
The actual choice of n and M for a given precision is left  for the 
individual programmer.  Programmed for the GE-225, accurate 
answers of tan -1 1 = ~-/4 were obtained for double precision in 
comparison with the known values. The semiiterat ive method can 
be programmed in a very short  t ime for any multiple precision and 
is efficient in comparison with taking more terms of the Taylor ' s  
series, taking into account the divisions required for the square 
root process. Telescoped Taylor 's  series may be used if desired, 
but a shorter  telescoped Taylor 's  series can be used if the semi- 
i terat ive scheme is employed. Telescoping, however, is expected 
to take more storage for the coefficients than  a simple t runcated  
series. Telescoping also discards the advantage of flexibility and 
applicabil i ty to n-tuple precision programs. 
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A contr ibut ion to this depar tment  must  be in the form of 
an Algorithm, a Certification, or a Remark.  Contr ibut ions 
should be sent in duplicate to the Edi tor  and should be 
writ ten in a style pa t te rned  after  recent contr ibut ions 
appearing in this depar tment .  An algorithm must  be wri t ten 
in ALGOL 60 (see Communications of the ACM, January  
1963) and accompanied by a s ta tement  to the Edi tor  indicat-  
ing tha t  it  has been tes ted and indicating which computer  
and programming language was used. For the convenience 
of the printer ,  contr ibutors  are requested to double space 
material  and underline delimiters and logical values tha t  
arc to appear in boldface type.  Whenever feasible, Certi-  
fications should include numerical values. 

Although each algorithm has been tes ted by its contr ib-  
utor, no warranty,  express or implied, is made by the con- 
t r ibutor ,  the Editor ,  or the Association for Computing 
Machinery as to the accuracy and functioning of the al- 
gori thm and related algorithm material ,  and no responsi- 
bi l i ty is assumed by the contr ibutor ,  the Editor ,  or the 
Association for Computing Machinery in connection there-  
with. 

The reproduction of algorithms appearing in this depar t -  
ment  is explicitly permi t ted  without  any charge. When re- 
product ion is for publication purposes, reference must  be 
made to the algorithm author  and to the Communications 
issue bearing the algorithm. 

J. WEGSTEIN,  Editor 

ALGORITHM 202 
GENERATION OF PERMUTATIONS IN LEXICO- 
GRAPHICAL ORDER 
MOK-KONG SttEN 

Postfach 74, Miinchen 34, Germany 

p r o c e d u r e  PERLE (S, N, I, E);  
i n t e g e r  a r r a y  S; i n t e g e r  N; Bo o l ean  I ;  l abe l  E;  
c o m m e n t  If the array S contains a certain permutat ion of the 

N digits 1, 2 , . . .  , N before call, the procedure will replace 
this with the lexicographically next permutat ion.  If initializa- 
tion is required set the Boolean variable I equal t r u e ,  which 
will be changed automatically to f a l se  through the first call, 
otherwise set I equal fa lse .  If no fur ther  permuta t ion  can be 
generated, exit will be made to E. For reference see BIT Z 
(1962), 228-231 ; 

b e g i n  i n t e g e r  j, u, w; 
i f I t h e n  b e g i n  for  y = 1 s t e p  1 u n t i l  N do S[j] := j; 

I := fa l se ;  go to  Rose 
e n d  ; 

w : = N ;  
Lilie: i fS[w] < S I T - l ]  t h e n  

b e g i n  i f  w = 2 t h e n  go to E; 
w := w - -  1; go t o L i l i e  

e n d ;  
u := S[w-1] ;  
for  j := N s t e p  - 1  u n t i l  w do  
b e g i n  i f  S[]] > u t h e n  

b e g i n  S [w-1]  := S[j]; 
S[j] := u; go to  Tulpe 

e n d  
end  ; 
Tulpe: for  ] := 0 s t e p  1 u n t i l  ( N - w - I ) ~ 2  + 0.1 do  

b e g i n  u := SIN--j]; 
S[N-y] := S[w+y]; S[w+y] := u 

e n d ;  
Rose : 
e n d  PERLE 

ALGORITHM 203 
STEEP1 
E. J. WASSCHER 
Philips Research Laboratories 
N. V. Philips' Gloeilampenfabrieken 
Eindhoven-Netherlands 

proeedure STEEP1 (lb, xs, ub, dx, xmin, fmin, n, eps, relax, dxmax, 
eta, psi, pmax, zeta, FUNK); 

va lue  dx, n, eps, relax, dxmax, eta, psi, pmax, zeta; 
i n t e g e r  n; 
rea l  fmin, eps, relax, dxmax, eta, psi, pmax, zeta; 
a r r a y  lb, xs, ub, dx, xmin; rea l  p r o c e d u r e  FUNK; 
c m n m e n t  STEEP1 is a subroutine to find the minimum of a 

differentiable function of n variables, using the method of 
s teepest  descent.  I t  mainly consists of three par ts :  (1) a sub- 
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routine A T I V E ,  for computing the partial  derivatives, (2) a 
subroutine S T E P ,  for computing the components of an array 
xstep[1 :n], which is a new approximation of xmin[1 :n], (3) the 
compound tail of the procedure body. Both subroutines are 
only called for once, but by writing the program in this way it 
is quite easy to change the flow of the program. 

