The actual choice of n and M for a given precision is left for the
individual programmer. Programmed for the GE-225, accurate
answers of tan™ 1 = 7/4 were obtained for double precision in
comparison with the known values. The semiiterative method can
be programmed in a very short time for any multiple precision and
is efficient in comparison with taking more terms of the Taylor’s
series, taking into account the divisions required for the square
root process. Telescoped Taylor’s series may be used if desired,
but a shorter telescoped Taylor’s series can be used if the semi-
iterative scheme is employed. Telescoping, however, is expected
to take more storage for the coefficients than a simple truncated
series. Telescoping also discards the advantage of flexibility and
applicability to n-tuple precision programs.

REFERENCES:

1. NarionaL BuUrBAU OF STANDARDS. Table of Circular and
Hyperbolic Tangents and Cotangents for Radian Arguments.
Columbia Univ. Press, New York, 1947.

2. NatioNaL BUREAU oF STaANDARDS. Table of Arctan X, U. 8.
Government Printing Office, Washington 25, D. C.

3. Lance, G. N. Numerical Methods for High-Speed Computers.
Iliffe & Sons, Ltd., London, 1960.

4. BeMer, RoBERT W. Techniques Department: Editor’s note.
Comm. ACM, 1, 9 (Sept. 1958).

WeN-Hwa CuU

Donarp R. SAATHOFF
Southwest Research Institute
San Antonio, Texas

A contribution to this department must be in the form of
an Algorithm, a Certification, or a Remark. Contributions
should be sent in duplicate to the Editor and should be
written in a style patterned after recent contributions
appearing in this department. An algorithm must be written
in ALgoL 60 (see Communications of the ACM, January
1963) and accompanied by a statement to the Editor indicat-
ing that it has been tested and indicating which computer
and programming language was used. For the convenience
of the printer, contributors are requested to double space
material and underline delimiters and logical values that
are to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the Editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the Editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

Volume 6 / Number 9 / September, 1963

J. WEGSTEIN, Editor

ALGORITHM 202

GENERATION OF PERMUTATIONS IN LEXICO-
GRAPHICAL ORDER

Moxk-Kona SHEN

Postfach 74, Miinchen 34, Germany

procedure PERLE (S, N, I, E);
integer array S; integer N; Boolean I; label E;
comment If the array S contains a certain permutation of the
N digits 1, 2, ---, N before call, the procedure will replace
this with the lexicographically next permutation. If initializa-
tion is required set the Boolean variable I equal true, which
will be changed automatically to false through the first call,
otherwise set I equal false. If no further permutation can be
generated, exit will be made to E. For reference see BIT 2
(1962), 228-231;
begin integer j, u, w;
if I/ then begin for j = 1 step 1 until N do S[j] := j;
I := false; go to Rose
end;
w = N;
Lilie: if S[w] < S[w—1] then
begin if w = 2 then go to E;
w:=w— 1; go to Lilie
end;
u = S[w—1];
for j := N step —1 until w do
begin if S[;] > u then
begin S[w—1] := S[];
S5l := u; go to Tulpe
end
end;
Tulpe: for j := 0 step 1 until W—w—1)/2 + 0.1 do
begin u := S[N—j];
S[N—3] := Slw+s]; Slw+j] := u
end;
Rose:
end PERLE

ALGORITHM 203

STEEP1

E. J. WASSCHER

Philips Research Laboratories

N. V. Philips’ Gloeilampenfabrieken
Eindhoven-Netherlands

procedure STEEP1 (Ib, xs, ub, dz, xmin, fmin, n, eps, relax, demaz,
eta, pst, pmax, zeta, FUNK);

value dz, n, eps, relax, demaz, eta, pst, pmaz, zeta;

integer n;

real fmin, eps, relax, dxmax, eta, psi, pmax, zela;

array lb, zs, ub, dx, zmin; real procedure FUNK;

comment STEEP1 is a subroutine to find the minimum of a
differentiable funetion of » variables, using the method of
steepest descent. It mainly consists of three parts: (1) a sub-

Communications of the ACM 517

routine ATIVE, for computing the partial derivatives, (2) a
subroutine STEP, for computing the components of an array
xstep[l:n], which is a new approximation of zmin[l:n], (3) the
compound tail of the procedure body. Both subroutines are
only called for once, but by writing the program in this way it
is quite easy to change the flow of the program.

