sumzsq— betasum)/(EmaxX jmaz—nXm);
if n = 1 Am = 1 then gausscrit : = {rialgausscrit;
if gausscrit = trialgausscrit then begin

if n X m < s X t then begin

s 1= n;
t := m end end;
if gausscrit > trialgausscrit then begin
gausserit ;= trialgausscrit;
s 1= mn;
t := m end end end;
nmazx 1= s;
mmaz = i
minsqd : = (gausscritX (smaxX jmaz—nmazX mmazx)/ (¢max X jmaz))
T4
comment evaluation of orthogonal polynomial coefficients;
for n := 1 step 1 until nmaez do begin
pcln, m] 1= 1.0;
for s := 1 step 1 until » — 1 do begin
peln, 8] := —aln] X pefn—1, s;

if s ¢ 1 then pcln, s] := pecln, s] + pcln—1, s—1];
if s # n — 1 then pcn, s] := pcln, s] — b[n] X pcln—2, 5]
end end;

Volume 6 / Number 4 / April, 1963

for m : = 1 step 1 until mmazr do begin
gc[m, m] : = 1.0;
for t : = 1 step 1 until m — 1 do begin
gelm, t] := —e¢[m] X ¢elm—1, t];
if ¢ # then gc[m, t] : = gc[m, t] + ge[m—1, t—1];
if t # m — 1 then gc[m, t] : = ¢clm, t] — dim] X ¢clm—2, 1]
end end; ,
comment evaluation of approximating polynomial coefficients;
for s := 1 step 1 until nmaz do begin
for ¢ : = 1 step 1 until mmaz do begin
phifs, t] : = 0.0;
for n := s step 1 until nmaxr do begin
for m := t step 1 until mmaz do ‘
phils, t] := phils, t] + alphaln, m] X pcln, s] X gclm, 1)
end end end;)
comment evaluation of dependent variables using the approxi-
mating polynomial;
minsqdcomp : = sumdifcomp : = mazidifcomp : = 0.0;
for 7 : = 1 step 1 until imax do begin
for j : = 1 step 1 until jmaz do begin
zeomplt, 51 : = 0.0;
for s : = nmazx step — 1 until 1 do begin
poly : = phi[s, mmazx];
for ¢ : = mmax — 1 step 1 until 1 do
poly := poly X yljl + phils, tl;
zcompli, §] 1= zcompli, j1 X z[¢] + poly end;
rescomp = z|t, j| — zcomplt, j];

2compli, j] : = zcomplt, i} + meanz;
minsqdcomp = minsgdcomp + u[t] X w[j] X rescomp T 2;
sumdifcomp 1= sumdifcomp + abs(rescomp);

if abs (rescomp) > maxdifcomp then
mazdifcomp : = abs(rescomp) end end;
minsqdcomp . : = . (minsqdcomp/ (imax X jmaz)) T¥4;
sumdifcomp := sumdifcomp/(Tmazx X jmax);
end surfacefit

ALGORITHM 165

COMPLETE ELLIPTIC INTEGRALS

Henry C. THACHER, JR.*

Reactor Eng. Div., Argonne National Lab., Argonne, Ill.

* Work supported by the U.S. Atomic Energy Commission.

procedure KANDE(ml, K, E, tol, alarm);

value ml, tol;

real ml, K, E, tol;

label alarm;

comment this procedure computes the complete elliptic inte-
grals K(m1) = [T (1 — (1 — ml) sin%)™? dv and E(ml) =
f;lg 1 — (1 — ml) sinw)V2 dv by the arithmetic-geometric-
mean process. The aceuracy is limited only by the accuracy of
the arithmetic.

Except for the provision of tests for pathological values of the
parameter, the calculation of K is only a slight modification of
the second procedure of Algorithm No. 149 (Comm. ACM. &
(Dec. 1962), 605). These integrals may also be approximated to
limited (6D) accuracy by Algorithms 55 and 56 (Comm. ACM. 4
(Apr. 1961), 180). Unless the square-root is exceptionally fast,
the latter algorithms are probably more efficient for 6D-accu-
racy.

The complementary parameter, ml, is chosen as the inde-
pendent variable, rather than the parameter, m, the modulus,
k or the modular angle «, because of the possibility of serious
loss of significance in generating ml from the other possible
independent variables when ml is small and dK/dml is very
large. These variables are related by ml =1 —m =1 — k2 =
cos’x.

Communications of the ACM 163

The formal parameter, tol, determines the relative aceuracy
of the result. To prevent entering a nonterminating loop, tol
should not be less than twice the relative error in the square
root routine. If m1 = 0 or if ml > 1, the procedure exits to
alarm. K(0) = « while E(0) = 1.00000000.