Significance of the parameters :  lb(i), ub(i) are lower and 
upper bounds for the independent  variables, xs(i) is the s tar t ing 
value for xmin( i ) ,  xmin(i)  is the computed i th  component  of 
the minimum, f m i n  the value of the function in xmin.  n is the 
number of variables, eps is a small number which is a measure 
of the desired accuracy- - ra ther  of f m i n  than of xmin(i) .  F U N K  
(x) is the function to be minimized. The other parameters  are 
described in the comments  on the three par ts  ment ioned;  

b e g i n  i u t e g e r  i; rea l  alpha, p; a r r a y  xstep, dfdx, dfpr[l:n]; 
p r o c e d u r e  A T I V E ;  
b e g i n  rea l  beta, gamma, lambda; Boo lean  A, B; 
c o m m e n t  l.  A useful est imate for t h e  derivative is 

f ( x + d x ) - f ( x - d x )  where dx should be small, but  not so small 
2dx 

tha t  roundoff noise dominates.  This may be achieved by taking 
f ( x+dx)  - f ( x -  dx) 

dx such tha t  eta < f ~  < 100 eta, where eta is 

a measure for the relative roundoff error. When I f (x)  [ < 1 it is 
bet ter  to replace the denominator  by a constant .  In the program 
the parameter  psi is used for this purpose. The components  
dx(i) are used as a first guess. When the derivative is 0, the 
program enlarges dx until dx > dxmax. 

A T I V E  computes dfdx[l:n] in xmin.  The previously computed 
partial  derivatives dfpr[1 :n] as well as relax are used for relaxa- 
t ion purposes. See comment  3. The Boolean A is used when 
x+dx or x--dx crosses the boundary ub or lb. In tha t  case f m i n  
has to be recompnted afterwards.  The Boolean B is of a some- 
what  complicated nature.  I t  may be seen tha t  dx has the char- 
acter  of an own array for A T I V E .  In the neighborhood of the 
minimum this may have the following effect: A step in one 
variable is taken such tha t  f ( x+dx)  becomes equal to f ( x - d x ) .  
Then in the next  eall for A T I V E  dx has to be doubled, etc. By 
using the Boolean B it is possible to keep dx constant  near the 
minimmn. 

A similar effect may occur in the large. When f (x)  tends to a 
cons tant  for x tending to +~¢ and - ~ ,  then for I x ] l a r g e  dx 
has to be taken large. I t  is only possible to make dx smaller in 
the neighborhood of the minimum by reducing dx after each 
call of A T I V E .  

From the last two remarks one may deduce tha t  the first 
guess for dx(i) should be made with considerable care. Tabulat-  
ing the function near the s tar t ing point  may be very helpful; 

b e g i n  A T I V E :  lambda := 0; 
t o r  ] :=  1 s t e p  1 u n t i l  n d o  
b e g i n  
large: A := B := :false; i f xmin[ j ]  + dx[j] > ub[j] 

t h e n  b e g i n  xmin[y] := ub[j] -- dx[i]; A := t r u e  e n d  
e l s e  i f  xmin[j] -- dx[i] < lb[i] 

t l l e n  b e g i n  xmin[j] : =  lb[i] + dx[j]; A : =  t r u e  e n d ;  
small: xmin[j] := xmin[]] + dx[]]; alpha := F U N K  (xmin); 

xmin[j] := xmin[i] -- 2 X dx[]]; beta := F U N K  (xmin); 
xmin[j] := xmin[j] + dx[j]; i f  A t h e n  f m i n  := F U N K  

(xmin ) ; 
A :=  f a l s e ;  
i f  alpha -- f m i n  > 0 A beta -- f m i n  > 0 
t h e n  b e g i n  B : =  t r u e ;  go to  comp e n d ;  
gamma : =  abs((alpha--beta)/(i f  abs(fmin) < psi t h e n  

psi e l s e  train)) ; 
i f  gamma > 100 X eta t h e n  

b e g i n  dx[j] := .2 X dx[y]; go to  small e n d ;  
i f  gamma < eta t h e n  

b e g i n  dx[j] := 2 X dx[j]; i f  dx[j] < dxmax t h e n  

go to  large e l s e  dx[]] := dxmax e n d  
eomp: dfdx[i] := (alpha--beta)~(2 X dx[i]); 

lambda := lambda + dfclx[j] T 2; 
i f  --1 B t h e n  dx[j] := .5 X dx[j] 

e n d  for; lambda := sqrt (lambda); 
f o r ]  := 1 s t e p  1 u n t i l n  d o  

dfdx[j] := dfdx[j]/lambda 
e n d  procedure A T I V E ;  

p r o c e d u r e  S T E P ;  
c o m m e n t  2. A step is taken in all variables at  the same time. 

The order of magnitude of the step in one variable should be 
of the order of magnitude of this variable. To accomplish this 
three weighting factors are given to the part ia l  der ivat ives:  

1) X =  (i=li \Oxi/(OfY~-t/ (see subroutine A T I V E ) ,  

2) ] x~ I , or when small, zeta, 
3) a number p, which is put  equM to 1 at  the beginning of the 

program and which tends to 0 at  the minimum. 
After a decrease of the funct ion the step is accepted and p is 
multiplied by 1.5. After an increase p is divided by 2. pmax 
replaces p when p becomes greater than  pmax; 

b e g i n  for  j := 1 s t e p  1 u n t i l n d o  
b e g i n  alpha := (1--relax) X dfdx[j] + relax X dfpr[j]; 

xstep[]] := xmin[]] - p X alpha X 
( i f  abs(xmin[j]) < zeta t h e n  zeta e l s e  abs(xmin[i]) ) ; 
dfpr[i] := alpha; 
i f  xstep[]] > ub[i] t h e n  xstep[]] := ub[j] 

e l s e  i f  xstep[j] < lb[]] t h e n  xstep[]] := lb[]] 
e n d  for 
e n d  S T E P ;  
c o m m e n t  3. In the next p a r t - - t h e  compound t a i l - - the  calls for 

A T I V E  and S T E P  are organized. The values 1.5 and .5 of the 
factors of p are not  very impor tant .  During the i terat ion p gets 
an optimal value, which slowly varies. Only at  the end p rapidly 

y2+l  
tends to 0. The programme was tes ted  on the funct ions x2-4-1 

. (x--y)~--2 
and ~ ,  the la t ter  being the first one except for a ro ta t ion 

of the xy-plane over ~r/4 radians. In the first case a " g u t t e r "  

coincides with the x-axis, while f o r x  > 0 a n d [ y [  X l ° f  X o. 
ox 

In  the second case, where the gut ter  is along the line x=y ,  the 
relaxation is especially interesting,  because with relax = 0 
(and pmax= 100) the i terat ion follows the gut ter  in an unstable 
way. With s tar t ing values x = --14 and y = 21 from x = y = 26 about  
300 steps were taken along the gut ter  with p about  .01. With  
relax = .35 and pmax = .5 we had about  150 steps from x=y=23 .  
In the gut ter  itself relax = .85 gave the best  results, but  in tha t  
case the gut ter  was reached at  x = y = 6 3 .  

