
The actual choice of n and M for a given precision is left for the
individual programmer. Programmed for the GE-225, accurate
answers of tan -1 1 = ~-/4 were obtained for double precision in
comparison with the known values. The semiiterat ive method can
be programmed in a very short t ime for any multiple precision and
is efficient in comparison with taking more terms of the Taylor ' s
series, taking into account the divisions required for the square
root process. Telescoped Taylor 's series may be used if desired,
but a shorter telescoped Taylor 's series can be used if the semi-
i terat ive scheme is employed. Telescoping, however, is expected
to take more storage for the coefficients than a simple t runcated
series. Telescoping also discards the advantage of flexibility and
applicabil i ty to n-tuple precision programs.

REFERENCES :

1. NATIONAL BUREAU OF STANDARDS. Table of Circular and
Hyperbolic Tangents and Cotangents for Radian Arguments.
Columbia Univ. Press, New York, 1947.

2. NATIONAL BUREAU OF STANDARDS. Table of Arctan X, U. S.
Government Pr in t ing Office, Washington 25, D. C.

3. LANCE, G . N . Numerical Methods for High-Speed Computers.
Iliffe & Sons, Ltd. , London, 1960.

4. BEMER, ROBERT W. Techniques Depar tment : Edi tor ' s note.
Comm. ACM, 1, 9 (Sept. 1958).

WEN-tIwA CHU
DONALD n . SAATHOFF
Southwest Research Institute
San Antonio, Texas

A contr ibut ion to this depar tment must be in the form of
an Algorithm, a Certification, or a Remark. Contr ibut ions
should be sent in duplicate to the Edi tor and should be
writ ten in a style pa t te rned after recent contr ibut ions
appearing in this depar tment . An algorithm must be wri t ten
in ALGOL 60 (see Communications of the ACM, January
1963) and accompanied by a s ta tement to the Edi tor indicat-
ing tha t it has been tes ted and indicating which computer
and programming language was used. For the convenience
of the printer , contr ibutors are requested to double space
material and underline delimiters and logical values tha t
arc to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values.

Although each algorithm has been tes ted by its contr ib-
utor, no warranty, express or implied, is made by the con-
t r ibutor , the Editor , or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gori thm and related algorithm material , and no responsi-
bi l i ty is assumed by the contr ibutor , the Editor , or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depar t -
ment is explicitly permi t ted without any charge. When re-
product ion is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

J. WEGSTEIN, Editor

ALGORITHM 202
GENERATION OF PERMUTATIONS IN LEXICO-
GRAPHICAL ORDER
MOK-KONG SttEN

Postfach 74, Miinchen 34, Germany

p r o c e d u r e PERLE (S, N, I, E);
i n t e g e r a r r a y S; i n t e g e r N; Bo o l ean I ; l abe l E;
c o m m e n t If the array S contains a certain permutat ion of the

N digits 1, 2 , . . . , N before call, the procedure will replace
this with the lexicographically next permutat ion. If initializa-
tion is required set the Boolean variable I equal t r u e , which
will be changed automatically to f a l se through the first call,
otherwise set I equal fa lse . If no fur ther permuta t ion can be
generated, exit will be made to E. For reference see BIT Z
(1962), 228-231 ;

b e g i n i n t e g e r j, u, w;
i f I t h e n b e g i n for y = 1 s t e p 1 u n t i l N do S[j] := j;

I := fa l se ; go to Rose
e n d ;

w : = N ;
Lilie: i fS[w] < S I T - l] t h e n

b e g i n i f w = 2 t h e n go to E;
w := w - - 1; go t o L i l i e

e n d ;
u := S[w-1] ;
for j := N s t e p - 1 u n t i l w do
b e g i n i f S[]] > u t h e n

b e g i n S [w-1] := S[j];
S[j] := u; go to Tulpe

e n d
end ;
Tulpe: for] := 0 s t e p 1 u n t i l (N - w - I) ~ 2 + 0.1 do

b e g i n u := SIN--j];
S[N-y] := S[w+y]; S[w+y] := u

e n d ;
Rose :
e n d PERLE

ALGORITHM 203
STEEP1
E. J. WASSCHER
Philips Research Laboratories
N. V. Philips' Gloeilampenfabrieken
Eindhoven-Netherlands

proeedure STEEP1 (lb, xs, ub, dx, xmin, fmin, n, eps, relax, dxmax,
eta, psi, pmax, zeta, FUNK);

va lue dx, n, eps, relax, dxmax, eta, psi, pmax, zeta;
i n t e g e r n;
rea l fmin, eps, relax, dxmax, eta, psi, pmax, zeta;
a r r a y lb, xs, ub, dx, xmin; rea l p r o c e d u r e FUNK;
c m n m e n t STEEP1 is a subroutine to find the minimum of a

differentiable function of n variables, using the method of
s teepest descent. I t mainly consists of three par ts : (1) a sub-

V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963 C o m m u n i c a t i o n s o f t h e ACM 517

routine A T I V E , for computing the partial derivatives, (2) a
subroutine S T E P , for computing the components of an array
xstep[1 :n], which is a new approximation of xmin[1 :n], (3) the
compound tail of the procedure body. Both subroutines are
only called for once, but by writing the program in this way it
is quite easy to change the flow of the program.