Significance of the parameters: Ib(5), ub(¢) are lower and
upper bounds for the independent variables. zs(¢) is the starting
value for amin(z). zmin(i) is the computed ¢th component of
the minimum, fmin the value of the function in zmin. n is the
number of variables. eps is a small number which is a measure
of the desired accuracy—rather of fmin than of zmin(i). FUNK
(z) is the function to be minimized. The other parameters are
described in the comments on the three parts mentioned;

begin integer j; real alpha, p; array zstep, dfde, dfpr[lm];
procedure ATIVE;
begin real beta, gamma, lambda; Boolean A, B;
comment 1. A useful estimate for the derivative is
Sa+dx) —f(z—dx)
2dx
that roundoff noise dominates. This may be achieved by taking
fle+dr)—f(x—dx)
f(z)
a measure for the relative roundoff error. When | f(z)| < 1 it is
better to replace the denominator by a constant. In the program
the parameter psi is used for this purpose. The components
dz(7) are used as a first guess. When the derivative is 0, the
program enlarges dz until dz > dxmaz.

, where dx should be small, but not so small

dz such that eta < < 100 eta, where eta is

ATIVE computes dfdzx[l:n] in zmin. The previously ecomputed
partial derivatives dfpr[l:n] as well as relax are used for relaxa-
tion purposes. See comment 3. The Boolean A4 is used when
z+dx or x—dx crosses the boundary ub or lb. In that case fmin
has to be recomputed afterwards. The Boolean B is of a some-
what complicated nature. It may be seen that dr has the char-
acter of an own array for ATIVE. In the neighborhood of the
minimum this may have the following effect: A step in one
variable is taken such that f(z+dz) becomes equal to fx—dx).
Then in the next call for ATIVE dx has to be doubled, etc. By
using the Boolean B it is possible to keep dx constant near the
minimum.

A similar effect may occur in the large. When f(z) tends to a
constant for z tending to 4+« and —, then for |z | large dz
has to be taken large. It is only possible to make dz smaller in
the neighborhood of the minimum by reducing dz after each
call of ATIVE.

From the last two remarks one may deduce that the first
guess for dz(z) should be made with considerable care. Tabulat-
ing the function near the starting point may be very helpful;

begin ATIVE: lambda := 0;

tor j := 1 step 1 until = do

begin
large: A := B := false; if cmin[j] + da[;] > ub[j]
then begin zmin[j] := ub[j] — dz[j]; A := true end
else if xmin[j] — dx[5] < [f]
then begin zmin[j] := Wb[j] + dz[j]; A := true end;

small: zmin[j] := amin[j] + dz[f]; alpha := FUNK (zmin);
gminli] 1= xminlj] — 2 X dzlj]; beta := FUNK (zmin);
zminli] := zminlj] + dz[j]; if A then fmin := FUNK

(xmin);
A := false;
if alpha — fmin > 0 N\ beta — fmin > 0
then begin B := true; go to comp end;

gamma := abs((alpha—beta)/(Gf abs(fmin) < psi then
pst else fmin));

if gamma > 100 X ete then
begin dz[j] := 2 X dzlj]; go to small end;

if gamma < ela then
begin dz[j] := 2 X dz[j]; if dz[j] < drmax then

518 Communications of the ACM

go to large else dz[j] := drmax end
comp: dfdx[j] := (alpha—bela)/ (2 X dz[5]);
lambda := lambda + dfdz[5]17 2;
if — B then dz{j] := .5 X dz[j]
end for; lambda := sqrt (lambda);
for j := 1 step 1 until » do
dfdz[j] := dfdx[j]/lambda
end procedure ATIVE;

procedure STEP;

comment 2. A step is taken in all variables at the same time.
The order of magnitude of the step in one variable should be
of the order of magnitude of this variable. To accomplish this
three weighting factors are given to the partial derivatives:

n 6f 2\ -3
A= (Z} (g)) (see subroutine ATIVE),
2) | i |, or when small, zela,
3) a number p, which is put equal to 1 at the beginning of the
program and which tends to 0 at the minimum.

After a decrease of the function the step is accepted and p is
multiplied by 1.5. After an increase p is divided by 2. pmaz
replaces p when p becomes greater than pmaz;

begin for ;7 := 1 step 1 until »n do

begin alpha := (1—relazx) X dfdz[;] + relax X dfprljl;
astep[j] 1= xmin[j] — p X alpha X
(if abs(xmin[j]) < zeta then zeta else abs(zmin[s]));
dfpr[i] := alpha;
if xstep[;] > ub[j] then zstep[j] := ub[j]

else if zstep[;j] < Ib[j] then zstep[j] := 1b[s]

end for

end STEP;

comment 3. In the next part—the compound tail-—the calls for
ATIVE and STEP are organized. The values 1.5 and .5 of the
factors of p are not very important. During the iteration p gets
an optimal value, which slowly varies. Only at the end p rapidly