Other parameter  values were: zeta = psi  = 1, dxmax=lO0, 
eta = 10 -~ with eps = 10 -8 gave f m i n  in l0 figures correctly and 
xmin[i] in 4 to 6 figures for various s tar t ing values of xs[i]; 

p := 1; 
f o r  ] :=  1 s t e p  1 u n t i l  n d o  
b e g i n  xmin[i] := xs[j]; dfpr[]] := 0 e n d ;  f m i n  := F U N K  

(xmin) ; 
deriv: A T I V E ;  
next: S T E P ;  

alpha := F U N K  @step); 
i f  alpha < f m i n  t h e n  

b e g i n  f m i n  := alpha; p := 1.5 X p; 
i f  p > pmax t h e n  p := pmax; 

f o r  j := 1 s t e p  1 u n t i l  n d o  xmin[]] := xstep[j]; 
go to  deriv e n d ;  

p := . 5 X p ;  
i f  p > eps t h e n  go t o  next; 
e o m m e n t  As p has become smaller than  eps this is the end of 
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STEEP1.  T h e  p r o g r a m  A T I V E  t a k e s  up  r a t h e r  a lo t  of c o m p u t e r  
t i m e  by  t h e  w a y  i t  chooses  a v a l u e  for dx(i). A t h o r o u g h  s imp l i -  
f ica t ion  is o b t a i n e d  b y  t a k i n g  dx(i) as 10 T - 3 X abs(xmin[i]), 
where  a g a i n  xmin[i] m a y  be r ep l aced  by  zeta. F u r t h e r ,  a t  t h e  
cos t  of s o m e  loss  of a c c u r a c y ,  c o m p u t i n g  t i me  is s a v e d  by  t a k i n g  

f ( x + h ) - f ( x )  as an  e s t i m a t e  for  t h e  d e r i v a t i v e .  T h i s  p r o g r a m ,  
h 

as fa r  as i t  differs  f r o m  S T E E P 1 ,  is de sc r ibed  in a l g o r i t h m  204, 
S T E E P 2 .  A n  i n t e r e s t i n g  c o m p r o m i s e  b e t w e e n  t he  two m e t h o d s  
is o b t a i n e d  b y  i n t e r c h a n g i n g  t he  c o m p u t a t i o n  of dx a n d  dfdx in  
A T I V E  of S T E E P 1  a n d  o m i t t i n g  t h e  i t e r a t i o n  on dx. T h i s  
r o u t i n e  A T I V E ,  w h i c h  ha s  to be u s e d  in STEEP1 ,  is g iven  b y  
J .  G. A. H a u b r i c h  in a l g o r i t h m  205; 

e n d  S T E E P 1  

ALGORITHM 204 
STEEP2 
E. J. WASSCHER 
Philips Research Laboratories 
N. V. Philips' Gloeilampenfabrieken 
Eindhoven-Netherlands 

p r o c e d u r e  S T E E P 2  (lb, xs, ub, dx, xmin, fmin ,  n, eps, relax 
dxmax, pmax, zeta, F U N K ) ;  

v a l u e  dx, n, eps, relax, dxmax, pmax, zeta; 
i n t e g e r  n ;  
r e a l  dx, fmin ,  eps, relax, dxmax, pmax, zeta; 
a r r a y  lb, xs, ub, xmin; r e a l  p r o c e d u r e  F U N K ;  
c o m m e n t  dx s h o u l d  now be t a k e n  a b o u t  10 ~" - 3, dxmax could  

be  t a k e n  equa l  to  1. As t h e  p r o g r a m  is equa l  to  S T E E P 1  a f t e r  
t h e  d e c l a r a t i o n  of t he  p r o c e d u r e  A T I V E ,  t h e  ALGOL d e s c r i p t i o n  
is c u t  off t h e r e ;  

b e g i n  i n t e g e r  j ;  r e a l  alpha, p; 
a r r a y  xstep, dfdx, dfpr [1 :n]; 

p r o c e d u r e  A T I V E ;  
b e g i n  r e a l  beta, lambda; lambda :=  0; 

f o r  j :=  1 s t e p  1 u n t i l  n d o  
b e g i n  alpha :=  dx X ( i f  abs(xmin[j]) < dxmax 

t h e n  dxmax e l s e  abs (xmin[j])); 
i f  xmin[j] + alpha > ub[j] t h e n  alpha : =  --alpha; 
xmin[j] :=  xmin[]] + alpha; beta : =  F U N K  (xmin); 
xmin[j] :=  xmin[j] - alpha; 
dfdx[j] :=  (beta - fmin)/alpha; 
lambda :=  la¢nbda + dfdx[j] ~ 2 

e n d  for ;  lambda :=  sqrt (lambda); 
f o r  j :=  1 s t e p  1 u n t i l  n d o  dfdx[j] :=  dfdx[j]/lambda; 

e n d  p r o c e d u r e  A T I V E  

ALGORITHM 205 
ATIVE 
J. G. A. HAUBRICH 
Philips Research Laboratories 
N. V. Philips' Gloeilampenfabrieken 
Eindhoven-Netherlands 

p r o c e d u r e  A T I V E  ; 
b e g i n  r e a l  beta, lambda; B o o l e a n  A ;  
c o m m e n t  T h i s  r o u t i n e  m a y  rep lace  A T I V E  in STEEP1 .  T h e  

s ign i f icance  of eta h a s  s l i g h t l y  c h a n g e d ;  
lambda :=  0; 
f o r  j :=  1 s t e p  1 u n t i l  n d o  
b e g i n  A :=  f a l s e ;  alpha : =  dx[]]; 

i f  xmin[]] + alpha > ub[)'] t h e n  
b e g i n  xmin[j] :=  ub[j] -- alpha; 
e l s e  i f  xmin[j] -- 
b e g i n  xmin[j] :=  

xmin[j] :=  
xmin[j] :=  
xmin[j] :=  

(xmin ) ; 