The body of this procedure has been tested using the Dart-
mouth ScarLp processor for the LGP-30. With ¢l = 5, — 7,
results agreed with tabulated values to within 3 in the seventh
significant digit;

begin real a, b, ¢, sum, temp;
integer fact;
if m1l >1Vml £0 then go to alarm;
a = fact := 1;
b 1= sqri(ml);
temp 1= 1 — ml;
sum.:= 0;
iter: sum 1= sum + temp;
c:= (a — b)/2;
fact 1= fact + fact;
temp 1= (a + b)/2;
b= sqrt (a X b);
a = temp;
temp = fact X ¢ X c;
if abs(c) = tol X a V temp > tol X sum then go to iler;
sum := sum + temp; '
K := 3.141592654/(a + b);
comment pi must be given to the full aceuracy desired;
E:=KX (1 — sum/2)
end

ALGORITHM 166
MONTECARLO

R. D. Ropman

Burroughs Corp., Pasadena, Calif.

procedure montecarlo (n, a, row, tol, mam, inv, test, count);

value n, row, tol, mxm; integer n, row, mrm, count;

real {ol; real array a, inv, test; -

comment this procedure will compute a single row of the
inverse of a given matrix using a monte carlo technique.
n is the size of the matrix, array a is the matrix, row indicates
which inverse row is to be computed, tol is a tolerance factor
and thus a criterion for terminating the process, mam is 1000
times the maximum number of random walks to be taken,

- after which the process is terminated, array inv contains the
inverse row, array test contains the innerproduct of inv with
the rowth columnn of a, count is the number of random walks
executed upon termination. real procedure REANDOM must
be declared in the blockhead of procedure MONTE CARLO
and generates a single random number between 0 and 1. If
a is the matrix to be inverted, the absolute value of the largest
eigenvalue of the matrix I — @ (I is the unit matrix) must be
less than one to assure convergence. This procedure is easily
adapted to finding a single unknown from a set of simultaneous
linear equations;

begin integer ¢, j, k, nwk, lastwalk, walk; real res, p, g;

real array sum[lm], v[1m, 1:m];

start: p:i= (n—1)/n X n;
fori := 1 step 1l until ndo for j : = 1 step 1 until n do
vli,i] 1= if 7 # j then —ali,j)/p else (1—ali,5])/p;
nwk := 1000;
count 1= res 1= 0;
for k := 1 step 1 until n do test [k] := sum [k] : = 0;
164 Communications of the ACM

lastwalk : = row; ¢ :=1;

walk : = (RANDOM/p) + 1;

if walk > n then go to stop;

g : = v[lastwalk,walk] X ¢; lastwalk : = walk;

go to start2;

stop: count := count + 1; sumllastwalk] :
if count < nwk then go to startl;
fork : = 1 step 1 until n do inv[k] : = n X sumlk]/count;
for? := 1step 1l until n do fork : = 1 step 1 until n do
test[t] : = invlk] X alk,] 4 test[i];
for ¢ := 1 step 1 until row—1, row+1 step 1 until n do
res : = abs(test[t]) + res; res : = abs(lest[row]—1) + res;
if res < {ol then go to exit;
if count z 1000 X mam then go to exit;
nwk 1= nwk + 1000; res := 0;
for k := 1 step 1 until n do test [k] : = 0;
go to startl;

extt: end of monte carlo inversion procedure

startl:
start2:

I

sumllastwalk) + g;

ALGORITHM 167

CALCULATION OF CONFLUENT DIVIDED

DIFFERENCES

W. Kasan anp I. Farkas

Institute of Computer Science, University of Toronto,
Canada

real procedure DVDFC(n, X,V,B,W); integern;
real array X, V, B, W;

comment DVDFC ca.culates the forward divided difference

Af(X,, Xz, -+ X,). n is an integer which takes the values
n=1,2,3,-+ in turn. X is a real array of dimension at least
n in which X[¢{] = X;for4s =1,2, -+ ;n. The values X; need

not be distinet nor in any special order, but once the array X
is chosen it will fix the interpretation of the arrays B and V.
If X[1], Xi2}, --- , X[n] are in monotonic order, then the effect
of roundoff upon any nth divided difference is no more than
would be caused by perturbing each f(X[z]) by n units at most
in its last significant place. But if the X’s are not in mono-
tonic¢ order, the error can be catastrophic if some of the divided
differences are relatively large. V is a real array of dimension
at least n containing the values of the function f(X) and per-
haps its derivatives at the point X;. V[] = f(X;)/m! and
m = m;fori=1,2,3,---,n. m;is the number of times that
the value of X; has previously appeared in the array X. B is
a real array of dimension at least n containing backward divided
differences. Before a reference to DV DFC is executed one should
have B} = Af(X, Xiva, o, Xop) fore =1,2,+-- n—1.
After that reference to DVDFC is executed one will find B[{] =
AfXi, X, 0, Xas, Xa)fori=1,2,--- , n—1, n. When
n = 1 the initial state of B is irrelevant. W is a real array of
dimension (2 + M) at least, where 7 is the maximum value of
mifori=1,2 --- ,n. W is used for work space;
begin real DENOM; integer ¢, j, NK, NIN;
if n = 1 then go to L1;