241
tends to 0. The programme was tested on the functions v+

224+1
(z—y)2—2 . .
and ————, the latter being the first one except for a rotation
(w+y)2+2

of the zy-plane over w/4 radians. In the first case a “‘gutter’”

lé]
coincides with the z-axis, while for z > 0 and |y | 2 1 a—f s 0.
Iz

In the second case, where the gutter is along the line z=y, the
relaxation is especially interesting, because with relax = 0
(and pmaz=100) the iteration follows the gutter in an unstable
way. With starting values z=—14 and y =21 from z=y=26 about
300 steps were taken along the gutter with p about .01. With
relax = .35 and pmax = .5 we had about 150 steps from z=y=23.
In the gutter itself relax = .85 gave the best results, but in that
case the gutter was reached at z=y=63.

Other parameter values were: zeta = pst = 1, drmar=100,
ela = 1077 with eps = 1078 gave fmin in 10 figures correctly and
zmin[i] in 4 to 6 figures for various starting values of zs[z];

p=1;

for j := 1 step 1 until n do

begin zmin[j] := as[j]; dfprlj/] = 0 end; fmin := FUNK
(zman);

deriv: ATIVE,

next: STEP;

alpha := FUNK (zstep);
if alpha < fmin then
begin fmin := alpha; p := 1.5 X p;
if p > pmax then p := pmaz;
for j := 1 step 1 until n do zmin[j] := zstep[j];
go to deriv end;
p:=.5X p;
if p > eps then go to next;

comment As p has become smaller than eps this is the end of

Volume 6 / Number 9 / September, 1963

STEEP1. The program ATIVE takes up rather alot of computer
time by the way it chooses a value for dz(¢). A thorough simpli-
fication is obtained by taking dz(z) as 10T — 3 X abs(zmin[<]),
where again zmin[i] may be replaced by zeta. Further, at the
cost of some loss of accuracy, computing time is saved by taking
f—___(x—l—h})L—f(x) as an estimate for the derivative. This program,
as far as it differs from STEEP]1, is described in algorithm 204,
STEEP2. Aninteresting compromise between the two methods
is obtained by interchanging the computation of dr and dfds in
ATIVE of STEEP]1 and omitting the iteration on dz. This
routine ATIVE, which has to be used in STEEP], is given by
J. G. A. Haubrich in algorithm 205;
end STEEP]

ALGORITHM 204

STEEP2

E. J. WasscHER

Philips Research Laboratories

N. V. Philips’ Gloeilampenfabrieken
Eindhoven-Netherlands

procedure STEEP2 (b, zs, ub, dz, zmin, fmin, n, eps, relax
dxmaz, pmaz, zeta, FUNK);

value dz, n, eps, relax, demaz, pmazx, zeta;

integer n;

real dz, fmin, eps, relax, demax, pmaz, zeta;

array lb, s, ub, zmin; real procedure FUNK;

comment dz should now be taken about 107 — 3, demaz could
be taken equal to 1. As the program is equal to STEEP1 after
the declaration of the procedure ATIV E, the ArcoL description
is cut off there;

begin integer j; real alpha, p;
array zstep, dfdz, dfpr [1:n];

procedure ATIVE,

begin real beta, lambda; lambda := 0;
for j := 1 step 1 until n do

begin alpha := dx X (if abs(zmin[j]) < demaz
then dzmaz else abs (xmin(s]));
if emin[j] + alpha > ub[j] then alpha := —alpha;
asminlj] := xmanlj] + alpha; beta := FUNK (zmin);
xmin([j] 1= xminlj] — alpha;
dfdz[j] := (beta — fmin)/alpha;
lambda := lambda + dfdx[;] T2

end for; lambda := sqrt (lambda);
for j := 1 step 1 until »n do dfdz[j] := dfdz[j]/lambda;

end procedure ATIVE

ALGORITHM 205

ATIVE

J. G. A. HAUBRICH

Philips Research Laboratories

N. V. Philips’ Gloeilampenfabrieken
Eindhoven-Netherlands

procedure ATIVE;

begin real beta, lambda; Boolean 4;

comment This routine may replace ATIVE in STEEP1. The
significance of eia has slightly changed;

lambda := 0;

for j := 1 step 1 until n do

begin A := false; alphe := dz[j];