A :=  t r u e  e n d  
alpha < lb[j] t h e n  
lb[j] + alpha; A := t r u e  e n d ;  
xmin[j] + dx[j]; alpha := FUNK(xmin ) ;  
xmin[j] - 2 X dx[]]; beta := FUNK(xmin ) ;  
xmin[j] + dx[j]; i f  A t h e n  fmin  :=  F U N K  

dfdx[j] :=  (alpha-beta)~(2 X dx[j]); 
lambda :=  lambda+dfdx[j] ~'2; 

i f  alpha - fmin  > 0 A beta -- fmin  > 0 t h e n  go  t o  end; 
beta :=  abs((alpha--beta)/(if abs(fmin) < p s i t h c n  psi elsc fmin))  ; 
i f  beta > eta t h e n  dx[j] := .3 X dx[]] e l s e  
b e g i n  dx[j] :=  X d3x[j]; i f  dx[j] > dxmax thendx[j]: = dxmax e n d ;  
end: e n d  for ;  
lambda :=  sqrt (lambda); 
f o r  j :=  1 s t e p  1 u n t i l  n d o  dfdx[j] :=  dfdx[j]/lambda 
e n d  p r o c e d u r e  A T I V E  

ALGORITHM 206 
ARCCOSSIN 
M I S A K O  :KoNDA 

Japan Atomic Energy Research Institute, Tokai, Ibaraki, 
Japan 

p r o c e d u r e  ARCCOSSIN (x) R e s u l t  : (arceos, arcsin) ; 
v a l u e  x; 
r e a l  x, arccos, arcsin; 
c o m m e n t  T h i s  p r o c e d u r e  c o m p u t e s  arccos(x) a n d  arcsin(x) for  

- - l_<x_<l .  T h e  c o n s t a n t  2 - ~  d e p e n d s  on t h e  word  l e n g t h  a n d  
r e l a t i ve  m a c h i n e  prec is ion ,  a n d  m a y  be r ep l aced  b y  a v a r i a b l e  
ident i f ie r .  Alarm is t he  p r o c e d u r e  w h i c h  m e s s a g e s  t h a t  x is in-  
va l id .  
T h e  a p p r o x i m a t i o n  f o r m u l a  u sed  here  was  coded  for  M U S A -  
S INO-1  in i t s  own  l a n g u a g e  a t  t h e  E lec t r i ca l  C o m m u n i c a t i o n  
L a b o r a t o r y  T o k y o .  T h i s  a l g o r i t h m  was  t r a n s l a t e d  in to  F A P  a n d  
s u c c e s s f u l l y  r a n  on an  I B M  7090; 

b e g i n  r e a l  A,  xl ,  x2, a; i n t e g e r  r;  
i f  abs(x) > 1 
t h e n  go  t o  Alarm 
e l s e  i fabs(x) > 2 1 (--27) 

t h e n  go  t o  L1 
e l s e  b e g i n  arccos :=  1.5707963; go  t o  L3 

e n d  ; 
L I :  i f x  = 1 

t h e n  b e g i n  arccos :=  0; go  t o  L3 
e n d  

e l s e  i f x  = -- 1 
t h e n  b e g i n  arccos :=  3.1415926; go  t o  L3 

e n d  
e l s e  b e g i n  A :=  0; x l  :=  x;  

f o r  r :=  0 s t e p  1 u n t i l  26 d o  
b e g i n  i f  x l < 0  

t h e n  b e g i n  a :=  1; x2 :=  1- -2  X x l  T2 e n d  
e l s e  b e g i n a  :=  0; x2 :=  2 X x l  ~'2 -- 1 e n d ;  
A :=  A + a  X 2 ~ ( - r - 1 ) ;  
x l  :=  x2 

e n d  ; 
arccos :=  3.1415926 X A ;  
e n d ;  

L3:  arcsin :=  1 . 5 7 0 9 6 3 -  arccos; 
e n d  ARCCOSSIN 
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CERTIFICATION OF ALGORITHM 41 
EVALUATION OF DETERMINANT [Josef G. Solo- 
mon, RCA Digital Computation and Simulation Group, 
Moorestown, N. J.] 
BRUCE i .  FREED 

Dartmouth College, Hanover, N. H. 
When Algorithm 41 was t ranslated into SCALP for running on 

the LGP-30, the following corrections were found necessary: 
1. In the " y "  loop after "B[Count,y] := T e m p "  and before the 

" e n d "  insert  
" T e m p  := C[Count+l ,y] ;  
C[Count +l ,y ]  := C[Count,y]; 
C[Count,y] := T e m p "  

2. "Sign"  is an ALGOL word when uncapitalized. However,  
many systems (if not all) do not recognize the difference 
between small and capital let ters.  For this reason " S i g n "  
was changed to "ss ign"  for the LGP-30 run (and in the 
revision which follows later) .  

The following addit ion might  be made in the specification as a 
concession to efficiency: " v a l u e  A , n ; " .  

