imation for digital computers. R-264,
A

- Nawk 123, 5 (1958;.
S H. Ersvax
Frankjord Arsenal
Philadelphia 37. Pa.

REALIZING BOOLEAN CONNECTIVES O\
THE IBM 1620

The IBM 1620 (Mod 1) performs its addition by automati
table lookup to a table stored in core storage. Since the contents
» table may be changed under program control, several
esting and powerful operations may be obtained in a simple

1
manner (11

One such class of operations is the 16 Boolean eonnectives of
two variables. Assume the simplest representation of operand
bits—each operand bit is stored as one IBM 1620 digit (extension
of the principles discussed here to more dense packing of up to
three bits per digit is straightforward). Any of the 16 Boolean
connectives of two variables may be represented as a four-bit
string which gives the truth table for the connective. For example,
the connective NoR can be represented by the truth table.

Operand Operand
Bit 4 Bit B Function
0 0 1
0 1 0
1 0 0
1 1 0

The coding of eonnective Nor would then be 1000. Table 1 gives
encodings for all 16 Boolean connectives.

TABLE 1. Excopine oF Booreax CONNECTIVES

Encoded

Description of Connective Symbolic Connective
0 0 0000
Aaxp B AANAB 0001
A axp (ot B) AANB 0010
A A 0011
(xor A) Axp B AAB 0100
B B 0101
A ExcLUSIVE OR B (A # B) 0110
AorB AV B 0111
A ~xor B AVB 1000
A EQuarL B (A = B) 1001
Not B B 1010
A or (xoT B) AVB 1011
NoT A A 1100
(xoT A) OR B AVB 1101
~or (A axp B) AAB 1110
1 1 1111

A general subroutine may be written which contains as linkage
parameters (1) the address of operand A, (2) the address of oper-
and B, (3) the connective coded as shown in Table 1, and (4) the
return location from subroutine.

The subroutine itself consists of the following parts:

L. Access of linkage parameters (this may be done by the linkage
itself)
- Replacement of a portion of the addition table (e.g., four
digits) by the encoded connective
3. App instruction, which now performs the connective operation
on the addressed fields
4. Restoration of the original addition table

(33
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J. WEGSTEIN, Editor
Eprror’s Nore:  Algerithm 152 is printed here as it should have
appeared.
ALGORITHAL 152
NEXCOM
Joux Horrey
Peat, Marwick, Mitchell & Co., London, England

procedure nexcom {char, N, sctcomplete, nullvector);

arrcay char; integer \;

label setcomplete, nullvector;

comment char is a column vector containing N elements each of
which is either 1 or 0. Nexcom transforms char into another
vector containing the same number of 1’s and 0's, but in a differ-
ent sequence. Starting with char in the state of having 1 in each of
the element positions 1, ..., » and zeros elsewhere then repeated
application of nexcom generates all *Cr patterns of char. The
procedure terminates if the presented vector char has 1 in each
of the positions N, V1, ... N —r-+1 and zeros elsewhere. Termi-
nation is indicated by exit through the formal label ‘setcomplete’ .
If char is the null vector then procedure exists through the
formal label ‘nullvector’;

begin integer n, p, m;

comment find the first 1 in char;

for n := | step | until N do if

char fn] = | then go to A;

zo to nullvector;

comment how many adjacent 1’s;

A p =05

for m := n + 1l step 1 until N do

if char [m] = 1 then p := p + 1 else go to B;

comment Have all combinations been generated;

B: if p 4+ n = N then go to selcomplete;

comment Set up next combination; char{n+p+1] = 1;
for m := n + p step — 1 until n do char {m| := 0;
for m := 1 step | until p do char m| := 1;

end nexcom H

5. Branch out of the subroutine

A routine of this type has been written for the IBM 1620.

The particular functions or or EXcLUSIVE OR may also be ob-
tained by replacing only a single digit in the App table rather than
the four digits required by the above generalized routine. This
will be faster than realizing these functions using the general
subroutine.

The function ot may also be obtained by subtracting the
argument field from a field of all 1’s. The result replaces the field
of 1’s. Sinee the two connectives xot and or suffice to find all
others, for short field lengths it may sometimes be faster to use
these routines rather than the general routine.