Significance of the parameters : lb(i), ub(i) are lower and
upper bounds for the independent variables, xs(i) is the s tar t ing
value for xmin(i) , xmin(i) is the computed i th component of
the minimum, f m i n the value of the function in xmin. n is the
number of variables, eps is a small number which is a measure
of the desired accuracy- - ra ther of f m i n than of xmin(i) . F U N K
(x) is the function to be minimized. The other parameters are
described in the comments on the three par ts ment ioned;

b e g i n i u t e g e r i; rea l alpha, p; a r r a y xstep, dfdx, dfpr[l:n];
p r o c e d u r e A T I V E ;
b e g i n rea l beta, gamma, lambda; Boo lean A, B;
c o m m e n t l. A useful est imate for t h e derivative is

f (x + d x) - f (x - d x) where dx should be small, but not so small
2dx

tha t roundoff noise dominates. This may be achieved by taking
f (x+dx) - f (x - dx)

dx such tha t eta < f ~ < 100 eta, where eta is

a measure for the relative roundoff error. When I f (x) [< 1 it is
bet ter to replace the denominator by a constant . In the program
the parameter psi is used for this purpose. The components
dx(i) are used as a first guess. When the derivative is 0, the
program enlarges dx until dx > dxmax.

A T I V E computes dfdx[l:n] in xmin. The previously computed
partial derivatives dfpr[1 :n] as well as relax are used for relaxa-
t ion purposes. See comment 3. The Boolean A is used when
x+dx or x--dx crosses the boundary ub or lb. In tha t case f m i n
has to be recompnted afterwards. The Boolean B is of a some-
what complicated nature. I t may be seen tha t dx has the char-
acter of an own array for A T I V E . In the neighborhood of the
minimum this may have the following effect: A step in one
variable is taken such tha t f (x+dx) becomes equal to f (x - d x) .
Then in the next eall for A T I V E dx has to be doubled, etc. By
using the Boolean B it is possible to keep dx constant near the
minimmn.

A similar effect may occur in the large. When f (x) tends to a
cons tant for x tending to +~¢ and - ~ , then for I x] l a r g e dx
has to be taken large. I t is only possible to make dx smaller in
the neighborhood of the minimum by reducing dx after each
call of A T I V E .

From the last two remarks one may deduce tha t the first
guess for dx(i) should be made with considerable care. Tabulat-
ing the function near the s tar t ing point may be very helpful;

b e g i n A T I V E : lambda := 0;
t o r] := 1 s t e p 1 u n t i l n d o
b e g i n
large: A := B := :false; i f xmin[j] + dx[j] > ub[j]

t h e n b e g i n xmin[y] := ub[j] -- dx[i]; A := t r u e e n d
e l s e i f xmin[j] -- dx[i] < lb[i]

t l l e n b e g i n xmin[j] : = lb[i] + dx[j]; A : = t r u e e n d ;
small: xmin[j] := xmin[]] + dx[]]; alpha := F U N K (xmin);

xmin[j] := xmin[i] -- 2 X dx[]]; beta := F U N K (xmin);
xmin[j] := xmin[j] + dx[j]; i f A t h e n f m i n := F U N K

(xmin) ;
A := f a l s e ;
i f alpha -- f m i n > 0 A beta -- f m i n > 0
t h e n b e g i n B : = t r u e ; go to comp e n d ;
gamma : = abs((alpha--beta)/(i f abs(fmin) < psi t h e n

psi e l s e train)) ;
i f gamma > 100 X eta t h e n

b e g i n dx[j] := .2 X dx[y]; go to small e n d ;
i f gamma < eta t h e n

b e g i n dx[j] := 2 X dx[j]; i f dx[j] < dxmax t h e n

go to large e l s e dx[]] := dxmax e n d
eomp: dfdx[i] := (alpha--beta)~(2 X dx[i]);

lambda := lambda + dfclx[j] T 2;
i f --1 B t h e n dx[j] := .5 X dx[j]

e n d for; lambda := sqrt (lambda);
f o r] := 1 s t e p 1 u n t i l n d o

dfdx[j] := dfdx[j]/lambda
e n d procedure A T I V E ;

p r o c e d u r e S T E P ;
c o m m e n t 2. A step is taken in all variables at the same time.

The order of magnitude of the step in one variable should be
of the order of magnitude of this variable. To accomplish this
three weighting factors are given to the part ia l der ivat ives:

1) X = (i=li \Oxi/(OfY~-t/ (see subroutine A T I V E) ,

2)] x~ I , or when small, zeta,
3) a number p, which is put equM to 1 at the beginning of the

program and which tends to 0 at the minimum.
After a decrease of the funct ion the step is accepted and p is
multiplied by 1.5. After an increase p is divided by 2. pmax
replaces p when p becomes greater than pmax;

b e g i n for j := 1 s t e p 1 u n t i l n d o
b e g i n alpha := (1--relax) X dfdx[j] + relax X dfpr[j];

xstep[]] := xmin[]] - p X alpha X
(i f abs(xmin[j]) < zeta t h e n zeta e l s e abs(xmin[i])) ;
dfpr[i] := alpha;
i f xstep[]] > ub[i] t h e n xstep[]] := ub[j]

e l s e i f xstep[j] < lb[]] t h e n xstep[]] := lb[]]
e n d for
e n d S T E P ;
c o m m e n t 3. In the next p a r t - - t h e compound t a i l - - the calls for