Volume 6 / Number 9 / September, 1963

if aman[j] + alpha > ublj] then
begin zmin[j] := ubl[j] — alpha; A := true end
else if zmin(j] — alpha < 1b[;] then
begin amin[s] := b[y] 4 alpha; A := true end;
zminfj] = amin[j] + dzlj]; alpha := FUNK (zmin);
xminlj] = zmin[j] — 2 X dz[j]; beta := FUNK (xmin);
zminlj] := zminlj] + dz[f]; if A then frun := FUNK
(xmin);
dfdz[j] := (alpha—beta)/(2 X dz[j]);
lambda := lambda-+dfdz[5] T2;
if alpha — fmin > 0 A beta — fmin > 0 then go to end;
beta := abs((alpha—beta)/(Gif abs(fmin) <psithen psi else fmin));
if beta > ela then dz[j] := .3 X dz[j] else
begin dz[;] := X d3z[j]; if dz[j] > dzmaz thendz[j]: = dzmaz end;
end: end for; -
lambda := sqrt (lambda);
for j := 1 step 1 until n do dfdz[;] := dfdz{j]/lambda
end procedure ATIVE

ALGORITHM 206

ARCCOSSIN

Misaxo Konpa

Japan Atomic Energy Research Institute, Tokai, Ibaraki,
Japan

procedure ARCCOSSIN (z) Result:(arccos, arcsin);

value z;

real z, arccos, arcsin;

comment This procedure computes arccos(z) and arcsin(z) for
—1=2z=1. The constant 2-¥ depends on the word length and
relative machine precision, and may be replaced by a variable
identifier. Alarm is the procedure which messages that z is in-
valid.
The approximation formula used here was coded for MUSA-
SINO-1 in its own language at the Electrical Communication
Laboratory Tokyo. This algorithm was translated into FAP and
successfully ran on an IBM 7090;

begin real A, 21, 22, a; integer r;
if abs(z) > 1
then go to Alarm
else if abs(z) > 27T (—27)

then go to L1

else begin arccos := 1.5707963; go to L3
end;
Ll: ifz =1
then begin arccos := 0; go to L3
end
elseifz = — 1
then begin arccos := 3.1415926; go to L3
end

else begin 4 := 0; zl := z;
for r := 0 step 1 until 26 do
begin if z1<0
then begina :=1; 22 :=1-2 X z1 72 end
else begina :=0; 22 :=2X 21 712 — 1 end;
A:=44+aX2T(~r=1)

zl 1= 22
end;
arccos ;= 3.1415926 X A;
end;

L3: arcsin := 1.570963 — arccos;
end ARCCOSSIN

Communications of the ACM 519

CERTIFICATION OF ALGORITHM 41
EVALUATION OF DETERMINANT [Josef G. Solo-
mon, RCA Digital Computation and Simulation Group,
Moorestown, N. J.]

Bruck H. FreED

Dartmouth College, Hanover, N. H.

When Algorithm 41 was translated into ScaLp for running on

the LGP-30, the following corrections were found necessary:

1. In the ““y’’ loop after “B[Count,y] := Temp’’ and before the
“end’ insert

“Temp = C[Count+1,yl;
ClCount +1,y] := C[Count,y];
ClCounty] := Temp”’

2. “Sign”’ is an AvcorL word when uncapitalized. However,
many systems (if not all) do not recognize the difference
between small and capital letters. For this reason ‘“Sign’’
was changed to ‘““sstgn’’ for the LGP-30 run (and in the
revision which follows later).

The following addition might be made in the specification as a

concession to efficiency: ‘‘value A,n;”.

The following changes might be made to make the Algorithm

less wordy:

1. for “Ssign := 1; Product := 1;”

put “Ssign := Product := 1;”’

2. for “begin B[i,7] := Ali,7]; Cli,j] := Alz,j] end;”

put “Blz,7] 1= C[i,j] := Ali,j];”

3. for “begin B[i,j] := B[i,j] — Factor X C[r,j] end end;”’

put “Blzi,j] := B[¢,j] — Factor X Cr,j] end;”

The above corrections and changes were made and the program

was run with the correct results, as follows:

10.96597 35.10765 96.72356
A =] 235765 —84.11256 87932
18.24689

22.13579 1.11123
Determinant = .1527313:1006

Hand calculation on a desk calculator gives the value of the de-
terminant for the above matrix as 152,731.3600.

1.0 30 30 1.0
1.0 40 6.0 4.0
1.0 50 100 10.0
1.0 6.0 15.0 20.0

A= Determinant = .999999%:0-+00

The above matrix, being a finite segment of Pascal’s triangle, has
determinant equal to 1.000000000.

0.0 0.0 00
A=1{50 90 20 Determinant = .000000010 +00
7.0 50 4.0

This is, of course, exactly correct.