REFERENCE:

1. Gersox, GG. On modifying the 1620 add table. IBM Systems J.
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International Business Machines Corp.
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ALGORITHM 184

ERLANG PROBABILITY IFOR CURVE FITTING
A. CoLkER

U. 8. Steel Applied Research Laboratory

Monroeville, Penn.

procedure ERLANG (X, XO, M, VARS, C, FACTORIAL, P);
value XO, M, VARS, C'; integer ('; real array X, P;
integer procedure FACTORIAL;
comment Computes the rlang probability for the <th interval
by fﬁﬂ":c‘)dx — fzi”‘fﬂc)d:c where flz) = + [(Ku&/(K—1)]
o) leTEETED) whore wo= 1/M, K= (M—X)2VARS is
the upper boundary for the class intervals, X, is the lower
boundary of the first class interval, M is the mesn of the F-
lang, VARS is the variance corrected by Sheppard’s correction,
(' is the number of class intervals and 7°; is the calculated
probability;
begin
integer I,.J, K, F; real array XE[0 : C];
for [ := 1 step 1 until €' do
XEI := X[I] - XO;
XEI0] := 0;
ME = M — XO;
K := 05+ (MET2)/VARS;
U := K/ME;
SP := 0;
for [ := 1 step | until C do

begin
SUML := (;
SUM2 := 0;
for J := 0 step | until K — 1 do
begin
[ o= FACTORIAL (J);
Zl = U X XE[{-1];
SUM1 := SUM1 + (Z11)/F;
Z2 = U X XE[l};
SUM2 := SUM2 + (Z210)/F;
end J;
PlI] := SUM1 X (EXP(—UXXE[I-1))) — SUM2
X (EXP(-UXXE[I));
SP := 8P + P[l];
end [;
PCH+1] := 1.0 — SP;
end Erlang

ALGORITHM 185

NORMAIL PROBABILITY FOR CURVE FITTING

A. CoLkER

U. 8. Steel Applied Research Laboratory

Monroeville, Penn.

procedure NORMAL (X, M, VARS, C, HASTI NGS, Py;

value M, VARS, C; integer C; real array X, P;

real procedure HASTINGS;

comment Computes the normal probabilities for the ith interval
by [5 fle)dr — [8-" fx)dx where f(x) is Hastings’ approxi-
mation to the normal interval. Hastings’ formula is

4’(‘\':”') = %[1 - (1 +al-'\'ni+(l24\’ii+d:;Xii+al<\yii+(ls- "l;)“sl

where a; = 0.09979268, ay = 0.04432014, a; = 0.00969920,
as = —0.00009862, and a; = 0.00058155. The X,,; are normalized
boundary values of X; where X,; = (X;—M)/ V' VARS, where
M is the mean and V" ARS is the variance corrected by Sheppard’s
correction, C is the number of class intervals and P; the calcu-
lated probability;
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begin

integer /; real arravy YN {1
for/l = lstep luntil Cdo A0
Pl =05 — HASTINGS (1BS:

for I := 2 step | until £ do

begin

< 0 then

= HASTINGS (ABSIAXN{T 11 — HASTINGS
(ABSIX NI else
begin

i OXNUI>0) A (XNT—1]<0;
then P[] := HASTINGS (NN[]) + HASTINGS

(ABSXN[I—11); else
PUY = HASTINGS (XN} — HASTINGS (XN{I—1}3;
end;
end [;

PCH1] o= 05 — HASTINGS (XN{C;
end NORM AL

ALGORITHMI 186

COMPLEX ARITHMETIC

R. P. vax pE RieT

Mathematical Centre, Amsterdam, Holland

procedure Complex arithimetic (a, b, R, r);
a, b, R, r;

comment This procedure assigns the value a? + b2 to R and the
value (a+ib)/(a—ib) to r, where a, b, R and » are complex
numbers. These two arithmetic expressions are of course fully
arbitrary. They serve only to demonstrate the use of the pro-
cedures P, Q, 8, T, J and U. With them one can build up any
arithmetic expression with complex variables, us easily as one
can form them with real variables in ALgor 60 (As one sees
immediately these procedures can easily be extended for use
quaternion arithmetic or general vector and tensor caleulus).
We focus attention tothe value call of the procedure-parameters,
which is essentiaul. Furthermore, we notice that the depth or
height of the accumulator H is the number of right-handed
brackets placed one after another not counting the brackets