A T I V E and S T E P are organized. The values 1.5 and .5 of the
factors of p are not very impor tant . During the i terat ion p gets
an optimal value, which slowly varies. Only at the end p rapidly

y2+l
tends to 0. The programme was tes ted on the funct ions x2-4-1

. (x--y)~--2
and ~ , the la t ter being the first one except for a ro ta t ion

of the xy-plane over ~r/4 radians. In the first case a " g u t t e r "

coincides with the x-axis, while f o r x > 0 a n d [y [X l ° f X o.
ox

In the second case, where the gut ter is along the line x=y , the
relaxation is especially interesting, because with relax = 0
(and pmax= 100) the i terat ion follows the gut ter in an unstable
way. With s tar t ing values x = --14 and y = 21 from x = y = 26 about
300 steps were taken along the gut ter with p about .01. With
relax = .35 and pmax = .5 we had about 150 steps from x=y=23 .
In the gut ter itself relax = .85 gave the best results, but in tha t
case the gut ter was reached at x = y = 6 3 .

Other parameter values were: zeta = psi = 1, dxmax=lO0,
eta = 10 -~ with eps = 10 -8 gave f m i n in l0 figures correctly and
xmin[i] in 4 to 6 figures for various s tar t ing values of xs[i];

p := 1;
f o r] := 1 s t e p 1 u n t i l n d o
b e g i n xmin[i] := xs[j]; dfpr[]] := 0 e n d ; f m i n := F U N K

(xmin) ;
deriv: A T I V E ;
next: S T E P ;

alpha := F U N K @step);
i f alpha < f m i n t h e n

b e g i n f m i n := alpha; p := 1.5 X p;
i f p > pmax t h e n p := pmax;

f o r j := 1 s t e p 1 u n t i l n d o xmin[]] := xstep[j];
go to deriv e n d ;

p := . 5 X p ;
i f p > eps t h e n go t o next;
e o m m e n t As p has become smaller than eps this is the end of

518 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963

STEEP1. T h e p r o g r a m A T I V E t a k e s up r a t h e r a lo t of c o m p u t e r
t i m e by t h e w a y i t chooses a v a l u e for dx(i). A t h o r o u g h s imp l i -
f ica t ion is o b t a i n e d b y t a k i n g dx(i) as 10 T - 3 X abs(xmin[i]),
where a g a i n xmin[i] m a y be r ep l aced by zeta. F u r t h e r , a t t h e
cos t of s o m e loss of a c c u r a c y , c o m p u t i n g t i me is s a v e d by t a k i n g

f (x + h) - f (x) as an e s t i m a t e for t h e d e r i v a t i v e . T h i s p r o g r a m ,
h

as fa r as i t differs f r o m S T E E P 1 , is de sc r ibed in a l g o r i t h m 204,
S T E E P 2 . A n i n t e r e s t i n g c o m p r o m i s e b e t w e e n t he two m e t h o d s
is o b t a i n e d b y i n t e r c h a n g i n g t he c o m p u t a t i o n of dx a n d dfdx in
A T I V E of S T E E P 1 a n d o m i t t i n g t h e i t e r a t i o n on dx. T h i s
r o u t i n e A T I V E , w h i c h ha s to be u s e d in STEEP1 , is g iven b y
J . G. A. H a u b r i c h in a l g o r i t h m 205;

e n d S T E E P 1

ALGORITHM 204
STEEP2
E. J. WASSCHER
Philips Research Laboratories
N. V. Philips' Gloeilampenfabrieken
Eindhoven-Netherlands

p r o c e d u r e S T E E P 2 (lb, xs, ub, dx, xmin, fmin , n, eps, relax
dxmax, pmax, zeta, F U N K) ;

v a l u e dx, n, eps, relax, dxmax, pmax, zeta;
i n t e g e r n ;
r e a l dx, fmin , eps, relax, dxmax, pmax, zeta;
a r r a y lb, xs, ub, xmin; r e a l p r o c e d u r e F U N K ;
c o m m e n t dx s h o u l d now be t a k e n a b o u t 10 ~" - 3, dxmax could

be t a k e n equa l to 1. As t h e p r o g r a m is equa l to S T E E P 1 a f t e r
t h e d e c l a r a t i o n of t he p r o c e d u r e A T I V E , t h e ALGOL d e s c r i p t i o n
is c u t off t h e r e ;

b e g i n i n t e g e r j ; r e a l alpha, p;
a r r a y xstep, dfdx, dfpr [1 :n];

p r o c e d u r e A T I V E ;
b e g i n r e a l beta, lambda; lambda := 0;

f o r j := 1 s t e p 1 u n t i l n d o
b e g i n alpha := dx X (i f abs(xmin[j]) < dxmax

t h e n dxmax e l s e abs (xmin[j]));
i f xmin[j] + alpha > ub[j] t h e n alpha : = --alpha;
xmin[j] := xmin[]] + alpha; beta : = F U N K (xmin);
xmin[j] := xmin[j] - alpha;
dfdx[j] := (beta - fmin)/alpha;
lambda := la¢nbda + dfdx[j] ~ 2

e n d for ; lambda := sqrt (lambda);
f o r j := 1 s t e p 1 u n t i l n d o dfdx[j] := dfdx[j]/lambda;

e n d p r o c e d u r e A T I V E

ALGORITHM 205
ATIVE
J. G. A. HAUBRICH
Philips Research Laboratories
N. V. Philips' Gloeilampenfabrieken
Eindhoven-Netherlands

p r o c e d u r e A T I V E ;
b e g i n r e a l beta, lambda; B o o l e a n A ;
c o m m e n t T h i s r o u t i n e m a y rep lace A T I V E in STEEP1 . T h e

s ign i f icance of eta h a s s l i g h t l y c h a n g e d ;
lambda := 0;
f o r j := 1 s t e p 1 u n t i l n d o
b e g i n A := f a l s e ; alpha : = dx[]];

i f xmin[]] + alpha > ub[)'] t h e n
b e g i n xmin[j] := ub[j] -- alpha;
e l s e i f xmin[j] --
b e g i n xmin[j] :=

xmin[j] :=
xmin[j] :=
xmin[j] :=

(xmin) ;