Finally, one major change can be made which does away with
several instructions and reduces variable storage requirements
by n?. This change is the complete removal of matrix € from the
program. It is extraneous.

The revised Algorithm was translated into ScarLp and run on
the LGP-30 with exactly the same results as above.

The revised Algorithm 41 follows.

ALGORITHM 41, REVISION

EVALUATION OF DETERMINANT [Josef G. Solo-
mon, RCA Digital Computation and Simulation Group,
Moorestown, N. J.]

Bruce H. FrREED

Dartmouth College, Hanover, N. H.

real procedure determinant (¢,n);
real array a; integer n; valuea,n;

520 Communications of the ACM

comment This procedure evaluates a determinant by triangu-
larization;

begin real product, factor, temp;

array b[l:n,1:n];

integer count, ssign, ¢, 5, r, ¥;

ssign 1= product := 1;
for ¢ := 1 step 1 until n do
for j := 1 step 1 until n do

ble,5] := ali,s];
for r := 1 step 1 until n—1 do

begin count := r—1;
zerocheck: if blr,r] £ 0 then go to resume;
if count < n—1 then count := count +1 else go to zero;

for y := r step 1 until n do

begin temp := blcount+1,y];
blecount+-1,y] := blcount y);
blcount,y] := temp end;

sstgn 1= —ssign;

go to zerocheck;

zero: determinant := 0; go to return;
resume: for ¢ := r+1 step 1 until n do

begin factor := b[¢,r]/b[rr];

for j := r+1 step 1 until n do

blz,7] := blZ,7] — factor X b[r,j] end end;
for 7 := 1 step 1 until » do

product := product X b[i,t];

determinant := ssign X product;

return: end

CERTIFICATION OF ALGORITHM 45

INTEREST [Peter Z. Ingerman, Comm. ACM Apr. 1961
and Oct. 1960]

CARrL B. WRIGHT

Dartmouth College, Hanover, N. H.

INTEREST was translated into Dartmouth College Computa-
tion Center’s ““Self Contained ALGOL Processor’’ for the Royal-
MecBee LGP-30. When using ScaLp, memory capacity is severely
limited and thus it was necessary to run this program in two
blocks. Block I ended with the computation of I, and Block II
started with the ‘“newm’ loop. After making the changes listed
below, test problems using up to three interest rates and up to 18
time periods were used with the following results:

Loan Periods Interest Rates Payments sz‘;:ﬁcle* Tolerance
$100.00 1 0.05 $105.00 $0.00 $0.25
1800.00 10 0.03 211.01 0.05 4.50

875.65 8 0.08 to 500.00

0.05 over 500.00 139.78 —1.49 2.19
14750.00 18 0.06 to 5000.00
0.05 to 10,000.00
0.04 over 10,000.00 1201.70 10.35 36.88

* Hand ecalculation.

It is noted that in each case the final balance is within the pre-
scribed tolerance (0.0025 of the loan).

In the following corrections bracketed subscripts replace
ordinary subseripts and exponentiation is represented by 1
rather than superseript.

The following corrections should be made in the Note on In-
terest in the October, 1960, issue of Comm. ACM:

1. Definition of B{n]: Replace ‘“mintmum’ by “mazimum’’.
Replace “‘j[n]”’ by “j[n—1]".

2. Define Blk+1] = L.

3. Definition of K[n]: Replace “B[n]”’ by “Bln-+1]".

The following corrections were found necessary in the proce-
dure:

Volume 6 / Number 9 / September, 1963

1. The upper limit of the vector B is k41, not k. It is not neces-
sary to change the upper limit of the I-vector. (See correction 4
below.)

2. D, E, F, u, v were not declared and must be declared as real.

3. In the array declaration replace “M[1:%]”’ by “M[1:k+1]".

4. As j approaches 0, 7 approaches 1 and lim (h/S) = 1/¢. Thus
for jk-+1] = 0, ¢[k+1] = 1, and M[k+1] = L/t. Thus after

M(p] := L X (h[p,t]/8[p,t]) end;
insert

Mlk+1) := L/t; B[k+1)] := L;