which occur in parameter-delimeters. It is perhaps superfluous to

mention that this procedure was tested on the X1 computer of the

Mathematical Centre.;

begin integer 7, k; array H[1:41:2];
integer procedure P(, j); value, j; integer 1, j;
comment P forms the product of the 7th and jth element of #;
beginreal a; k:=k — 1; a:= H[, 1] X H[j,1] — Hi, 2!

X H{j,2]; Hk, 2] := Hli, 1] X Hlj, 2] + H[7, 2] X
H{j, 1; HEk,1l:=a; P :=Fk

value a, b; array

end;
integer procedure Q(7, 7); value<, j; integer 1, j;
comment Q forms the quotient of the ¢th and jth element of H ;
begin reala,b; k:=k — 1; b:= H[;, 1|12+ H[;,2] 1 2;
a = (H[¢, 11X H[j, L1+ H{i, 21X H[j, 21 /b;
Hik, 2] := (HU, 21X H[j, 11— Hli, X H[j, 2))/b;
Hk, 1) :=a; Q =k
end;
integer procedure S(7, j); value<, j; integer ¢, j;
comment S forms the sum of the 7th and jth element of H;
begin k := k — 1; H[k, 1] := H[i, 1] + H[j, 1];
Hik, 2] := H{z,2] 4+ H[;,2); S:=k
end;
integer procedure 7'(a); array q;
comment 7 assigns to the k+1th element of H the complex
variable a;
begin k := k + 1; Hk, 1] := all]; HE, 2] :=al2); T :=F
end;
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integer procedure J (U, expi); integeri; real expi;
comment ./ assigns to the (k+1)th element of H# & complex
variable which is decomposed in veal and imaginary part;
begin kb = b+1; =1 Hik, 1] == expi; 1 1= 2;
Hlk, 2] 1= expr;
J

fl
e

end;

procedure Ui, B); valuei; integert; array R;
comment U assigns to I the 7th element of H;
begin B[L] := H[, 1]; R[2]:= H[,2]; k:=0end;

ko= 0; U@ (@))times:(T()))plus:(P(T{h))times:
(TN, B);
comment (aXa) + X)) =: B; UQES(T(a) plus:

(P(J (@, i—1)) times: (T'(b)))) divided by: (8(T'(a))
plus: (P(/ (2, 1—1)) times: (T(h)))), 7);
comment (a-+(EXb))/(a+(~iXb)) =:r;
end Complex Arithmetic;

The contents of this Algorithm are published in the Technical
Note TN 27, Mathematical Centre, Nov. 1962.

ALGORITHM 187

DIFFERENCES AND DERIVATIVES
R. P. van pr Rrier

Mathematical Centre, Amsterdam, Holland

begin real ; integer i, k; array A[l : 50];

comment This program calculates, only to demonstrate the
procedures DELT A and DER, the third derivative of the expo-
nential function with a sixth order difference scheme. We do
not propose to use these procedures in actual caleulations, for
as we observed with the X1 computer of the Math. Centre, they
work, but very slowly as a consequence of the strong recursive-
ness of the procedures. In actual programming one has to take
the trouble to write out the well-known formula of Gregory, or
for higher derivatives to multiply this formula a number of
times by itself, then one has to eollect the same function-values.
All this trouble is taken over by the computer if one uses the
procedures described below. My purpose, however, in publishing
these procedures lies not in the numerical use but in a demon-
stration of the flexibility of AraoL 60, if one uses the recursive-
ness property of procedures.;

real procedure SUM (i, h, k, ti); value k; integer i, k, h;
real {i;
begin reals; s:=0; fori:=hstepluntilkdos:=s+ t;
SUM := s
end;

real procedure DELT A (N, k, k0, fk); value N, k0; real Ik;

integer N, k, %0;

