PRACNIQUES

The Techniques Department is tnlerested in publishing short de-
scriptions of Technigues which improve the logistics of information
processing. To quote from the policy statement, Communications of
the ACM 1 (Jan. 1958), 5: “It is preferable that techniques con-
tributed be factual and in successful usage, rather than speculative
or theoretical. One of the major criteria for acceptance and the ques-
tion one should answer before submitting any material is—Can the
reader use this tomorrow?”’ Clear, concise statements of fairly well-
known but rarely documented methods will contribute significantly
to raising the general level of professional competence.—C.L.McC.

-]

ON THE INVERSE OF A TEST MATRIX

In reference to the test matrix for determinants and inverses
suggested by John Caffrey [Comm. ACM 6, 6 (June 1963)], it is
possible to state the elements of the inverse explicitly. The test
matrix was given as

g~ 2
A=aij=/c<ziil)

where k is an arbitrary nonzero constant.
The inverse matrix is

S St 7 (s Chuy
Vo= oy = DT Nt
’ k (1———m§i,j) 1 —1/\7 —1

where n is the order of the matrix. The inverse elements can be
computed recursively as follows:

U?n“vllz,_T 1,__1)

—1)* (a\(n
Vij = Vig1,j + Vi, j+1 -+ L/c)‘ (Z)(J) ,

for 152, j=n-—1.

Let V' denote the inverse of order n. Then for fixed &k, V0
can be generated from V(.

(nt1) _ T + 1.
V11 = T’
n
(nt+l)y __ (n4+1) (_]-) .
Va1l = Vg1l = ———!
k
(n+1) _ 1

Untlin4l = E;

vip ™ = Y = i — i), for 2 <171 = n;
vi = oY =0l — ol for 2 21¢ =< n;
oY = o)y — ey — o,

for 24 5= n.

Frank J. StockMAL
System Development Corporation
Santa Monica, California

Yolume 6 / Number 10 / October, 1963

J. H. WEGSTEIN, Editor

ALGORITHM 207

STRINGSORT

J. BooTHROYD

English Electric-Leo Computers, Ltd.
Staffordshire, England

procedure stringsort (¢, n); comment elements a[l] --- a[n]
of a[l:2n] are sorted into ascending sequence using a[n+1] ---
a[2n] as auxiliary storage. Von Neumann extended string logic
is employed to merge input strings from both ends of a sending
area into output strings which are sent alternately to either
end of a receiving area. The procedure takes advantage of
naturally ocecurring ascending or descending order in the origi-
nal data;

value n; integer n; array q;
begin integer d, 7, j, m, u, v, z; integer array ¢[—1:1];
switch p = jzl, sir 7; switch ¢ := merge, jz2;

oddpass: 7 :=1; j:=mn; c¢[—1]:=n4+1; cfl] := 2 X n;
allpass: d := 1; go to firststring;

merge: if ali] 2 alz]

then begin go to p[v];
jzl: if alj] = alz]
then 7;j: begin if a[i] = a[j]
then sir j: begin a[m] := aljl;
j:=37—1end

else str 1: begin a[m] = af7]
i :=1 4+ 1end
end
else begin v := 2; go to str ¢ end
end
else begin u := 2;
722: if alj] = alz]
then go to str j
else begin d := —d; cld] := m;
firststring: m := ¢[—d];
vi=u = 1;
go to 1j
end
end;
z:=m; m:=m+d; ifj 2 7 then go to g[u];
if m > n + 1 then begin comment evenpass; ¢ = n + 1;
ji=2 X n; ¢[-1] :=1; ¢[l] := n; go to
allpass end
else if m < n + 1 then go to oddpass
end stringsort;
ALGORITHM 208
DISCRETE CONVOLUTION
WitLiam T. ForeEMAN, JR.
Collins Radio Co.
Newport Beach, Calif.
procedure Discrete Convolution (m, m, prs) result: (Conv);

integer m, n; real procedure prs; real array conv;
comment This procedure finds the probability distribution of
the sum of m independent variables, each with a known distribu-