5. In the conditional statement following computation of bp],
replace ‘>’ by “="’,

6. In same conditional statement, next line, “mb := bp’’ should
read “mb := b[p]”.

7.D:=1; E:=F :=0;

newm: forp := 1 step 1 until k do
should be changed to
newm: D :=1; E:=F :=0;
for p := 1 step 1 until k do
8. begin get F: F := (D+m—E)/(1+ilql);
if Blg+1] = F then D := F else ¢ := q¢ + 1;
if D # F go to get F end;
should be changed to read as follows:
begin get F: F := (D+m)/ilql;
if Blg+1] = F then D := F else
begin if ¢ < k then ¢ := ¢ 4+ l else D := F end;
if D % F then go to get F end;
Note that the “then’ in the last line was omitted from the original
procedure.
9. In the “‘redo” loop insert a semicolon after the statement
T[b] := T[] + Tlp] — blp];
10. In the ‘‘redo’’ loop, next line, omit the second ‘“‘end’’.
11. In the “redo’’ loop,

p =k end;
should be changed to
p := k end end;

REMARK ON ALGORITHM 129 MINIFUN
MINIFUN [V. W. Whitley, Comm. ACM, Nov. 1962]
E. J. WAsSCHER

Philips Research Laboratories

N. V. Philips’ Gloeilampenfabrieken
Eindhoven-Netherlands

Some errors found in Algorithm 129 MINIFUN [Comm. ACM,
Nov. 1962] are given below.

In addition, the way “steepest descent’’ is used to compute
the minimum of a function of » variables is not entirely satis-
factory. The method for computing first derivatives may be im-
proved in two ways:

1. Instead of computing is better to take

'-f—(]—;—_f-h);—hf(x—ﬁ. As f(zx—h) has been computed by MINIFUN
this does not give rise to extra computations.

2. In MINIFUN the choice of h seems rather deliberate. In-
deed, h is taken as .2 X (zub—z1b), where zub and z1b are variable
bounds of z. In the beginning of the program these bounds are
put equal to the fixed bounds b1 and ub; afterwards in the itera-
tion process they should tend towards each other, and in the limit
they provide the minimum. So especially when a good approxima-
tion to the minimum is unknown, b1 and ub have to be taken well
apart from each other, which means that & is rather large. At the
limit, however, & is very small. It is better to take h in such a way
that the nominator f(z+h)—f(x—h) attains an appropriate value.

faH) =@
h

Volume 6 / Number 9 / September, 1963

As the method used by MINIFUN is the Newton-Raphson
method applied to the first derivatives, convergence is not always
secured—especially since first and second partial derivatives are
estimated with numerical methods.

It should be noted that the test on end of program is not correct.
For a further possible decrease of the function one has not to look
in the direction of the coordinate axes but in the direction of the
steepest descent.

AvcoL descriptions of some ‘“‘steepest descent’’ programs which
were written in the symbolic code of the Philips computer Pascal
[ef. H. J. Heijn and J. C. Selman, IRE Trans. EC10 (June 1961},
175-183] are given in Algorithms 203, 204 and 205.

CorgrgctioNs oF MINIFUN :

Printing errors: The line below label nustep should read:

begin if abs(dmaz) <abs (dxmin [j]) then

The label 1 bdchk should be lbdchk

In comment MINIFUN: kl1=2: a new minimum has not
been found.

The label nustep should be placed before the statement:
dmax = dxminlf]; The declaration of zmin should be removed
from the blockhead of the procedure body. The 2-dimensional
arrays z[1:n, 1:4] and g[1:n, 1:4] can be replaced by a real z and a
1-dimensional array g[1:4] respectively.

An improvement could be the insertion of the statement

k1l :=1;

Just before the label nustep.

T am having considerable trouble with the obviously important
part played by the array wnew, although it does not change after
being set in the first statement of the program. Furthermore it
seems to me that wnew plays a double role: first the component
wnewlk] is the value of zt[k] before an iteration on z¢[k]. But then
one should insert another statement after label nustep:
wnew(k] 1= ztlk]; Secondly wnewlk] is to be understood as half
the distance between upper and lower bound ¢1[k] and b1[k], which
is only true when bl[k] = 0.

Convergence of delz[j] to 0 is only achieved when z1b[k] and
zublk] are tending towards each other. This indicates that wnew(k]
should go to 0 too. (See statements after label stnubds.)

The following modifications could remove these objections
(starting with the line above label restart):

if ft < fmun then go to check else xt[k] := wnewlk];

restart: if zt[k] < wnewlk] then go to lbdchk;
if xt(k] = wnewlk] then go to stnubds;
if xt[k] < {1[k] then go to nupbds;
xt[k] := 0.5 X (wnew[k] + t1[k]);
nupbds: zublk] := tllk]; =z1blk] := 2 X xztk] — t1{k]; go to
newdel ;
stnubds: z1b[k] := xt[k] — 0.5 X (wnew[k] — z1b[k]);
zublk] := at[k] + 0.5 X (wnewik] — z1b[k]); (ete.)
Ibdchk: if wtfk] = bl[k] then ztk] := 0.5 X (wnewlk] + blk]);

z1b[k] := blfk];
newdel ; (ete.)

zublk] := 2 X =xt[k] — bl[k]; go to

REMARK ON ALGORITHM 157
FOURIER SERIES APPROXIMATION |[C. J. Mifsud,
Comm ACM, Mar. 1963]
RicaARD GEORGE*
Argonne National Laboratory, Argonne, Ill.