NK :=1;
for ¢ := 1 step 1 until n do
begin

if XJi) = X|[n] then begin NK := NK + 1;
WINK] := V[i] end
end ¢;
for ¢ : = n step —1 until 2 do
begin W{l1] : = B[— 1]; B[] := W[2];
NIN :=ifn — i 4+ 2 < NK thenn — 7 + 2 else NK;
for j := NIN step —1 until 2 do
begin
DENOM := X[n) — X[i + j — 3];
if DENOM 0 then go to L2;

Volume 6 / Number 4 / April, 1963

Wil := Wi + 1];
if NK — j — 1 3 0 then go Cont;
NK := NK — 1;
go to Cont;
L2: Wl = (W] —
Cont: end j
end ¢;
B[] := W[2];
go to L3;
L1: B{1]:= V[1];
L3: DVDFC := B[1]
end DVDFC
The following program segment is an example of how DVDFC can
be used to construet a table of forward or backward differences.

Wi — 11)/DENOM;

for n := 1 step 1 until N do

begin

Xn] := - Vnli=---; Fln]:= DVDFC(n, X, V, B, W)
end;

The array F can be used in FNEWT(z, N, X, F, R, D, E) or the
array Bin BNEWT(z, N, X, B, P, D, E). See algorithms ‘“New-
ton interpolation with forward (backward) divided differences.”

DVDFC(C has been written as a Fortran II function and is avail-
able from I.C.S., University of Toronto;

ALGORITHM 168

NEWTON INTERPOLATION WITH

BACKWARD DIVIDED DIFFERENCES

W. Kanan anp I. Farkas

Institute of Computer Science, University of Toronto,
Canada

procedure BNEWT (2, N, X, B, P, D, E); value z, N;
real z, P, D, E; integer N; real array X, B;)

comment X is a real array of dimension at least N in which
X[i] = X;fori =1,2,3,---, N. The values X; need not be
distinct nor in any special order, but once the array X is chosen
it will fix the interpretation of the array B. B s a real array of
dimension at least N and contains the backward divided differ-
ences Bli] = Af(X;, Xipn, -, Xy) ¢=1,2,--+- ,N. If two
or more of the values X; are equal then some. of the B’s must
be confluent divided differences, see algorithm: “Calculation of
confluent divided differences.”” P is the value of the following
polynomial in z of degree N—1 at most, B(N) + (z—Xx)-
{BIN=-1) + =Xy){B(N=2) + -+ + (—X2)BA)} --- }}.
This polynomial is an interpolation polynomial which would,
but for rounding errors, match values of the function f(z) and
any of its derivatives that DVDFC might have been given. D
is the value of the derivative of P. F is the maximum error in
P caused by roundoff during the execution of BNEWT. The
error estimate is based upon the assumption that the result of
each floating point arithmetic operation is truncated to 27 sig-
nificant binary digits as is the case in FORTRAN programs on
the 7090. BNEWT has been written as a Forrran II subroutine
and is available from I.C.S., University of Toronto;

begin real z1; integer 7;

P:=D:=F:=0;

for 7 : = 1 step 1 until N do
begin
21 1=z — X[i];
D:= P+ 21 X D;
P:= Bll + 21 X P;
E = abs(P) + E X abs(z1)
end

= (15XE — abs(P))X3np — &
end BNEWT

Yolume 6 / Number 4 / April, 1963

ALGORITHM 169

NEWTON INTERPOLATION WITH

FORWARD DIVIDED DIFFERENCES

W. Kasax anp I. FArRgas

Institute of Computer Science, University of Toronto,
Canada

procedure FNEWT(z, N, X, F, R, D, E); value z, N;
real z, R, D, E; integer N; real array X, F;