The following changes might  be made to make the Algorithm 
less wordy : 

1. for "Ss ign  := 1; Product := 1;" 
put  "Ssign := Product := l ; "  

2. for " b e g i n  B[i,j] := A[i , j];  C[i,j] := A[i , j]  e n d ; "  
put  " B [ i j ]  := C[i,j] := A [ i j ] ; "  

3. for " b e g i n  B[i,j] := B[i,j] - Factor X C[r,]] e n d  e n d ; "  
put  "B[i , j]  := B[i,j] -- Factor X C[r,]] e n d ; "  

The above corrections and changes were made and the program 
was run with the correct results, as follows: 

/ 096597 3510765 967 356\ 
A = [ 2.35765 -84.11256 .87932] 

\18.24689 22.13579 1.11123/ 

Determinant  = .1527313,006 

Hand calculation on a desk calculator gives the value of the de- 
t e rminant  for the above matr ix  as 152,731.3600. 

/1 . ( '  3.0 3.0 1 .0 \  

A = | 1.0 4.0 6.0 4 .0 /  Determinant  = .999999910+00 
1.0 5.0 10.0 10.0 
1.0 6.0 15.0 20.0/  

The above matrix,  being a finite segment of Pascal 's  triangle, has 
de terminant  equal to 1.000000000. 

0.0 0.0 0.0) 
A = 5.0 9.0 2.0 Determinant  = .0000000~o+00 

7.0 5.0 4.0 

This is, of course, exactly correct.  
Finally,  one major  change can be made which does away with 

several instructions and reduces variable storage requirements 
by n *. This change is the complete removal of matr ix  C from the 
program. I t  is extraneous.  

The revised Algorithm was t ransla ted into SCALP and run on 
the LGP-30 with exactly the same results  as above. 

The revised Algori thm 41 follows. 

ALGORITHM 41, REVISION 
EVALUATION OF DETERMINANT [Josef G. Solo- 
mon, RCA Digital Computation and Simulation Group, 
Moorestown, N. J.] 
BRUCE H.  FREED 

Dartmouth College, Hanover, N. H. 

r e a l  p r o c e d u r e  determinant  (a,n); 
r e a l  a r r a y  a; i n t e g e r  n; v a l u e  a,n; 

c o m m e n t  This procedure evaluates a determinant  by triangu- 
larization; 

b e g i n  rea l  product,  factor, letup; 
a r r a y  b[1 :n,1 :n]; 
i n t e g e r  count, ssign, i ,  ], r, y; 
ssign := product := 1; 
for  i := 1 s t e p  1 u n t i l  n do  
for  j := 1 s t e p  1 u n t i l  n do  
b[i,j] := a[i,j]; 
f or  r := 1 s t e p  1 u n t i l  n--1 do 
b e g i n  count : = r--  1 ; 
zerocheek: i f  b[r,r] ~ 0 t h e n  go to  resume; 
i f  count < n--1 t h e n  count := count +1 else  go t o  zero; 
f or  y := r s t e p  1 u n t i l  n do 
b e g i n  temp := b[count+l,y];  

b[count+ l,y] := b[count,y]; 
b[count,y] := temp e n d ;  

ssign := --ssign; 
go to  zerocheck; 
zero: determinant := 0; go to  return; 
resume: for  i := r + l  s t e p  1 u n t i l  n do 
b e g i n  factor := b[i,r]/b[r,r]; 
for  j := r + l  s t e p  1 u n t i l  n do 
b[i,]] := b[i,j] -- factor X b[r,]] e n d  e n d ;  
f o r i  := 1 s t e p  1 u n t i l n d o  
product := product X b[i,i]; 
determinant := ssign X product; 
return: e n d  

CERTIFICATION OF ALGORITHM 45 
INTEREST [Peter Z. Ingerman, Comm. ACM Apr. 1961 
and Oct. 1960] 
CARL B.  WRIGHT 

Dartmouth College, Hanover, N. H. 

I N T E R E S T  was t ransla ted into Dar tmouth  College Computa-  
t ion Center ' s  "Self Contained ALGOL Processor"  for the Royal-  
McBee LGP-30. When using SCALP, memory capacity is severely 
limited and thus it was necessary to run this program in two 
blocks. Block I ended with the computat ion of I, and Block II  
s ta r ted  with the " n e w m "  loop. After making the changes listed 
below, tes t  problems using up to three interest  rates and up to 18 
time periods were used with the following results:  

Final 
Loan Periods Interest Rates Payments Balance* Tolerance 

$100.00 1 0.05 $105.00 $0.00 $0.25 
1800.00 10 0.03 211.01 0.05 4.50 
875.65 8 0.08 to 500.00 

0.05 over 500.00 139.78 --1.49 2.19 
14750.00 18 0.06 to 5000.00 

0.05 to 10,000.00 
0.04 over 10,000.00 1201.70 10.35 36.88 

* Hand calculation. 

I t  is noted tha t  in each case the final balance is within the pre- 
scribed tolerance (0.0025 of the loan). 

In the following corrections bracketed subscripts  replace 
ordinary subscripts and exponentiat ion is represented by T 
ra ther  than superscript .  

The following corrections should be made in the Note  on In- 
terest  in the October, 1960, issue of Comm. A C M :  

1. Definition of Bin]: Replace " m i n i m u m "  by " m a x i m u m " .  
Replace "j[n]"  by " j [n - -1]" .  

2. Define B[k+l]  ~ L. 
3. Definition of K[n]: Replace "B[n]"  by " B i n + l ] " .  
The following corrections were found necessary in the proce- 

dure : 
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1. The upper limit of the vector B is k + l ,  not k. I t  is not  neces- 
sary to change the upper limit of t h e / - v e c t o r .  (See correction 4 
below.) 