This algorithm was written in FAP language for the 32-K IBM
704. It was tested on a sawtooth curve, and the sawtooth was

recreated by summing the expansion up through the 2N 4 1 con-
stants, with excellent results.

* Work supported by the United States Atomic Energy Commission.

Communications of the ACM 521

The arrays S, C and u are never referenced with a variable
subseript. For a saving of time, I suggest that simple variables
be used instead.

By declaring one additional real variable, one can bring the
phrase

2/(2 X N + 1)

outside of the for loops, because N does not change through the
procedure. This results in a saving of 4N--2 mult-ops.

CERTIFICATION OF ALGORITHM 158
EXPONENTIATION OF SERIES [H. E. Fettis, Comm.
ACM, Mar. 1963]

J. DENNIS LAWRENCE

Lawrence Radiation Laboratory, Livermore, Calif.

This procedure was translated into ForTRAN and run on the
Remington-Rand Larc Computer. Three changes are necessary.
(1) The last line of the comment should read
for the natural logarithm of f(z);
(2) The third line from the end should read

8 i= S+ (PX (k) —k)X BE]X Ali—k];

(This line was given correctly in algorithm 134.)
(3) The second line from the end apparently should read

B[] := A[Z] := (S/i);

for the case P = 0 only. Probably the best way to incorporate
this is by making two changes:

(a) Change the if clause to read

if P=0thenR :=1lelse R := P; B[l] := R X A[l];

(b) Change the second line from the end to read

Bii] := R X A[] + (S/7);

A large number of examples were run quite successfully; the
following give representative samples.

1) (A42x+3z240.52%)2 = 1+4+4x+1022-+1323411244-32540.2528
(using A[4] := A[5] := A[6] := 0).

(2) Setting P := 1 gives B[] := A[{].

no 1
B) Letf(z) =e* =14+ > — 2% and let P = In2 = 693147181

=1 V!

n n2 T

Theng(z) =2°=1 4 2, (n.')
-1

4) Let f(z)=e* and P=—1. Then g(z)=e¢*. For P=0, ap-

parently the constant term of g(z) should be zero instead of one.

z'. (See Table 1.)

TABLE 1
Al] Bl1]
1 1.000000000 0.693147181
2 0.500000000 0.240226507
3 0.166666667 0.055504109
4 0.041666667 0.009618129
5 0.008333333 0.001333356
6 0.001388889 0.000154035
7 0.000198413 0.000015253
8 0.000024802 0.000001322
9 0.000002756 0.000000102
10 0.000000276 0.000000007
522 Communications of the ACM

(5) Let f(z)=e® and P=0. Then g(z)=x.
(6) Letf(x)=i: z#and P=0. Then ¢&)=In{(l—z*)—in(l—z)=

izo
LN |
> =i, (See Table 2.)

i=1?

TABLE 2

Ald] Bli]

1.000000000
0.500000000
0.333333340
0.250000000
0.200000000
0.166666670
0.142857140
0.125000000
0.111111110
0.100000000
0.090909100
0.083333330
0.076923080
0.071428580
0.066666660

© 00~ O CtHe W

e b b e b e b e b e e el e e
OO0 OO0 OO

CERTIFICATION OF ALGORITHM 163
MODIFIED HANKEIL FUNCTION [Henry E. Fettis,
Comm. ACM, Apr. 1963]

Hexry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Ill.

Sinece this algorithm is a function declaration, the procedure
declaration should be:

real procedure EXPK(D, X, E);

Otherwise, no syntactical errors were noticed.

The body of the procedure was translated and run on the
LGP-30 computer, using the Dartmouth ScarLp system. Results for
E = 00001, X = 0.1(0.1)1.0, P = 0, 0.3333333, 0.6666667 and
1.000000 agreed with values tabulated in Jahnke-Emde-Losch to
the 3-4D given in the tables, except for errors discovered in the
table of 2/1FK2/3 (x) .

With X = 0, the program ended in floating-point overflow. The
algorithm itself, or the call of the procedure, should include a test
to insure that the variable is greater than eps, where eps is chosen
to prevent exceeding machine capacity.