A := t r u e e n d
alpha < lb[j] t h e n
lb[j] + alpha; A := t r u e e n d ;
xmin[j] + dx[j]; alpha := FUNK(xmin) ;
xmin[j] - 2 X dx[]]; beta := FUNK(xmin) ;
xmin[j] + dx[j]; i f A t h e n fmin := F U N K

dfdx[j] := (alpha-beta)~(2 X dx[j]);
lambda := lambda+dfdx[j] ~'2;

i f alpha - fmin > 0 A beta -- fmin > 0 t h e n go t o end;
beta := abs((alpha--beta)/(if abs(fmin) < p s i t h c n psi elsc fmin)) ;
i f beta > eta t h e n dx[j] := .3 X dx[]] e l s e
b e g i n dx[j] := X d3x[j]; i f dx[j] > dxmax thendx[j]: = dxmax e n d ;
end: e n d for ;
lambda := sqrt (lambda);
f o r j := 1 s t e p 1 u n t i l n d o dfdx[j] := dfdx[j]/lambda
e n d p r o c e d u r e A T I V E

ALGORITHM 206
ARCCOSSIN
M I S A K O :KoNDA

Japan Atomic Energy Research Institute, Tokai, Ibaraki,
Japan

p r o c e d u r e ARCCOSSIN (x) R e s u l t : (arceos, arcsin) ;
v a l u e x;
r e a l x, arccos, arcsin;
c o m m e n t T h i s p r o c e d u r e c o m p u t e s arccos(x) a n d arcsin(x) for

- - l_<x_<l . T h e c o n s t a n t 2 - ~ d e p e n d s on t h e word l e n g t h a n d
r e l a t i ve m a c h i n e prec is ion , a n d m a y be r ep l aced b y a v a r i a b l e
ident i f ie r . Alarm is t he p r o c e d u r e w h i c h m e s s a g e s t h a t x is in-
va l id .
T h e a p p r o x i m a t i o n f o r m u l a u sed here was coded for M U S A -
S INO-1 in i t s own l a n g u a g e a t t h e E lec t r i ca l C o m m u n i c a t i o n
L a b o r a t o r y T o k y o . T h i s a l g o r i t h m was t r a n s l a t e d in to F A P a n d
s u c c e s s f u l l y r a n on an I B M 7090;

b e g i n r e a l A, xl , x2, a; i n t e g e r r;
i f abs(x) > 1
t h e n go t o Alarm
e l s e i fabs(x) > 2 1 (--27)

t h e n go t o L1
e l s e b e g i n arccos := 1.5707963; go t o L3

e n d ;
L I : i f x = 1

t h e n b e g i n arccos := 0; go t o L3
e n d

e l s e i f x = -- 1
t h e n b e g i n arccos := 3.1415926; go t o L3

e n d
e l s e b e g i n A := 0; x l := x;

f o r r := 0 s t e p 1 u n t i l 26 d o
b e g i n i f x l < 0

t h e n b e g i n a := 1; x2 := 1- -2 X x l T2 e n d
e l s e b e g i n a := 0; x2 := 2 X x l ~'2 -- 1 e n d ;
A := A + a X 2 ~ (- r - 1) ;
x l := x2

e n d ;
arccos := 3.1415926 X A ;
e n d ;

L3: arcsin := 1 . 5 7 0 9 6 3 - arccos;
e n d ARCCOSSIN

V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963 C o m m u n i c a t i o n s o f t h e A C M 519

CERTIFICATION OF ALGORITHM 41
EVALUATION OF DETERMINANT [Josef G. Solo-
mon, RCA Digital Computation and Simulation Group,
Moorestown, N. J.]
BRUCE i . FREED

Dartmouth College, Hanover, N. H.
When Algorithm 41 was t ranslated into SCALP for running on

the LGP-30, the following corrections were found necessary:
1. In the " y " loop after "B[Count,y] := T e m p " and before the

" e n d " insert
" T e m p := C[Count+l ,y] ;
C[Count +l ,y] := C[Count,y];
C[Count,y] := T e m p "

2. "Sign" is an ALGOL word when uncapitalized. However,
many systems (if not all) do not recognize the difference
between small and capital let ters. For this reason " S i g n "
was changed to "ss ign" for the LGP-30 run (and in the
revision which follows later) .

The following addit ion might be made in the specification as a
concession to efficiency: " v a l u e A , n ; " .