2. D, E, F,  u, v were not declared and must  be declared as rea l .  
3. In the a r r a y  declaration replace "M[1 :k]" by "M[1 :k+ l ]" .  
4. As ] approaches 0, i approaches 1 and lira (h/S) = 1/t. Thus 

for j [k+l ]  = 0, i l k+ l ]  = 1, and M[k+l]  = L/t .  Thus after  
M[p] := L X (h[p,t]/S[p,t]) e n d ;  

insert  
M[k+l]  := L/t;  B[k+l]  := L; 
5. In the conditional s ta tement  following computat ion of b[p], 

replace " > "  by "=>". 
6. In same conditional s ta tement ,  next line, "rob := bp" should 

read "rob := b[p]". 
7. D : =  1; E : = F : = O ;  

newm: f o r p  := 1 s t e p  1 u n t i l k  do  
should be changed to 

newm: D := 1; E := F := 0; 
for  p := 1 s t e p  1 u n t i l  k do  

8. b e g i n  get F: F := (D-~m-E)/(ld-i[q]); 
i f  B[q+l]  _~ F t h e n  D := F e lse  q := q + 1; 
i f D  # F go to  get F e n d ;  

should be changed to read as follows: 
b e g i n  get F: F := (D+m)/i[q]; 

i f  B[q+l]  => F t h e n  D := F e lse  
b e g i n  i f  q < k t h e n  q := q + 1 e lse  D := F e n d ;  
i f D  ~ F t h e n  go to  get F e n d ;  

Note tha t  the " t h e n "  in the last line was omitted from the original 
procedure. 

9. In the "redo" loop insert  a semicolon after the s ta tement  
T[ib] := T[ib] + Tip] -- b[p]; 

10. In the "redo" loop, next line, omit the second "end". 
11. In the "redo" loop, 

p := k e n d ;  
should be changed to 

p := k end  end;  

R E M A R K  O N  A L G O R I T H M  129 M I N I F U N  

M I N I F U N  IV. W .  W h i t l e y ,  Comm.  A C M ,  N o v .  1962] 

E .  J .  WASSCHER 

P h i l i p s  R e s e a r c h  L a b o r a t o r i e s  

N .  V. P h i l i p s '  G l o e i l a m p e n f a b r i e k e n  

E i n d h o v e n - N e t h e r l a n d s  

Some errors found in Algorithm 129 M I N I F U N  [Comm. ACM, 
Nov. 1962] are given below. 

In addition, the way "s teepes t  descent"  is used to compute 
the minimum of a function of n variables is not  entirely satis- 
factory. The method for computing first derivatives may be im- 
proved in two ways: 

1. Instead of eomputing f ( x + h ) - f ( x ) . i t  is be t te r  to take 
h 

f ( x + h ) - f ( x - h )  As f ( x - h )  has been computed by M I N I F U N  
2h 

this does not give rise to extra computations.  
2. In M I N I F U N  the choice of h seems rather  deliberate.  In- 

deed, h is taken as .2 X (xub-xlb) ,  where xub and xlb are variable 
bounds of x. In the beginning of the program these bounds are 
put  equal to the fixed bounds bl and ub; afterwards in the itera- 
t ion process they should tend towards each other, and in the limit 
they provide the minimum. So especially when a good approxima- 
tion to the minimum is unknown, bl and ub have to be taken well 
apar t  from each other, which means tha t  h is ra ther  large. At the 
limit, however, h is very small• I t  is bet ter  to take h in such a way 
tha t  the nominator  f (x+h)-- f (x- -h)  at tains  an appropria te  value. 

As the method used by M I N I F U N  is the Newton-Raphson 
method applied to the first derivatives,  convergence is not always 
secured--especial ly since first and second part ial  derivatives are 
es t imated with numerical methods.  

I t  should be noted tha t  the tes t  on end of program is not correct.  
For a fur ther  possible decrease of the function one has not  to look 
in the direction of the coordinate axes but in the direction of the 
s teepest  descent• 

ALGOL descriptions of some "s teepes t  descent"  programs which 
were wri t ten in the symbolic code of the Philips computer  Pascal 
[ef. I t .  J• Heijn and J• C. Selman, IRE Trans. EC10 (June 1961), 
175--183] are given in Algorithms 203, 204 and 205. 

CORUECTIONS OF M I N I F U N :  
Printing errors: The line below label nustep should read: 

b e g i n  i f  abs(dmax) <abs (dxmin []]) t h e n  
The label 1 bdchk should be lbdchk 
In c o m m e n t  M I N I F U N :  k l = 2 :  a new minimum has not  

been found. 
The labe l  nustep should be placed before the s ta tement :  

dmax := dxmin[/]; The declaration of xmin should be removed 
from the blockhead of the procedure body. The 2-dimensional 
arrays x[1 :n, 1:4] and g[1 :n, 1:4] can be replaced by a rea l  x and a 
1-dimensional a r r a y  g[1:4] respectively.  

An improvement  could be the insertion of the s ta tement  

kl := 1; 

Just before the  l abe l  nustep.  
I am having considerable trouble with the obviously impor tant  

par t  played by the a r r a y  wnew, although it does not change after 
being set in the first s ta tement  of the program. Fur thermore i t  
seems to me tha t  wnew plays a double rble: first the component  
wnew[k] is the value of xt[k] before an i terat ion on xt[k]. But then 
one should insert  another  s ta tement  af ter  l abe l  nustep: 
wnew[k] := xt[k]; Secondly wnew[k] is to be understood as half 
the distance between upper and lower bound tl[k] and bl[k], which 
is only true when bl[k] = O. 

Convergence of delx[j] to 0 is only achieved when xlb[k] and 
xub[k] are tending towards each other.  This indicates tha t  wnew[k] 
should go to 0 too. (See s ta tements  after l abe l  stnubds.) 