comment X is a real array of dimension at least N in which
X[F] = X;fors =1,2,--- , N. The values X; need not be dis-
tinet nor in any special order, but once the array X is chosen
it will fix the interpretation of the array F. F is a real array
of dimension at least N and contains the forward divided
differences F[i] = Af(Xy, X2, -, X)) 2=1,2,--- ,N. If
two or more of the values X; are equal then some of the F’s
must be confluent divided differences, see algorithm: ‘“Calcu-
lation of confluent divided differences.’”’ R is the value of the fol-
lowing polynomial in z of degree N—1 at most, F(1) + (z—X1)-
{F@) + =X)IF®) + - + =Xy)F@W)} --- }}. This
polynomial is an interpolation polynomial which would, but
for rounding errors, match values of the function f(z) and any
of its derivatives that DV DFC might have been given. D is the
value of the derivative of R. E is the maximum error in B
caused by roundoff during the execution of FNEWT. The
error estimate is based upon the assumption that the result of
each floating-point arithmetic operation is truncated to 27
significant binary digits as is the case in FoRTRAN programs
on the 7090. FNEWT has been written as a ForTraN II sub-
routine and is available from I.C.S., University of Toronto;

begin real z1; integer 7; '

R:=D:=E:=0;

for ¢ : = N step —1 until 1 do

begin

2l := 2z — X[3];

D:=R+ 21 X D;

R := Fl] 4+ 21XR;

FE := abs(R) + abs(z1)XE

end;

= (1.5XE — abs(R))X3w — 8
end FNEWT

ALGORITHM 170

REDUCTION OF A MATRIX CONTAINING
POLYNOMIAL ELEMENTS

Pavn E. Hexston :
Giannini Controls Corp., As‘momechamcs Res. Div.,
Berwyn, Penn.

real procedure POLYMATRIX (A, NCOL, N, COE, NP1);
value A, NCOL, N; real array A; integer NCOL, N;

comment this procedure will expand a general determinant,
where each of the elements are polynomials in the Laplace com-
plex variable. This program is useful for the investigation of
dynamic stability problems when using the transfer function
approach. The process is one of triangularization of a poly-
nomial matrix with real coeflicients whereupon multiplication
of the diagonal elements the determinant polynomial is formed.
The polynomial matrix as defined herein is a matrix whose
elements are polynomials of the form Y Y_; a;zf. When such a
matrix is triangularized, all elements below the main diagonal
are nulled. Then upon expanding, the nonvanishing terms are
those formed by the product of these diagonal elements. Hence
stability criteria may be checked by evaluating the roots of the
characteristic equation thus formed using some suitable root
extracting routine.

Communications. of the ACM 165

Consider the polynomial matrix with quadratic elements
(N = 2). In this case the three-dimensional input matrix A is
size A[1:NCOL, 1:NCOL, 1: M), where NCOL is the order of
the matrix and M = N X NCOL + 1. Here the first subseript
of A refers to the row, the second to the column, and the third
to the polynomial coefficient. Therefore, prior to entry the con-
stant term of a general polynomial element is contained in
Alz, 7, 1], the linear term is contained in A[, j, 2], and the
quadratic term in A[¢, 7, 3]. Upon completion of the routine, the
coefficients of the determinant polynomial are contained in
COE [1:M]. The constant coefficient being in COE [1], the linear
coeficient in COFE [2], the quadratic coefficient in COE [3], ete.
The variable NP1 will specify the number of coefficients of the
determinant polynomial. In general NP1 # M since some terms
may vanish during the expansion.
. If the polynomials comprising the matrix elements are not
all of equal degree, set N prior to entry equal to the degree of
the highest ordered polynomial;
begin real sa, sb; integer<,j,k, j1, j2, j3, 74, 5, 36, 57, 78, 79, 710,
jll, NP1, M; array Cl[1:M], C2[1:M], COE[l:M];
-integer array M AT [1:NCOL, 1: NCOL];
start: M := NXNCOL+1; for i := 1 step until NCOL do
. begin for j : = 1 step 1 until NCOL do begin MAT [1,7] : = 0;
for k := 1 step 1 until M do begin
if A2, 7, k10 then MAT [i,5] :=k; end endend; jl:=1:
LO: 9 :=0; fori:= jl step 1 until NCOL do begin
if MAT [,j11<0 then go to exif;
else if MAT [i, j1] =0 then go to L1
else j9 := j94+1; ;3 := ¢;
Ll: end; if (j9—1)<0 then go to exit
else if (9—1)>0 then go to L2
else if (73—;1) <0 then go to exit
else if (73—;1)=0 then go to L12
else for j : = jl step 1 until NCOL do
begin j2 1= MAX(MAT [j3,j1, MAT [j1,5)); j4:= MAT [53,i];
MAT [3,5] := MAT (31, j; MAT [j1,5] : = j4;
for k := 1 step 1 until ;2 do
begin sa : = A [j3, j k]; Al3,5,k] := Alsl, 4, kl;
Aljl,j k] := —sa; end end; go to L12;
L2: 73 := j141; for i := j3 step 1 until NCOL do begin
L3: if (MAT[Z,71]) <0 then go to exit
else if [MAT [7,j1])=0 then go to L1l
else if (M AT [71,j1]) <0 then go to exit
else if (M AT[j1,;11)=0 then go to L4
else if (MAT [i,j1] ~M AT [51,71]) = 0 then go to L5 else
L4: for j := jl step 1 until NCOL do begin
2 1= MAX(MAT [j1,5], MAT (7, 71); 74 := MAT [j1,j};
MAT (G1,5] 1= MAT [i,5]; MAT [i;5] := j4;
for k := 1 step 1 until ;2 do begin sa := A[:,5,k];
Alij k] 1= Aljl,jk]; Aljlikl := —sa;
end end; go to L3;
comment Interchange row 7 with 51;
L5: 47 := MAT li,g1]; 35 := MAT [j1,41]; 76 := j7—j5;
sb 1= A[4,51,571/ Alj1,51,551];
if (abs(sb)—4)<0 then go to L6
else if (j6) <0 then go to exit
else if (j6)=0 then go to L4 else
L6: for j:= jl step 1 until NCOL do begin j5 := MAT [1, j];
for k := 1 step 1 until ;5 do begin ;7 := k+36;
if (j7—M)>0 then go to L10 else
L7: if (abs(A[Z,7,77] ~sbX A[j1,7,k})—210—8) £0 then go to L8
else Ali,7,57]1 1= A[i,7,57] —sbX Alf1,7,k];