The following changes might be made to make the Algorithm
less wordy :

1. for "Ss ign := 1; Product := 1;"
put "Ssign := Product := l ; "

2. for " b e g i n B[i,j] := A[i , j]; C[i,j] := A[i , j] e n d ; "
put " B [i j] := C[i,j] := A [i j] ; "

3. for " b e g i n B[i,j] := B[i,j] - Factor X C[r,]] e n d e n d ; "
put "B[i , j] := B[i,j] -- Factor X C[r,]] e n d ; "

The above corrections and changes were made and the program
was run with the correct results, as follows:

/ 096597 3510765 967 356\
A = [2.35765 -84.11256 .87932]

\18.24689 22.13579 1.11123/

Determinant = .1527313,006

Hand calculation on a desk calculator gives the value of the de-
t e rminant for the above matr ix as 152,731.3600.

/1 . (' 3.0 3.0 1 .0 \

A = | 1.0 4.0 6.0 4 .0 / Determinant = .999999910+00
1.0 5.0 10.0 10.0
1.0 6.0 15.0 20.0/

The above matrix, being a finite segment of Pascal 's triangle, has
de terminant equal to 1.000000000.

0.0 0.0 0.0)
A = 5.0 9.0 2.0 Determinant = .0000000~o+00

7.0 5.0 4.0

This is, of course, exactly correct.
Finally, one major change can be made which does away with

several instructions and reduces variable storage requirements
by n *. This change is the complete removal of matr ix C from the
program. I t is extraneous.

The revised Algorithm was t ransla ted into SCALP and run on
the LGP-30 with exactly the same results as above.

The revised Algori thm 41 follows.

ALGORITHM 41, REVISION
EVALUATION OF DETERMINANT [Josef G. Solo-
mon, RCA Digital Computation and Simulation Group,
Moorestown, N. J.]
BRUCE H. FREED

Dartmouth College, Hanover, N. H.

r e a l p r o c e d u r e determinant (a,n);
r e a l a r r a y a; i n t e g e r n; v a l u e a,n;

c o m m e n t This procedure evaluates a determinant by triangu-
larization;

b e g i n rea l product, factor, letup;
a r r a y b[1 :n,1 :n];
i n t e g e r count, ssign, i ,], r, y;
ssign := product := 1;
for i := 1 s t e p 1 u n t i l n do
for j := 1 s t e p 1 u n t i l n do
b[i,j] := a[i,j];
f or r := 1 s t e p 1 u n t i l n--1 do
b e g i n count : = r-- 1 ;
zerocheek: i f b[r,r] ~ 0 t h e n go to resume;
i f count < n--1 t h e n count := count +1 else go t o zero;
f or y := r s t e p 1 u n t i l n do
b e g i n temp := b[count+l,y];

b[count+ l,y] := b[count,y];
b[count,y] := temp e n d ;

ssign := --ssign;
go to zerocheck;
zero: determinant := 0; go to return;
resume: for i := r + l s t e p 1 u n t i l n do
b e g i n factor := b[i,r]/b[r,r];
for j := r + l s t e p 1 u n t i l n do
b[i,]] := b[i,j] -- factor X b[r,]] e n d e n d ;
f o r i := 1 s t e p 1 u n t i l n d o
product := product X b[i,i];
determinant := ssign X product;
return: e n d

CERTIFICATION OF ALGORITHM 45
INTEREST [Peter Z. Ingerman, Comm. ACM Apr. 1961
and Oct. 1960]
CARL B. WRIGHT

Dartmouth College, Hanover, N. H.

I N T E R E S T was t ransla ted into Dar tmouth College Computa-
t ion Center ' s "Self Contained ALGOL Processor" for the Royal-
McBee LGP-30. When using SCALP, memory capacity is severely
limited and thus it was necessary to run this program in two
blocks. Block I ended with the computat ion of I, and Block II
s ta r ted with the " n e w m " loop. After making the changes listed
below, tes t problems using up to three interest rates and up to 18
time periods were used with the following results:

Final
Loan Periods Interest Rates Payments Balance* Tolerance

$100.00 1 0.05 $105.00 $0.00 $0.25
1800.00 10 0.03 211.01 0.05 4.50
875.65 8 0.08 to 500.00

0.05 over 500.00 139.78 --1.49 2.19
14750.00 18 0.06 to 5000.00

0.05 to 10,000.00
0.04 over 10,000.00 1201.70 10.35 36.88

* Hand calculation.

I t is noted tha t in each case the final balance is within the pre-
scribed tolerance (0.0025 of the loan).

In the following corrections bracketed subscripts replace
ordinary subscripts and exponentiat ion is represented by T
ra ther than superscript .

The following corrections should be made in the Note on In-
terest in the October, 1960, issue of Comm. A C M :

1. Definition of Bin]: Replace " m i n i m u m " by " m a x i m u m " .
Replace "j[n]" by " j [n - -1]" .

2. Define B[k+l] ~ L.
3. Definition of K[n]: Replace "B[n]" by " B i n + l] " .
The following corrections were found necessary in the proce-

dure :

520 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963

1. The upper limit of the vector B is k + l , not k. I t is not neces-
sary to change the upper limit of t h e / - v e c t o r . (See correction 4
below.)