comment N is the order of the forward difference which is
caleulated from a set of function-values with equidistant
parameter-values;

begin integer 5
DELTA = if N = 1
then SUM (&, k0, k041, (—1)T(k+1—k0)Xfk)
else DELTA (1,4,k0, DELTA (N—1, k, 1, fk))
end;

real procedure DER (OR, N, h, k, kO, fk); value OR, N, h, k0;
veal fk, h;

integer OR, N, k, kO;

tomment.  OR is the order of the derivative, calculated from a
given set of function-values fk), with equidistant parameter-
values, the error is of the order b T (N41-0R), where h is the
steplength. k0 is the point where the derivative is caleulated;
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begin integer 1;
DER := if OR = 1
then SUM (i, 1, N, DELT A, k, k0, fk)
X(=DTGE+1)/1)/h
else DER(1, N+-1—0R, h, i, k0, DER(OR~1, N—1, h,
k7, 1k))
end;
for i := 1 step 1 until 50 do A[i] := exp(2/50);
t;(l)r 1 := 1 step 1 until 25 do Afi] := DER(, 6, .02, k, 1, A[E])
en

The contents of this Algorithm are published in the Technical
Note TN 27, Mathematical Centre, Nov, 1962

ALGORITHM 188

SMOOTHING 1.

F. Roovricuez-Giv

Central University, Caracas, Venezuela

procedure Smooth 13(n, z);
integer n;
real array z;
comment This procedure uses Gram’s first-degree three-point
formulas, as described in Hildebrand’s “Introduetion to Nu-
merical Analysis,”” Ch. 7, to smooth a series of n equally spaced
values. If the procedure is entered with less than three points,
control is transferred to a nonlocal label error;
begin real array zp[l : n]; integer ¢;
if n < 3 then go to error;
for i := 1step 1 until n do 2p{i] := z[i];
x{l] := 0.83333333 X zp(l] + 0.33333333 X 2p[2] — 0.16666667
X zpl3];
for i := 2 step 1 until n — 1 do =[] := (zpli—1]+zpli]
+ xpli+1]) X 0.33333333;
zln] = — 0.16666667 X ap[n—2] + 0.33333333 X zplr—1]
+ 0.83333333 X zpln]
end Smooth 13

ALGORITHM 189

SMOOTHING 2

F. Roprigurz GiL

Central University, Caracas, Venezuela

procedure Smooth 35(n, x);
integer n;
real array z;
comment This procedure is similar to Smooth 13, except that
Gram’s third-degree five-point formulas are used, and that a
minimum of five points is needed for a successful application;
begin real array zp[l : n]; integer ¢;
if n < 5 then go to error;
for ¢ := 1 step 1 until n do zpli]:= z[i];
z{l] := 098571429 X xp(l] + 0.05714286 X (xp[2]+-zpl4])
— 0.08571429 X xp[3] — 0.01428571 X zpl5);
z[2] = 0.05714286 X (zp[l}+ap[5]) + 0.77142857 X zp{2]
+ 0.34285714 X xp{3] — 0.22857143 X zp4);
for{ := 3step Luntil n — 2dozli] ;= — 0.08571429 X (xp{i—2]
+apli+2]) + 0.34285714 X (wpli—1]+ep(i+1]) + 0.48571429
X xplil; ‘
aln=1] := 005714286 X (xp[n—4]+aplnl) — 0.22857143
X xp[n—3] 4 034285714 X apln—2] + 077142857 X zpln—1};
aln] = — 001428571 X apln—4] + 005714286 X (vp[n—3]
+epln—1]) — 0.08571429 X xpln—2] + 0.98571420 X zpln]
end  Smooth 35
387
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COMPLEX POWER