go to L9;
L8: AlZ,7,57] := 0;
L9: end end;

L10: for j : = jl step 1 until NCOL dé'begin

17 t= MAXMAT [i,5], MAT[1,514-46); MAT [i,5] := 0;

- for k := 1 step 1 until M do begin if (A[7,7,k])=0 then
MAT [2,j] := k end end;

166 Communications of the ACM

L11: end; go to LO;
L12: 41 := j141; if (j1-NCOL)<0 then go to L0 else
for j := 1 step 1 until NCOL do begin
72 1= MAT lj,5};
fork := 1step 1 until j2do C1[k] : = Alj,5 k];
L13: if (j—1)<0 then go to exit
else if (j—1)=0 then go to L14 .
else for k : = 1 step 1 until NP1 do C2[k] : = COElk];
for k := 1 step 1 until M do COE[k] : = 0;
if (j2)<0 then go to erit
else if (j2) =0 then go to L15
else for k : = 1 step 1 until ;2 do begin
for j10 : = 1 step 1 until NP1 do begin
11 1= k+3510—1;
COE[;j11):= COE[j111+ C1{k1X C2[510];

end end; NP1 := jll; go to L15;

L14: for k := 1 step 1 until ;2 do COE [k} : = C1 [k];
NP1 := j2;

L15: end;

extt: end POLYMATRIX

CERTIFICATION OF ALGORITHM 55

COMPLETE ELLIPTIC INTEGRAL OF THE FIRST
KIND [John R. Herndon, Comm. ACM, Apr. 1961}
and

CERTIFICATION OF ALGORITHM 149

COMPLETE ELLIPTIC INTEGRAL [J. N. Merner,
Comm. ACM, Dec. 1962]

Hexry C. THACHER, JR.*

Reactor Eng. Div., Argonne National Laboratory,

Argonne, Il
* Work supported by the U.S. Atomic Energy Commission.

The bodies of Algorithm 55 and of the second procedure of
Algorithm 149 were tested on the LGP-30 eomputer using Scavp,
the Dartmouth ‘““LoAp-aAND-G0”’ translator for a substantial sub-
set of ArngoL 60. The floating-point arithmetic for this translator
carries 7+ significant digits.

In addition to modifications required because of the limitations
of the Scavp subset, the following need correction:

In Algorithm 55:

1. The constant 0.054555509 should be 0.054544409.
2. The funetion log should be In.

In procedure ELIP 2 of Algorithm 149, the statement a := ¢
should be a := C.

The parameters of Algorithm 149 are related to the complete
elliptic integral of the first kind by: K = aXELIP(a, b) where
the parameter m = k2 = 1 — b/a.

The maximum approximation error in Algorithm 55 is given by
Hastings as about 0.60—6. In addition there is the possibility of
serious cancellation error in forming the complementary param-
eter t = 1 —k X k. For k near 1, errors as great as 4 significant
digits were sustained. In these regions, the complementary
parameter itself is a far more satisfactory parameter.

The accuracy obtainable with Algorithm 149 is limited only by
the arithmetic accuracy and the amount of effort which it is
desired to expend. Six-figure accuracy was obtained with 5 appli-
cations of the arithmetic-geometric mean for ¢ = 1000, b = 2,
and with one application for ¢ = 500, b = 500.