2. D, E, F, u, v were not declared and must be declared as rea l .
3. In the a r r a y declaration replace "M[1 :k]" by "M[1 :k+ l]" .
4. As] approaches 0, i approaches 1 and lira (h/S) = 1/t. Thus

for j [k+l] = 0, i l k+ l] = 1, and M[k+l] = L/t . Thus after
M[p] := L X (h[p,t]/S[p,t]) e n d ;

insert
M[k+l] := L/t; B[k+l] := L;
5. In the conditional s ta tement following computat ion of b[p],

replace " > " by "=>".
6. In same conditional s ta tement , next line, "rob := bp" should

read "rob := b[p]".
7. D : = 1; E : = F : = O ;

newm: f o r p := 1 s t e p 1 u n t i l k do
should be changed to

newm: D := 1; E := F := 0;
for p := 1 s t e p 1 u n t i l k do

8. b e g i n get F: F := (D-~m-E)/(ld-i[q]);
i f B[q+l] _~ F t h e n D := F e lse q := q + 1;
i f D # F go to get F e n d ;

should be changed to read as follows:
b e g i n get F: F := (D+m)/i[q];

i f B[q+l] => F t h e n D := F e lse
b e g i n i f q < k t h e n q := q + 1 e lse D := F e n d ;
i f D ~ F t h e n go to get F e n d ;

Note tha t the " t h e n " in the last line was omitted from the original
procedure.

9. In the "redo" loop insert a semicolon after the s ta tement
T[ib] := T[ib] + Tip] -- b[p];

10. In the "redo" loop, next line, omit the second "end".
11. In the "redo" loop,

p := k e n d ;
should be changed to

p := k end end;

R E M A R K O N A L G O R I T H M 129 M I N I F U N

M I N I F U N IV. W . W h i t l e y , Comm. A C M , N o v . 1962]

E . J . WASSCHER

P h i l i p s R e s e a r c h L a b o r a t o r i e s

N . V. P h i l i p s ' G l o e i l a m p e n f a b r i e k e n

E i n d h o v e n - N e t h e r l a n d s

Some errors found in Algorithm 129 M I N I F U N [Comm. ACM,
Nov. 1962] are given below.

In addition, the way "s teepes t descent" is used to compute
the minimum of a function of n variables is not entirely satis-
factory. The method for computing first derivatives may be im-
proved in two ways:

1. Instead of eomputing f (x + h) - f (x) . i t is be t te r to take
h

f (x + h) - f (x - h) As f (x - h) has been computed by M I N I F U N
2h

this does not give rise to extra computations.
2. In M I N I F U N the choice of h seems rather deliberate. In-

deed, h is taken as .2 X (xub-xlb) , where xub and xlb are variable
bounds of x. In the beginning of the program these bounds are
put equal to the fixed bounds bl and ub; afterwards in the itera-
t ion process they should tend towards each other, and in the limit
they provide the minimum. So especially when a good approxima-
tion to the minimum is unknown, bl and ub have to be taken well
apar t from each other, which means tha t h is ra ther large. At the
limit, however, h is very small• I t is bet ter to take h in such a way
tha t the nominator f (x+h)-- f (x- -h) at tains an appropria te value.

As the method used by M I N I F U N is the Newton-Raphson
method applied to the first derivatives, convergence is not always
secured--especial ly since first and second part ial derivatives are
es t imated with numerical methods.

I t should be noted tha t the tes t on end of program is not correct.
For a fur ther possible decrease of the function one has not to look
in the direction of the coordinate axes but in the direction of the
s teepest descent•

ALGOL descriptions of some "s teepes t descent" programs which
were wri t ten in the symbolic code of the Philips computer Pascal
[ef. I t . J• Heijn and J• C. Selman, IRE Trans. EC10 (June 1961),
175--183] are given in Algorithms 203, 204 and 205.

CORUECTIONS OF M I N I F U N :
Printing errors: The line below label nustep should read:

b e g i n i f abs(dmax) <abs (dxmin []]) t h e n
The label 1 bdchk should be lbdchk
In c o m m e n t M I N I F U N : k l = 2 : a new minimum has not

been found.
The labe l nustep should be placed before the s ta tement :

dmax := dxmin[/]; The declaration of xmin should be removed
from the blockhead of the procedure body. The 2-dimensional
arrays x[1 :n, 1:4] and g[1 :n, 1:4] can be replaced by a rea l x and a
1-dimensional a r r a y g[1:4] respectively.

An improvement could be the insertion of the s ta tement

kl := 1;

Just before the l abe l nustep.
I am having considerable trouble with the obviously impor tant

par t played by the a r r a y wnew, although it does not change after
being set in the first s ta tement of the program. Fur thermore i t
seems to me tha t wnew plays a double rble: first the component
wnew[k] is the value of xt[k] before an i terat ion on xt[k]. But then
one should insert another s ta tement af ter l abe l nustep:
wnew[k] := xt[k]; Secondly wnew[k] is to be understood as half
the distance between upper and lower bound tl[k] and bl[k], which
is only true when bl[k] = O.

Convergence of delx[j] to 0 is only achieved when xlb[k] and
xub[k] are tending towards each other. This indicates tha t wnew[k]
should go to 0 too. (See s ta tements after l abe l stnubds.)

The following modifications could remove these objections
(start ing with the line above l abe l restart):

i f f t < fmin t h e n go to check else xt[k] := wnew[k];
restart: i f xt[k] < wnew[k] t h e n go to lbdchk;

i f xt[k] = wnew[k] t h e n go to stnubds;
ifxt[k] < tl[k] t h e n go to nupbds;
xt[k] := 0.5 X (wnew[k] -F tl[k]);

nupbds: xub[k] := tl[k]; xlb[k] := 2 X xt[k] - tl[k]; go to
newdel ;

stnubds: xlb[k] := xt[k] -- 0.5 X (wnew[k] - xlb[k]);
xub[k] := xt[k] + 0.5 X (wnew[k] -- xlb[k]); (etc.)

lbdchk: i f xt[k] = bl[k] t h e n xt[k] := 0.5 X (wnew[k] d- bl[k]);
xlb[k] := bl[k]; xub[k] := 2 X xt[k] -- bl[k]; go to
newdel ; (etc.)