A. P. RerLeu

The English Electric Co. Ltd., Whetstone, England

procedure Complex power fa, b, ¢, d, n, ,y);
reala, b,¢,d, z,y; integer n;

comment This procedure caleulates (x+iy) = (atib) * (¢c+id)
where 7 is the root of —1. [n the complex plane, with a cut along
the real axis from 0 to — =, p is the sum of the principal value
of the argument of (¢+ib) and 2nr (n is positive, negative or
zero depending on the solution required). arctan is asswmned 1o
be in the range —=/2 to /2. The case n = 0,d = 0 is given by
Algorithm 106;

begin real p, v, v, w;

ifa = 0 then begin if # = 0 then begin z = y = 0;

value a, b, ¢, d, n;

go to [ end
else p = 157079633 X
(stgn{b)+4Xn)
end
else begin p 1= 6.28318532 X n + arctan(b/a);
if « <0 then begin ifb = 0 then
p = p + 3.14159265

else
p = p — 3.14159265
end

end;
roo= 5 X n@2+b12); v i=c¢ X p +d X
w = expleXr—dXp};
z = w X cos(v); y = w X sitn(v);
L: end

ALGORITHM 191

HYPERGEOMETRIC

A. P. Rerpu

The English Electriec Co. Ltd., Whetstone, England

procedure Hypergeomelric (al, a2, b, b2, cl, ¢2, 21, 22) Results:
(s1, s2); valueal, a2, b1, b2 cl, ¢2, 21, 22; realal, a2, b1, b2,
cl, 2, 21, 22, s1, s2;
begin comment caleulates the hypergeometric function
1F2(a, b, ¢, z) with complex parameters (e=al4-a2,
ete);
real d, yl, y2; integer n;
procedure comp mult (al, a2, b1, b2, cl, ¢2); value al,
a2, b1, 2; real al, a2, bl, b2, ¢cl, ¢2;

begin comment calculates the product of the two
complex numbers (el+ia2) and (b1+4:62)
where 7 is the root of —1;
el = al X bl — a2 X b2; ¢2 := a2 X bl +
al X b2
end;

sl =yl :=1; s2:=y2:=0;

for n := 1 step 1 until 100 do

begin d := n X ({cl4+n—1)T24¢272);
comp mult (al+n-—1, a2, yl/d, y2/d, yl, y2);
comp malt (yl, y2, bl+n—1, b2, y1, y2);
comp mult (Y1, y2, el+n—1, —c2, yl, y2);
comp mult (yl, y2, 21, 22, y1, y2);
if s1 = sl + yl As2 = s2 + y2 then go to L;
sl ;= sl + yl; s2:= 2+ y2

end;

L: end
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ALGORITH N 192
CONTLUENT HYPERGEOMETRIC
A P Revpws

procedure Confluent hypergeometiic i
Result :
veal al, a2, ¢l ¢2 21, :2

(s, 82); walue al, a2. ¢, 2. 21,

=1, 52,
begin comment calceula the confluent hypergeometric 1.
tion 1F1(a, ¢, zj with complex purameters
la=al 412, etc};
real d, 41, y2; integer n;
procedure comp nult (al, a2, b1, b2, ¢l c23;
value al, a2, b1, h2;

veal al, a2, b1, b2, o1, ¢2;

begin comment caiculates the product of the 1.
complex numbers {al-4+ia2; and h1=002
where 7 is the root of —1;

¢l i=al X bl — a2 X b2

2 = a2 X bl 4+ al X L2

end;
shi=yl ;= 1; = y2 = (;
for n := step | until 100 do
begin = n X ({cl-+n—11724¢272);
comp mult {al-+n—1, a2, yl/d, y2/d, yt. 2
comp mult (yl, y2, el4+-n—1, —c2, yl, 42
comyp mull (yl, 42, 21, 22, y1, 42);
if sl = sl + ylA )+ y2 then go ta !
s o= s1 -+ yl; 2 =52 4+ 2
end;

L: end

ALGORITHNMN 193

REVERSION OF SERIES

Hexry E. Ferrs

Aeronautical Research Laboratories, Wright-Patterson A
Force Base, Ohio

procedure SERIESRVRT (A, B, N);

value 1, N; array A, B; integer \';

comment This procedure gives the coefficients Bl7] for the
=y + ZBl{] X yTiE=23, -, n when the coe
Ali] of the seriesy = x + T[] X & 717 are given. The pre
uses suecessive approximations after writing yz. .
yr 1i (1=2,3, -, L+2and L=0,1, --- .
Yo = ZT;

begin integer 1, j, k, m;
array Q, 2 [0 : N];
real s;