Neither algorithm is satisfactory for & = 1. The behavior for
Algorithm 55 will be governed by the error exit from the logarithm
procedure. Under these circumstances, Algorithm 149 goes into an
endless loop. Algorithm 149 may also go into an endless loop of the
terminating constant (10—8 in the published algorithm) is too
small for the arithmetic being used. For the ScaLp arithmetic it
was found necessary to increase this tolerance to 5.00—7. The

Volume 6 / Number 4 / April, 1963

resulting values of the elliptic integrals were, however, accurate
to within 2 in the 7th significant digit (6th decimal).

The relative efficiency of the two algorithms will depend
strongly on the efficiency of the square-root and logarithm sub-
routines. With most systems, Algorithm 55 will provide sufficient
accuracy, and will be more efficient. If a square-root operation or
a highly efficient square-root subroutine is available, Algorithm
149 may well be the better method.

CERTIFICATION OF ALGORITHM 73

INCOMPLETE ELLIPTIC INTEGRALS [David K
Jefferson, Comm. ACM Dec. 1961]

R. P. vax pE Rier

Mathematical Centre, Amsterdam

The algorithm contained three misprints:
The 26th line of the procedure
E:=(2Xn-1)/(2 X N);
should read
E:= 2Xn=-1)/(2 X n);
The 46th line of the procedure
12 1T (2Xn=1)/2Xn);
should read
T2) T (2Xn—-1)/2)/2 X n);
The 49th line of the procedure
L2]:=LH4l+1/(nX2Xn-1));
should read
L2]:=L]4+1/(nX 2X n-1));

The program was run on the X1 computer of the Mathematical
Centre. For phi = 45° k = sin(10°(10°)180°), E and F were calcu-
lated. The result contained 12 significant digits.

Comparison with a 12-decimal table of Legendre-Emde (1931)
showed that the 12th digit was affected with an error, at most
4 units large. After about 10 minutes of calculation (i.e. more
than 100 cycles) no results were obtained for k = sin 89°, pht = 1°
and the calculation was discontinued.

REMARKS. As phi is unchanged during the calculation, we
placed the statement cos phi : = cos (phi) in the beginning of the
program, to be certain that the cosine was not calculated 30 or
more times. Moreover, in the expression for T[1] and T'[2], sqrt
(1-sin phi T 2) was replaced by cos phi, so that loss of significant
figures does not occur.

The expression 2 X n was changed in a new variable, to
obtain a more rapid program.

CERTIFICATION OF ALGORITHM 91

CHEBYSHEV CURVEFIT J[A. Newhouse,
ACM, May 1962]

Rosert P. HaLE

University of Adelaide, Adelaide, South Australia
The CHEBFIT algorithm was translated into ForTRAN and

successfully run on an IBM 1620 when the following alterations

were made:
(a) 2nd line after

Comm.

comment Initialize;
should read
fori := 1step 1l until n+1do IN[] := (2—1) X k +1;
(b) 2nd and 3rd lines after
Poly: comment polynomial coefficients;
should read
begin A[i] := AY[i+1] + AH[i+1] X H; BY[li+1]:=0

Volume 6 / Number 4 / April, 1963

(¢) 3rd line after
ERROR: comment compute deviations;

should read

for j : = 1step 1 until n do T'[¢] : = T[¢] X X[] 4+ Aln—3l;
(d) Immediately before statement L2 insert ¢ := n + 2; (as

for list may be exhausted and ¢ no longer defined).

(e) 2nd line after statement L3 should read IN[1] : = imaz;
(f) 1st line after statement L4 should read IN[i—1] := imax;

CERTIFICATION OF ALGORITHM 133
RANDOM [Peter G. Behrenz, Comm. ACM, Nov. 1962]
Jesse H. Poorg, Jr.
Louisiana Polytechnic Institute, Ruston, La.

Algorithm 133 was transliterated into ForTraN II for the IBM
1620 computer. A monitor program performed the test indicated in
Algorithm 133 on the generated numbers.

Results of the test are shown in the following chart. The nota-
tion used is identical to that used in the algorithm.

1 1
Xo 7 ZXn 52X
. 4986480931 . 3280561242 N = 500
13543288579 . 4840396640 .3141520616 N = 1000
.4996829627 .3321160892 N = 5000
.4971414796 . 3297990588 N = 500
24376589411 .4997720126 . 3326801987 N = 1000
.4986380784 .3319949173 N = 5000
. 4962408228 .3339214302 N = 500
34359738367 . 4974837457 .3335720239 N = 1000
.4929612237 .3253421270 N = 5000
.5313808305 .3691599122 N = 500
11324679915 .5167083685 . 3498558251 N = 1000
. 5043814637 .3383429327 N = 5000

CERTIFICATION OF ALGORITHM 145

ADAPTIVE NUMERICAL INTEGRATION BY

SIMPSON’S RULE [W. McKeeman, Comm. ACM,
Dec. 1962]

Wwu. M. McKEEMAN

Stanford University, Stanford, Calif.