R E M A R K O N A L G O R I T H M 157

F O U R I E R S E R I E S A P P R O X I M A T I O N [C. J . M i f s u d ,

C o m m A C M , M a r . 1963]

RICHARD GEORGE *

A r g o n n e N a t i o n a l L a b o r a t o r y , A r g o n n e , I l l .

This algorithm was wri t ten in FAP language for the 32-K IBM
704. I t was tested on a sawtooth curve, and the sawtooth was
recreated by summing the expansion up through the 2N + 1 con-
s tants , with excellent results.

• Work supported by the United States Atomic Energy Commission.

V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963 C o m m u n i c a t i o n s o f t h e ACM 521

The arrays S, C and u are never referenced with a variable
subscript . For a saving of t ime, I suggest t h a t simple var iables
be used instead.

By declaring one addi t ional real var iable , one can bring the
phrase

2 / (2 X N + 1)

outside of the for loops, because N does not change th rough the
procedure. This results in a saving of 4 N + 2 mult-ops.

(5) L e t f (x) = e ~ and P=O. Then g (x) = x .
n

(6) L e t f (x) = ~ x~and P = 0 . Then g (x) = l n (1 - x ~) - - l n (1 - - x) =

1
: xfl (See Table 2.)

T A B L E 2

C E R T I F I C A T I O N O F A L G O R I T H M 158

E X P O N E N T I A T I O N O F S E R I E S [H. E . F e t t i s , C o m m .

A C M , M a r . 1963]

J . DENNIS LAWRENCE

L a w r e n c e R a d i a t i o n L a b o r a t o r y , L i v e r m o r e , Ca l i f .

This procedure was t r ans la t ed into FORTRAN and run on the
Reming ton -Rand LARC Computer . Three changes are necessary.

(1) The las t line of the comment should read
for the na tu ra l logar i thm of f (x) ;

(2) The th i rd line f rom the end should read

S := S - ~ (P X (i - - k) - k) X B [k] X A [i - - k] ;

(This line was given correct ly in a lgor i thm 134.)
• (3) The second line from the end appa ren t ly should read

B[i] := A[i] := (S / i) ;

for the case P = 0 only. P robab ly the best way to incorporate
this is by making two changes:

(a) Change the i f clause to read
i f P = 0 t h e n R := 1 e l s e R := P ; BIl l := R X A[1];

(b) Change the second line from the end to read

B[i] := R X A[i] + (S / i) ;

A large number of examples were run quite successfully; the
following give represen ta t ive samples.

(1) (l+2x+3x~+O.5x~) ~ = l + 4 x + l O x 2 + 1 3 z 3 + l l x 4 + 3 x s + O . 2 5 x 8
(using A[4] := A[5] := A[6] := 0).

(2) Se t t ing P := 1 gives B[i] := A[i].

x i and let P = ln2 = .693147181.
1

(3) Le t f (x) = e ~ = 1 + i-~
i = l

Theng(x) = 2 ~ = 1 +
(ln2) i

i=1 T xi' (See Table 1.)

(4) Let f (x) = e x and P = - l . Then g (x) = e -~. For P =O, ap-
paren t ly the cons tan t t e rm of g(x) should be zero ins tead of one.

1
2
3
4
5
6
7
8
9

10

T A B L E 1

A [i] B[i]

1.000000000
0.500000000
0.166666667
0.041666667
0.008333333
0.001388889
0.000198413
0.000024802
0.000002756
0.000000276

0.693147181
0.240226507
0.055504109
0.009618129
0.0O1333356
0.000154035
0.000015253
0.000001322
0.000000102
0.000000007

1
2
3
4
5
6
7
8
9

I0
11
12
13
14
15

A[il B[i]

1.0 1.000000000
1.0 0.500000000
1.0 0.333333340
1.0 0.250000000
1.0 0.200000000
1.0 0.166666670
1.0 0.142857140
1.0 0.125000000
1.0 0.111111110
1.0 0.100000000
1.0 0.090909100
1.0 0.083333330
1.0 0.076923080
1.0 0.071428580
1.0 0.066666660

C E R T I F I C A T I O N O F A L G O R I T H M 163

M O D I F I E D H A N K E L F U N C T I O N [H e n r y E . F e t t i s ,

C o m m . A C M , A p r . 1963]

HENRY C. THACHER, JR .*

A r g o n n e N a t i o n a l L a b o r a t o r y , A r g o n n e , I l l .

Since this a lgor i thm is a funct ion declara t ion, the procedure •
dec lara t ion should be:

r e a l p r o c e d u r e E X P K (D , X , E); . . .

Otherwise, no syn tac t ica l errors were not iced.
The body of the procedure was t r a n s l a t e d and run on the

LGP-30 computer , using the D a r t m o u t h SCALP system. Resul ts for
E = 0.0001, X = 0.1(0.1)1.0, P = 0, 0.3333333, 0.6666667 and
1.000000 agreed wi th values t abu l a t ed in Jahnke-Emde-Losch to
the 3-4D given in the tables , except for errors discovered in the
tab le of 2/~K2n(x) .