A1} := BIO] :=0;
13

B[] :=
for k := 1 step 1 until N — 1 do
begin Blk+1] := 0;
for ¢ := 0 step ! until £ + 1 do
Rii} := 0;

for j := k + 1 step — 1 until 1 do
begin Q0] := R[0] — A[j];
for i := 1 step | until k£ + 1 do
Q] := RI];
for i := 0 step |l until & + 1 do
begin s := 0;
for m = 0 step 1 until ¢ do
s 1= s + Bln| X Qli—ml;
R[i] := s
end for 1;
end for j;
for i := 2 step 1L until k¥ + 1 do Blil := Rli]
end for k;
end SERIESRVRT
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REMARK ON CERTIFICATION OF MATRIX
INVERSION PROCEDURES

CrLeve Morer

gtanford University, Stanford, California

(Work supported, in part, by National Seience Foundation, and

by Office of Naval Research under Contract No. 225(37).)

In a recent certification [1], two matrix inversion procedures
were tested by inverting machine-generated Hilbert matrices and
comparing the results with the theorctical inverses. As has been
pointed out elsewhere [2], this is an inappropriate and deceptive
test. We give here a further diseussion of the difficulties involved.

Hilbert matrices, even of low orders, are so poorly conditioned
that the small errors created by truncating or rounding their
elements to fit a computer word cause severe changes in their
inverses. The results of an inversion procedure should therefore
be compared with the true inverses of these modified input
matrices, rather than with the inverses of the unaltered Hilbert
matrices.

To be more specifie, let H, denote the n X n Hilbert matrix
defined by (Ho)i.; = 1/(+i—1), 4,5=1,--- ,n. Let HY denote
the matrix of normalized floating-point numbers with b-bit frac-
tions obtained by truncating the binary expansions of the ele-
ments of H, . That is, (H)e; = 2752 (H,)e ;] where [z] is
the greatest integer not exceeding x, and & is the integer for which
1< 22(H,); < 1. Let T, and 7' denote the true inverses of
H, and H respectively.

Table 1 gives the maximum elements of T', and T, for several
values of n and b. It should be noted that the differences between
T, and T8 are about the same size as the “errors” found in [1],
where a 29-bit fraction was used. This 1s typical: the changes
caused by the truncation of input data are often as large as the
errors caused by numerical inversion.

With the true inverses of HY available, it is possible to use
these matrices to test the procedures Inversionll and gjr discussed
in [1]. InversionlI is a partial pivoting routine; i.e. at each step
of the reduction a single column is searched for the pivot of
greatest absolute value. gjr uses full pivoting; i.e. the entire
unreduced matrix is searched for pivot at each stage. In addition,
two experimental modifications were made to gjr to cause partial
pivoting and no pivoting, respectively. The four routines were
run on an IBM 7090 using SuBaLcol (Stanford-Burroughs ALGcoL)
and ForrraN. For a 7090 one has k = 27, so the results were com-
pared with 79", The maximum errors are tabulated in Table 2.
For n z 8, the results are dominated by errors. Table 2 also gives

TABLE 1. 7% is the true inverse of the b-bit
approximation to the Hilbert matrix.

Maximum Element

" W e T3 T T,
4 6480.224 6480.046 6480.015 6480.000 6480
5 179273.60  179246.94  179207.51  179200.08 179200
6 4492480.8  4434355.1 4414530.4  4410074.9 4410000
7T 1985.829:05 1340.502:165 1347.187w5 1334.385105 1334.025106
8 58864.37105 27268.01:105 54260.62105 42527.95105 42499.42105
10 — — — —5.07012  3.481012
TABLE 2. Error matrices are the differences between
78 and the output of the procedures.
Maximum Element of Error Matrix Maximum
No Pivoting  Partial Pivot- Full Pivoting Element
. ing . Tﬁ”) — Th
" eir ghr ghr Inversiond]
3 424 -5 50w—5 420—35 — 8610 — 5
t 220—-2 360—2 3902 1.9 — 2 4.610 — 2
5 2051 0.31101 1.2101 0.51101 4.5l
6 0.27.04 L1t 0.35104 1.7:04 0.065104
T 1.947 2.8107 1.2107 2.3107 0.06507
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the maximum element of 77 ~ 7, for comparison with the actual

errors.