Suggested changes in the code:

1. Replace all occurrences of eps/3.0 by eps/1.7.

2. Replace level = 7 by level = 20.

3. The second parameter ¢ in the final call of Simpson was

omitted; insert it.

With the above changes, a BancoL translation of Integral has
been tested successfully on a large number of functions. An ex-
ample of its behavior is given below:

Machine: Burroughs 220, 8 decimal digit floating-point mantissa.
f(x) = 1.0/sqrt(abs(z)); which has a pole at the origin.

a = —9.0; b= 1000.0; correct answer = 206.0;
eps computer answer | relative error
0.1 200. 22251 0.028
0.01 206.00226 0.0000107
0.001 206.00092 0.0000045
0.0001 205.99985 0.0000007
Communications of the ACM 167

If the recursion was allowed to go thirty levels deep we found:

0.0001 206.00005 0.0000002

The graph below shows the adaptive clustering of the points of
evaluation around the pole of the function (taken from the first
example above).

f(x) = 1.0/sqrt(abs(x))

02l
0.1
0.0 \z_
(LA T T T l | [[K]
T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000 10000

Each vertical line represents a point of
evaluation for the function during the
execution of the call:

integral(f, —9.0, 10000.0, 0.1);

CERTIFICATION OF ALGORITHM 147

PSIF [D. Amit, Comm. ACM., Dec. 62]

Hexry C. THACHER, JR.*

Reactor Eng. Div., Argonne National Lab., Argonne, IIl.

* Work supported by the U. S. Atomic Energy Commission.

The following minor errors were noted in this algorithm:
a. (3) in the comment should read ¢ < 1/240 z8.
b. The function ten is not a standard Arcor function. It should be
declared, or replaced by sin ()/cos().
¢. The block labelled large should be closed by inserting end im-
mediately after 252.
The efficiency of the program would be improved by the follow-
ing modifications:
a. Let the statement
if z = 0 then begin . . . end;
be the first statement of the procedure body.
b. Delete the condition z 0 from the if clause,

ifz > —1 Az # 0 then. ..

¢. Delete the declaration of pei, and the assignment of the value
of 3.141592654 to pet in the statement
pst 1= pei X sin(per X (z+0.5))/cos(peiX (z+0.5));
replace pei by the value 3.141592654.
d. Replace the block labelled large by:
large: beginrealy; z:=1/z; y:=z X z;
pst 1= psi — In(z) + 2/2 — ((y/252—0.008333333333) X y +
0.08333333333) X y end;
With these changes, the body of the procedure was translated
and run on the LGP-30 computer using the Dartmouth Scarp
processor. The program was used to tabulate psif(z) for z = —1

168 Communications of the ACM

(0.5)0(0.005)1.250. With ¢ = 3.0 the results agreed with tabulated
values to within 3 in the 6th decimal place. This is considered
satisfactory, since one decimal place is lost in applying the recur-
rence. Running time, including output on the Flexowriter and
computation of new values of the independent variable, averaged
about 30 seconds per value.

It should be observed that psif(z) is ¥ (z+1) as tabulated, for
example, by Jahnke-Emde-Losch.

CERTIFICATION OF ALGORITHM 148

TERM OF MAGIC SQUARE [D. M. Collinson, Comm.
ACM, Dec. 1962}

J. N. R. BarnEcUT

University of Alberta, Calgary; Calgary, Alberta, Canada
MAGICTERM was translated into ForTrAN for the IBM 1620.

The procedure was tested for terms of squares up to order 13.

Correct results were obtained. For determination of complete

squares operating time was not significantly different from Al-
gorithm 118.

CERTIFICATION OF ALGORITHM 148
TERM OF MAGIC SQUARE [D. M. Collison, Comm.
ACM, Dec. 62]
Dwmirrr THORO
San Jose State College, San Jose, Calif.
This algorithm was translated into Forrran and Forco for the
IBM 1620. No changes in the program were necessary. The ele-

ments of magic squares of odd orders up to 15 were generated
satisfactorily.