The following modifications could remove these objections 
(start ing with the line above l abe l  restart): 

i f f t  < fmin  t h e n  go to  check else  xt[k] := wnew[k]; 
restart: i f  xt[k] < wnew[k] t h e n  go to  lbdchk; 

i f  xt[k] = wnew[k] t h e n  go to  stnubds; 
ifxt[k] < tl[k] t h e n  go to  nupbds; 
xt[k] := 0.5 X (wnew[k] -F tl[k]); 

nupbds: xub[k] := tl[k]; xlb[k] := 2 X xt[k] - tl[k]; go to  
newdel ; 

stnubds: xlb[k] := xt[k] -- 0.5 X (wnew[k] - xlb[k]); 
xub[k] := xt[k] + 0.5 X (wnew[k] -- xlb[k]); (etc.) 

lbdchk: i f  xt[k] = bl[k] t h e n  xt[k] := 0.5 X (wnew[k] d- bl[k]); 
xlb[k] := bl[k]; xub[k] := 2 X xt[k] -- bl[k]; go to  
newdel ; (etc.) 

R E M A R K  O N  A L G O R I T H M  157 

F O U R I E R  S E R I E S  A P P R O X I M A T I O N  [C. J .  M i f s u d ,  

C o m m  A C M ,  M a r .  1963] 

RICHARD GEORGE * 

A r g o n n e  N a t i o n a l  L a b o r a t o r y ,  A r g o n n e ,  I l l .  

This algorithm was wri t ten in FAP language for the 32-K IBM 
704. I t  was tested on a sawtooth curve, and the sawtooth was 
recreated by summing the expansion up through the 2N + 1 con- 
s tants ,  with excellent results. 

• Work supported by the United States Atomic Energy Commission. 
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The arrays S, C and u are never  referenced with a variable  
subscript .  For  a saving of t ime, I suggest t h a t  simple var iables  
be used instead.  

By declaring one addi t ional  real var iable ,  one can bring the 
phrase  

2 / (2  X N + 1) 

outside of the for  loops, because N does not  change th rough  the  
procedure.  This results  in a saving of 4 N + 2  mult-ops.  

(5) L e t  f ( x ) = e  ~ and P=O.  Then g ( x ) = x .  
n 

(6) L e t f ( x ) = ~  x~and P = 0 .  Then  g ( x ) = l n ( 1 - x ~ ) - - l n ( 1 - - x )  = 

1 
: xfl (See Table  2.) 

T A B L E  2 
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E X P O N E N T I A T I O N  O F  S E R I E S  [H. E .  F e t t i s ,  C o m m .  

A C M ,  M a r .  1963] 

J .  DENNIS LAWRENCE 

L a w r e n c e  R a d i a t i o n  L a b o r a t o r y ,  L i v e r m o r e ,  Ca l i f .  

This  procedure was t r ans la t ed  into FORTRAN and run  on the  
Reming ton -Rand  LARC Computer .  Three  changes are necessary.  

(1) The las t  line of the  comment  should read 
for the  na tu ra l  logar i thm of f (x) ;  

(2) The th i rd  line f rom the  end should read 

S := S - ~ ( P X  ( i - - k ) - k ) X B [ k ] X A [ i - - k ] ;  

(This line was given correct ly  in a lgor i thm 134.) 
• (3) The second line from the  end appa ren t ly  should read 

B[i] := A[i] := ( S / i ) ;  

for the  case P = 0 only. P robab ly  the  best  way to incorporate  
this  is by making  two changes:  

(a) Change the  i f  clause to read 
i f P  = 0 t h e n R  := 1 e l s e R  := P ;  BIl l  := R X A[1]; 

(b) Change the  second line from the  end to read 

B[i] := R X A[i] + ( S / i ) ;  

A large number  of examples were run quite successfully; the  
following give represen ta t ive  samples.  

(1) ( l+2x+3x~+O.5x~)  ~ = l + 4 x + l O x 2 + 1 3 z 3 + l l x 4 + 3 x s + O . 2 5 x  8 
(using A[4] := A[5] := A[6] := 0). 

(2) Se t t ing  P := 1 gives B[i] := A[i].  

x i and let  P = ln2 = .693147181. 
1 

(3) Le t f (x )  = e ~ = 1 + i-~ 
i = l  

Theng(x )  = 2 ~ = 1 + 
(ln2) i 

i=1 T xi' (See Table  1.) 

(4) Let  f ( x ) = e  x and P = - l .  Then  g ( x ) = e  -~. For P =O,  ap- 
paren t ly  the  cons tan t  t e rm of g(x) should be zero ins tead  of one. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

T A B L E  1 

A [i] B[i] 

1.000000000 
0.500000000 
0.166666667 
0.041666667 
0.008333333 
0.001388889 
0.000198413 
0.000024802 
0.000002756 
0.000000276 

0.693147181 
0.240226507 
0.055504109 
0.009618129 
0.0O1333356 
0.000154035 
0.000015253 
0.000001322 
0.000000102 
0.000000007 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
11 
12 
13 
14 
15 

A[il B[i] 

1.0 1.000000000 
1.0 0.500000000 
1.0 0.333333340 
1.0 0.250000000 
1.0 0.200000000 
1.0 0.166666670 
1.0 0.142857140 
1.0 0.125000000 
1.0 0.111111110 
1.0 0.100000000 
1.0 0.090909100 
1.0 0.083333330 
1.0 0.076923080 
1.0 0.071428580 
1.0 0.066666660 
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M O D I F I E D  H A N K E L  F U N C T I O N  [ H e n r y  E .  F e t t i s ,  

C o m m .  A C M ,  A p r .  1963] 

HENRY C. THACHER, JR .*  

A r g o n n e  N a t i o n a l  L a b o r a t o r y ,  A r g o n n e ,  I l l .  

Since this  a lgor i thm is a funct ion  declara t ion,  the  procedure  • 
dec lara t ion  should be:  

r e a l  p r o c e d u r e  E X P K ( D ,  X ,  E);  . . .  