Note that for n = 4, InversionIl gives the least maximum
error, while for n = 5, 6, 7 the best routines are partial pivoting
gsr, no pivoting gjr and full pivoting gjr, respectively. Thug these‘
results do not indicate the superiority of either a full or g {)artial
pivoting strategy. An explanation is supplied by the fact that
H{" is positive definite for the values of and b considered.
Wilkinson’s matrix inversion error bounds are not altered by the
omission of pivoting for positive definite matrices [3]. The need for
at least partial pivoting for general matrices can, of course, be
clearly demonstrated by simple examples.

The matrices T4 were calculated with an iterative improve-
ment technique described and analyzed in [4]. They are correct to
the number of figures given. The routine used is similar to that
given by McKeeman (5], except that multiple precision arithmetie
is used.
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CERTIFICATION OF ALGORITHM 105 ,
NEWTON MAEHLY [F. L. Bauer and J. Stoer, CoMu.
ACM, July 1962]
Joanne Koxpo
Burroughs Corp., Pasadena, Calif.
Algorithm 105 was suceessfully run on Burroughs 220 computer
after the following correction had been made:
for i := 0 step 1 until n — 1 do bi] := (n—1) X ali]
changed to
for i := 0 step 1 until n—1 do b[f] := (n—1) X alt].
The following polynomials were tested for real roots using this
algorithm:

polynomial epsilon accuracy
) 2 — 22 — 52 + 6 0.0000001 1078
(2) 25 — 15z% + 852% — 22522 + 2742 — 120 0.000001 103

A contribution to this department must be in the form of
an Algorithm, a Certification, or a Remark. Contributions
should be sent in duplicate to the Editor and should be
written in a style patterned after recent contributions
appearing in this department. An algorithm must be written
in ALcoL 60 (see Communications of the ACM, January
1963) and accompanied by a statement to the Editor indicat-
ing that it has been tested and indicating which computer
and programming language was used. For the convenience
of the printer, contributors are requested to double space
material and underline delimiters and logical values thqt
are to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values. )

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the Editor, or the Association for Computing
Machinery as to the accuracy and functioning of the a!-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the Editor, or the
Association for Computing Machinery in connection there-
with.
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CERTIFICATION OF ALGORITHMS 134 AND 158
EXPONENTIATION OF SERIES [Henry K. Pettis,
Comm. ACM, Oct. 1962 and Mar. 1963]
Henry C. Tuacuer, Jr.
Reactor Engineering Div.,
Argonne, Il
Work supported by the U.S. Atomic Energy Commission.

Argonne National Laboratory

The bodies of SERIESPWR were transcribed for the Dart-
mouth Scarr processor for the LGP-30 computer. In addition to
the modifications required by the limitations of this translator,
the following corrections were necessary:

1. Add “real P;” to the specifications.

2. Delete “p,” from the declarations in the procedure body.

3. (134 only) Replace “S” by “g" and [i—k] by “(@—~k)” in the

statement S := s + -

4. (158 only) Changes last sentence of comment to “Setting
P = 0 gives the coefficients for in(f(zx)). In this series, the
constant term is 0, instead of 1 as elsewhere;”

. (158 only) Add the identifier P2 to the declared real variables.

. (158 only) Make the first statements read:

“if P =0then P2 :=1 else P2 := P;
B[1] := P2 X Afl]; -
(158 only) Make the statement of the for k loop read

oy e

~

“8 1= S+ (PX (i—k)~k) X Blk] X Ali—k];”

8. Change the last statement to
“Blt] := P2 X A[{] + S/i end for ¢;

In addition, the following modifications would improve the

efficiency of the program:

1. Remove A from the value list.

2. Omit the statement B{l] := P X A[l]; (P2XA[l] in 158
according to correction 6) and change the initial value of 4
in the statement following from 2 to 1.