The algorithm was found to be excessively slow. Times on the
LGP-30 were of the order of 6 minutes. A considerable saving in
time could be realized by improving the quadrature formula, cur-
rently the simple midpoint formula, repeated completely for
each iteration. A more effective method would be a modified
Romberg algorithm. A procedure based on the latter approach is
being developed in this division.

* Work supported by the U. 8. Atomic Energy Commission.

Volume 6 / Number 9 / September, 1963

TABLE A

n X[n] Vin) B[n] Bln—1} Bln—-2] B(rn—3] Bln—4] Blrn—5]
1 5.0 148.4132 148.4132
2 5.0 148.4132 148.4132 148.4132
3 6.0 403.4288 403.4287 255.0155 106.6023
4 6.0 403.4288 403 . 4287 403 .4287 148.4132 41.81091
5 5.0 74.20658 148.4132 255.0155 148.4132 41.81091 9.415191
6 6.0 201.7144 403.4287 255.0155 148.4132 53.30115 11.49023 2.075043
The forward differences lie along the top diagonal.
Use of these results with BNewr and with Fyewr gave the following results, for N = 6.
BNEWT FNEWT
z
P D E R D E
5.000000 148.4132 148.4132 4567298 X 104 148.4132 148.4132 7420658 X 108
5.500000 244.6973 244 .6924 4173722 X 10~ 244.6973 244 .6924 .3078276 X 10~
6.000000 403.4287 403.4287 .2017143 X 10— 403.4287 403 .4287 .7441404 X 10~

CERTIFICATION OF ALGORITHM 167
CALCULATION OF CONFLUENT DIVIDED DIF-
FERENCES [W. Kahan and I. Farkas, Comm.
ACM, Apr. 1963]
CERTIFICATION OF ALGORITHM 168
NEWTON INTERPOLATION WITH BACKWARD
DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963]
CERTIFICATION OF ALGORITHM 169
NEWTON INTERPOLATION WITH FORWARD
DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963.]
Hexry C. THACHER, JR.*
Argonne National Laboratory, Argonne, Ill.

The bodies of these procedures were tested on the LGP-30
computer using the Dartmouth Scarr compiler. Compilation and
execution revealed no syntactical or mathematical errors.

It is to be noted that, although with Algorithm 169, reducing
the value of N from that used to generate F leads to an interpola-
tion polynomial based on fewer points, this is not true for Al-
gorithm 168. This flexibility could be supplied by adding an
additional formal parameter, deg, say, to the procedure, and by
making the for statement read:

“for 7 := N — deg step 1 until N do --- »’

The logic of the error estimate in Algorithms 168 and 169 is not
entirely clear. However, it appears that the estimate can be ad-
justed for different precision of arithmetic by adjusting the con-
stant 31—8 appropriately. For the ScaLp arithmetic, this constant
was changed to luo—7.

The algorithms were tested on the examples given by Milne-
Thomson [The Calculus of Finite Differences, p. 4, Macmillan,
1951] and by Milne [Numerical Calculus, p. 204, Princeton, 1949].
In both examples, Algorithm 167 reproduced the divided differ-
ence table, and both Algorithms 168 and 169 reproduced the input
values. As a check of the calculation of confluent divided differ-
ences, values of the exponential function of its first two deriva-
tives at £ = 5.0 and 6.0 were used. The difference table shown in
Table A was obtained.

* Work supported by the U. 8. Atomic Energy Commission.

Volume 6 / Number 9 / September, 1963

REMARK ON ALGORITHM 166
MONTECARLO INVERSE [R. D.
ACM, Apr. 1963]

R. D. Ropman

Burroughs Corp., Pasadena, Calif.

Rodman, Comm.

The algorithm contained two errors:
(1) The line which reads

start: p:= (n—1)/n X n;
should read
start: p:= (n—1)/n T 2;

(2) The line which reads

start2: walk : = (random/p) + 1;
should read
start2: walk: = entier ((random/p) + 1);

After making the preceding corrections, procedure montecarlo
was transliterated into EXTENDED ALGOL and run successfully
on the Burroughs B-5000. Convergence occurred in all cases where
the matrix satisfied the conditions set down in the comment state-
ment of the algorithm. It was found that convergence was quickest
and the routine most practical for matrices with eigenvalues small
relative to one.

DATES TO REMEMBER

FJCC Las Vegas Nov. 12-14, 1963
SJICC Washington Apr. 21-23, 1964
ACM Philadelphia Aug. 25-28, 1964
IFIP New York May 22-24, 1965

523

Communications of the ACM