Otherwise,  no syn tac t ica l  errors were not iced.  
The body of the  procedure was t r a n s l a t e d  and run  on the  

LGP-30 computer ,  using the  D a r t m o u t h  SCALP system. Resul ts  for 
E = 0.0001, X = 0.1(0.1)1.0, P = 0, 0.3333333, 0.6666667 and  
1.000000 agreed wi th  values t abu l a t ed  in Jahnke-Emde-Losch  to 
the  3-4D given in the  tables ,  except  for errors  discovered in the  
tab le  of 2/~K2n(x) .  

With  X = 0, the  program ended in f loat ing-point  overflow. The  
a lgor i thm itself, or the  call of the procedure,  should include a t e s t  
to insure t h a t  the  var iable  is grea ter  t han  eps, where eps is chosen 
to p reven t  exceeding machine  capaci ty .  

The  a lgor i thm was found to be excessively slow. Times on the  
LGP-30 were of the  order of 6 minutes .  A considerable  saving  in 
t ime  could be realized by  improving  the  quad ra tu re  formula ,  cur- 
r en t ly  the  simple midpo in t  formula ,  repeated  complete ly  for 
each i t e ra t ion .  A more effective me thod  would be a modified 
Romberg  a lgor i thm.  A procedure  based on the  l a t t e r  approach  is 
being developed in th is  divis ion.  

* W o r k  s u p p o r t e d  b y  t h e  U .  S. A t o m i c  E n e r g y  C o m m i s s i o n .  
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TABLE A 

n X[n] 

1 5.0 
2 5.0 
3 6.0 
4 6.0 
5 5.0 
6 6.0 

vin] 

148.4132 
148.4132 
403.4288 
403.4288 

74.20658 
201.7144 

B[n] 

148.4132 
148.4132 
403.4287 
403.4287 
148.4132 

B[n--1] 

148.4132 
255.0155 
403.4287 
255.0155 

B[n--2] 

106.6023 
148.4132 
148.4132 

B[n--3] 

41.81091 
41.81091 

403.4287 255.0155 148.4132 53.30115 

B[n-4] 

9.415191 
11.49023 

B[n--5] 

2.075043 

The forward differences lie along the top diagonal. 
Use of these results with By~WT and with F•EWT gave the following results,  for N = 6. 

5.000000 
5.500000 
6.000000 

148.4132 
244.6973 
403.4287 

BhrE WT 

D 

148.4132 
244.6924 
403.4287 

.4567298 X 10 -4 

.4173722 X 10 .4 

.2017143 X 10 -4 

148.4132 
244.6973 
403.4287 

F N E  WT 

148.4132 
244.6924 
403.4287 

E 

.7420658 X 10 -5 

.3078276 X 10 -4 

.7441404 X 10 -4 

CERTIFICATION OF ALGORITHM 167 
CALCULATION OF CONFLUENT DIVIDED DIF- 

FERENCES [W. Kahan and I. Farkas, Comm. 
ACM, Apr. 1963] 

CERTIFICATION OF ALGORITHM 168 
NEWTON INTERPOLATION WITH BACKWARD 

DIVIDED DIFFERENCES [W. Kahan and I. 
Farkas, Comm. ACM, Apr. 1963] 

CERTIFICATION OF ALGORITHM 169 
NEWTON INTERPOLATION WITH FORWARD 

DIVIDED DIFFERENCES [W. Kahan and I. 
F~rkas, Comm. ACM, Apr. 1963.] 

HENRY C. THACHER, JR.* 
Argonne National Laboratory, Argonne, Ill. 

The bodies of these procedures were tes ted on the LGP-30 
computer  using the Dar tmouth  SCALP compiler. Compilation and 
execution revealed no syntact ical  or mathematical  errors. 

I t  is to be noted tha t ,  al though with Algorithm 169, reducing 
the value of N from tha t  used to generate F leads to an interpola- 
t ion polynomial based on fewer points,  this is not true for Al- 
gori thm 168. This flexibility could be supplied by adding an 
addit ional formal parameter ,  deg, say, to the procedure, and by 
making the for  s ta tement  read: 

" f o r  i := N -- deg s t e p  1 u n t i l  N do  . . -  " 

The logic of the error est imate in Algorithms 168 and 169 is not  
entirely clear. However, it appears tha t  the est imate can be ad- 
jus ted for different precision of ar i thmetic by adjust ing the con- 
s tan t  310-8 appropriately.  For  the SCALP ari thmetic,  this cons tant  
was changed to 110-7. 

The algorithms were tes ted on the examples given by Milne- 
Thomson [The Calculus of Finite Differences, p. 4, Macmillan, 
1951] and by Milne [Numerical Calculus, p. 204, Princeton,  1949]. 
In both  examples, Algori thm 167 reproduced the divided differ- 
ence table,  and both Algorithms 168 and 169 reproduced the input  
values. As a cheek of the calculation of confluent divided differ- 
ences, values of the exponential  function of its first two deriva- 
tives at  x = 5.0 and 6.0 were used. The difference table shown in 
Table A was obtained. 

* Work supported by the U. S. Atomic Energy Commission, 

REMARK ON ALGORITHM 166 
MONTECARLO INVERSE JR. D. Rodman, Comm. 
ACM, Apr. 1963] 
R. D. RODMAN 
Burroughs Corp., Pasadena, Calif. 

The algorithm contained two errors: 
(1) The line which reads 

start: p := ( n - 1 ) / n  X n; 
should read 

Mart: p := (n- -1) /n  T 2; 
(2) The line which reads 

start2: walk : =  ( r a n d o m / p )  + 1; 
should read 

start2: walk: = e n t i e r  ( ( r a n d o m / p )  + 1); 
After making the preceding corrections, procedure montecarlo 

was t ransl i tera ted into E X T E N D E D  ALGOL and run successfully 
on the Burroughs B-5000. Convergence occurred in all cases where 
the matrix satisfied the conditions set down in the comment  s ta te-  
ment  of the algorithm. I t  was found tha t  convergence was quickest 
and the routine most  practical for matrices with eigenvalues small 
relative to one. 
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