When these changes were made, both procedures produced the
first ten coefficients of the series for (exp(x)) T 2.5 from the first
ten coefficients of the exponential series. The procedures were
also used to generate the binomial coefficients by applying them
to (14+z)f, for P = 2.0, and 0.5000000. Algorithm 158 was also
tested with P := 0 for 142 and for the series expansions for
(sin x)/z, cos z, and exp z. In all cases, the coeﬂlclents agreed
with known values within roundoft.

REMARK ON ALGORITHM 150

SYMINV2 [H. Rutishauser, Comm. ACM, Feb. 1963]
ArTHUR Evans, Jn.

Carnegie Institute of Technology, Pittsburgh, Pennsyl-
vania

The identifier ‘e’ appears twice in the procedure heading as
a formal parameter. It is not clear that this situation has any
meaning in ALaoL. Indeed, it is not at all obvious how one might
translate the procedure. If the actual parameters corresponding
to the two formal parameters with the same identifier are different
there is no way for the translator (or for the reader) to distinguish
which ‘a’ is to be used. Further, it would take a detailed examina-
tion of the published algorithm to determine how this situation
might be corrected. It is certainly not elear that it would be safe
merely to delete one oceurrence of the formal parameter ‘@’, since
the operation of the algorithm might require that two separate
matrices be available,
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REMARK ON ALGORITHM 150
SYMINV2 [H. Rutishauser, Comm.
H. Rurisuavsir
Eidg. Technische Hochschule, Zurich, Switzerland
procedure syminy 2 (a, n) result : (@) exit : (fail); ..
dicates that the value of parameter “a” is changed by the com.
puting process (the matrix « is changed into its inverse, wherehy
the given matrix is destroyed). In any procedure call, the twg
actual parameters corresponding to the two a’s must be 1dentical,
otherwise the action of the procedure will be undefined (by virtue
of the substitution rule). The user may also change the procedure
heading into syminv 2 (a, n) exit : (fail); - without changing
the effect of the procedure.

ACM, Feb. 1963

Eprror’s Note: The ALCOR group has adopted the rule that
if the value of a parameter is changed by the execution of the
procedure, then the parameter should be listed twice. Although
the Arcor 60 Report does not forbid listing a formal parameter
twice, it would appear that a compiler which thus restricts the
language could not accept some of the examples given n the
AvrcoL 60 Report.

REMARK ON ALGORITHM 177

LEAST SQUARES SOLUTION WITH CONSTRAINTS
[Michael J. Synge, Comm. ACM, June 63]

Micaann J. Synee

The Boeing Co., Transport Division, Renton, Wash.

In row-reducing the constraint equations, CONLSQ does not
use full pivoting nor does it deteet redundancy or inconsistency
of the constraints; it was felt that the constraints were likely
to be few in number and well-conditioned. However, these omis-
sions may be made good by replacing the statement

ick = ick + 1;
by

done: ick 1= ick + 1;

and substituting the lines below for the first seven lines of ¢he
first compound statement of CONLSQ. If inconsistency is found,
the procedure exits to the nonlocal label inconsistent. A roundoff
tolerance, eps, is used in checking consistency, and some numerical
value (e.g. 107%) should be substituted for it.

begin integer i, j, k, (15, ick, mr; integer array ic[l:m}
array B[l : n—r, 1 1 m—r];
real Amazx, Alemp;
for ¢z := 1 step 1 until r do
begin k := 1; mr :=1; Amazx :=
for i1 := ¢ step 1 until m do
begin for j := 1 step 1 until m do
begin if abs(Amax = abs(A[iZ, j]) then go to nogo;
mr = 1t; k:=j7; Amax = A, j];
nogo: end j
end 7;
if abs(Amazx) = eps then go to allswell;

Alz, 14,

mr 1= 1;
test: if abs(y[mr]) = epsthen go to inconsisient else mr 1= 17 +15
if 7 = mr then gotolestelser := 1 — 1;
go to done;
allswell: for j := 1 step 1 until » do

begin Atemp := Almr, j1; Alme, 7] := A, i}
Ale, 5] 1= Atemp/Amax
end j;

Atemp = ylmr]; ylme] := yli]; yli] := Atemp/Amaz:

The Algorithm then continues with the line:
for iz := 1 step 1 until r do
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