With X = 0, the program ended in f loat ing-point overflow. The
a lgor i thm itself, or the call of the procedure, should include a t e s t
to insure t h a t the var iable is grea ter t han eps, where eps is chosen
to p reven t exceeding machine capaci ty .

The a lgor i thm was found to be excessively slow. Times on the
LGP-30 were of the order of 6 minutes . A considerable saving in
t ime could be realized by improving the quad ra tu re formula , cur-
r en t ly the simple midpo in t formula , repeated complete ly for
each i t e ra t ion . A more effective me thod would be a modified
Romberg a lgor i thm. A procedure based on the l a t t e r approach is
being developed in th is divis ion.

* W o r k s u p p o r t e d b y t h e U . S. A t o m i c E n e r g y C o m m i s s i o n .

522 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963

TABLE A

n X[n]

1 5.0
2 5.0
3 6.0
4 6.0
5 5.0
6 6.0

vin]

148.4132
148.4132
403.4288
403.4288

74.20658
201.7144

B[n]

148.4132
148.4132
403.4287
403.4287
148.4132

B[n--1]

148.4132
255.0155
403.4287
255.0155

B[n--2]

106.6023
148.4132
148.4132

B[n--3]

41.81091
41.81091

403.4287 255.0155 148.4132 53.30115

B[n-4]

9.415191
11.49023

B[n--5]

2.075043

The forward differences lie along the top diagonal.
Use of these results with By~WT and with F•EWT gave the following results, for N = 6.

5.000000
5.500000
6.000000

148.4132
244.6973
403.4287

BhrE WT

D

148.4132
244.6924
403.4287

.4567298 X 10 -4

.4173722 X 10 .4

.2017143 X 10 -4

148.4132
244.6973
403.4287

F N E WT

148.4132
244.6924
403.4287

E

.7420658 X 10 -5

.3078276 X 10 -4

.7441404 X 10 -4

CERTIFICATION OF ALGORITHM 167
CALCULATION OF CONFLUENT DIVIDED DIF-

FERENCES [W. Kahan and I. Farkas, Comm.
ACM, Apr. 1963]

CERTIFICATION OF ALGORITHM 168
NEWTON INTERPOLATION WITH BACKWARD

DIVIDED DIFFERENCES [W. Kahan and I.
Farkas, Comm. ACM, Apr. 1963]

CERTIFICATION OF ALGORITHM 169
NEWTON INTERPOLATION WITH FORWARD

DIVIDED DIFFERENCES [W. Kahan and I.
F~rkas, Comm. ACM, Apr. 1963.]

HENRY C. THACHER, JR.*
Argonne National Laboratory, Argonne, Ill.

The bodies of these procedures were tes ted on the LGP-30
computer using the Dar tmouth SCALP compiler. Compilation and
execution revealed no syntact ical or mathematical errors.

I t is to be noted tha t , al though with Algorithm 169, reducing
the value of N from tha t used to generate F leads to an interpola-
t ion polynomial based on fewer points, this is not true for Al-
gori thm 168. This flexibility could be supplied by adding an
addit ional formal parameter , deg, say, to the procedure, and by
making the for s ta tement read:

" f o r i := N -- deg s t e p 1 u n t i l N do . . - "

The logic of the error est imate in Algorithms 168 and 169 is not
entirely clear. However, it appears tha t the est imate can be ad-
jus ted for different precision of ar i thmetic by adjust ing the con-
s tan t 310-8 appropriately. For the SCALP ari thmetic, this cons tant
was changed to 110-7.

The algorithms were tes ted on the examples given by Milne-
Thomson [The Calculus of Finite Differences, p. 4, Macmillan,
1951] and by Milne [Numerical Calculus, p. 204, Princeton, 1949].
In both examples, Algori thm 167 reproduced the divided differ-
ence table, and both Algorithms 168 and 169 reproduced the input
values. As a cheek of the calculation of confluent divided differ-
ences, values of the exponential function of its first two deriva-
tives at x = 5.0 and 6.0 were used. The difference table shown in
Table A was obtained.

* Work supported by the U. S. Atomic Energy Commission,

REMARK ON ALGORITHM 166
MONTECARLO INVERSE JR. D. Rodman, Comm.
ACM, Apr. 1963]
R. D. RODMAN
Burroughs Corp., Pasadena, Calif.

The algorithm contained two errors:
(1) The line which reads

start: p := (n - 1) / n X n;
should read

Mart: p := (n- -1) /n T 2;
(2) The line which reads

start2: walk : = (r a n d o m / p) + 1;
should read

start2: walk: = e n t i e r ((r a n d o m / p) + 1);
After making the preceding corrections, procedure montecarlo

was t ransl i tera ted into E X T E N D E D ALGOL and run successfully
on the Burroughs B-5000. Convergence occurred in all cases where
the matrix satisfied the conditions set down in the comment s ta te-
ment of the algorithm. I t was found tha t convergence was quickest
and the routine most practical for matrices with eigenvalues small
relative to one.

DATES TO REMEMBER

F J C C Las Vegas

SJCC Washington

ACM Philadelphia

I F I P New York

Nov. 12-14, 1963

Apr. 21-23, 1964

Aug. 25-28, 1964

M a y 22-24, 1965

V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963 C o m m u n i c a t i o n s of t h e ACM 523