A contribution to this department must be in the form of
an Algorithm, a Certification, or a Remark. Contributions
should be sent in duplicate to the Editor and should be
written in a style patterned after recent contributions
appearing in this department. An algorithm must be written
in ALgoL 60 (see Communications of the ACM, January
1963) and accompanied by a statement to the Editor indicat-
ing that it has been tested and indicating which computer
and programming language was used. For the convenience
of the printer, contributors are requested to double space
material and underline delimiters and logical values that
are to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the Editor, or the Association for Computing
Machinery as to the accuracy and funetioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the Editor, or the
Association for Computing Machinery in connection there-
with.)

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

Volume 6 / Number 4 / April, 1963

A Suggested Method of
Making Fuller Use of
Strings in ALGOL 60

Miriam G. SHOFFNER AND PETER J. BROWN
Unaversity of North Carolina, Chapel Hill, N. C.

Notation. Throughout this paper string quotes (‘ ’) are
used only as basic ALGOL symbols, whereas double quotes
(*“) have no significance other than as punctuation
marks in the English language.

It seems to us that while ALcoL 60 cannot be made
into a good symbol manipulation language without many
additions two simple extensions would make a consider-
able difference, making ALcoL an adequate language for
some symbol manipulation problems and also improving
it in other ways. For a suggested way for incorporating
full symbol manipulation features into ALcoL, see “A
String Language for Symbol Manipulation Based on
ALcoL 60” by J. H. Wegstein and W. W. Youden [Comin.
ACM, Jan. 1962). We propose two extensions to the use
of strings which, we think, could be added into an existing
translator with virtually no effort. As AvrcoL stands,
strings can be used only as actual parameters of pro-
cedures, presumably output procedures; nested strings
are allowed but it would need some ingenuity to find a
use for them. In our discussion we take “string’’ to mean
a non-nested string. Our proposed additions (hence-
forward referred to here as “the additions”) are:

(i) Strings can be assigned as values of variables.

(ii) Strings can be used as operands of the relational

operators: “=7"" and “s”.

Eramples:
color : = ‘black’;

if color = ‘black’ then - - ;

A description of the exact syntactical changes necessary
in the language is given at the end of this paper. The
equivalent of the additions is already built into such
algebraic languages as IT and GAT.

Variables having strings as value would be declared as
being of type “string”, and string arrays and string pro-
cedures (i.e. function designators of type string) would be
allowed. It would be natural to have input procedures to
assign strings as values of variables and output procedures
to print string variables.

It might be a practical necessity for fixed-word-length
machines to restrict the length of strings to one word-
length. Restrictions somehow do not seem to be in the
spirit of the ArcorL 60 report (to the exasperation of
translator writers) but, of course, there are implicit re-
strictions on the size of integers and real numbers; so a
restriction on the length of strings is not too unreasonable.

Volume 6 / Number 4 / April, 1963

T. E. CHEATHAM, Jr., Editor

Note that the additions do not provide for a way to
decompose strings within the language. However, “pack-
ing” and ‘“unpacking” routines could be added to a
system which would respectively break a string down and
store it symbol by symbol in a string array, and perform
the reverse operation. A large class of symbol manipula-
tion problems can be performed efficiently by splitting
input strings into a number of strings consisting of one
symbol each and storing these in an array.

The following advantages would be gained by in-
corporating the additions.

(i) Simple string manipulation programs could be
written in AvrgoL. Programs have been written in GAT,
which is a subset of ArLcoL as extended, to formally
differentiate, prove theorems, transpose music, and
perform other such functions. ArLcoiL could be a very
powerful language for writing such nonnumeric programs.

(i1) It would be possible to output variable alphabetic
information, for instance information input as data. This
is not possible in ArLcoL as it stands.

(iii) Algorithms involving multiple branching and
sentinels could be better expressed. Consider the situation
when a variable or its value can be in three or more possible
states (for instance, the value of an integer variable being
prime of form 4n+1, prime of form 4n—1, or non-prime,
or, to take an example from an algorithm to be used in our
ArgoL translator, the type of a variable being real,
integer (or string) or Boolean). At one point in the pro-
gram the state is found and later the program branches
according to this state. At present a numerical indicator
must be used for the state, for example, taking the values
0, 1 or 2. A branching statement might read in present
notation:

if type = 0 then - else if type = 1 then - - else ‘- ;

The meaning of this statement could be appreciated
much more readily if it were written using the additions:

if type = ‘real’ then --- else if type = “Unieger’ then --- else - ;

In addition, anywhere a sentinel (i.e. a numerical
variable whose value is meaningless as a number but is
used to convey information) is used, it would be useful to
make it a string variable. When a sentinel has only two
values a boolean variable (e.g. one named “number is
prime”’) can be used. This is primarily an improvement to
ALgoL in its role as a publication language for algorithms.

We think it would cost virtually nothing to build our
additions into a translator. Presumably, on encountering
a string a translator encodes it into the internal alpha-

Communications of the ACM 169