Communications of the ACM 615

tion over the nonnegative integers. A real procedure prs with
results prlk] is assumed to find each probability distribution in
succession. The maximum sum for which probabilities are
computed must be fixed by the user. The number of iterations
is roughly m2n/2. The procedure prs will in general depend on
additional parameters and should include the read-in of the
parameters for that distribution. It may include the selection
of one function from a set;

begin integer ¢, j, k, ixl, 122;
réal array prob [1:2, 0:m], pr[0:m];

7

i=1; 4zl :=1; 122 := 2; prs (m) result: (pr);

for j := 0 step 1 until m do problizl, j} := prijl;
for 7 := 2 step 1 until » do

begin
if iz1 = 1 then begin 22 := 1; 4zl := 2 end
else begin 722 := 2; 1 := 1 end
prs (m) result: (pr);
for j := 0 step 1 until m do
begin
problizl, j] := 0;
for k := 0 step 1 until j do
problizl, j] := problizl, 51 + prik] X probliz2, j—Fk]
end j
end ¢;

for j := 0 step 1 until m do conv[j] := problizl, j]
end Discrete Convolution
comment The convolution of discrete probability series is

isomorphic to the multiplication of polynomials. A useful vari-
ation is to omit the parameters 7, » and have prs recognize
the end of input. A ForTRAN program using this procedure has
been run on the IBM 7090 to find the sum of queue lengths in a
teletype switching center, where messages arrived according
to the Poisson distribution and message lengths were distributed
negative-exponentially. The following was used as the prob-
ability procedure;

procedure prs (m) result: (pr);
value m; procedure read;

real array pr; integer m;
begin real trafficrate, linespeed, rho; integer j;

read (trafficrate, linespeed);

rho := trafficrate/linespeed;

pr[0] : 1 — rho;

for j := 1 step until m do pr[j] := rho X pr[j—1]

end prs

A contribution to this department must be in the form of
an Algorithm, a Certification, or a Remark. Contributions
should be sent in duplicate to the Editor and should be
written in a style patterned after recent contributions
appearing in this department. An algorithm must be written
in ALgoL 60 (see Communications of the ACM, January
1963) and accompanied by a statement to the Editor indicat-
ing that it has been tested and indicating which computer
and programming language was used. For the convenience
of the printer, contributors are requested to double space
material and underline delimiters and logical values that
are to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the Editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the Editor, or the
Association for Computing Machinery in connection there-
with. "

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm. ’

616 Communications of the ACM

ALGORITHM 209

GAUSS

D. IBBETSON,

Elliott Brothers (London) Ltd.,

Elstree Way, Borehamwood, Herts., England

real procedure Gauss(r); value z; real x;
comment Gauss calculates (1/4/27) S7 o exp(—3u?) du by means
of polynomial approximations due to A. M. Murray of Aberdeen
University;
begin real y, z, w;
ifz = 0 then z := 0
else
begin y := abs(z)/2;
ify 2 3thenz :=1
else if ¥ < 1 then
begin w 1= y X y;

2z 1= ((((((((0.000124818987 X w
—0.001075204047) X w ~+0.005198775019) X w
—0.019198292004) X w -+0.059054035642) X w
—0.151968751364) X w +0.319152932694) X w
—0.531923007300) X w +0.797884560593) X y X 2

end
else
beginy := y — 2;

z 1= ((CCCCCCU(((—0.000045255659 X v
-40.000152529290) X y —0.000019538132) X y
—0.000676904986) X v -+0.001390604284) X y
—0.000794620820) X y —0.002034254874) X y
4-0.006549791214) X y —0.010557625006) X ¥
+4-0.011630447319) X y —0.009279453341) X y
40.005353579108) X y —0.002141268741) X y
+0.000535310849) X y +4-0.999936657524

end
end;
Gauss := if z > 0 then (z+1)/2 else (1—2)/2
end Gauss;

ALGORITHM 210

LAGRANGIAN INTERPOLATION

GEORGE R. ScHUBERT*

University of Dayton, Dayton, Ghio
* Undergraduate research project, Computer Science Program, Univ. of

Dayton.

procedure LAGRANGE (N, u, X, Y, ANS); real array X, Y,
integer N; real u, ANS;

comment This procedure evaluates an Nth degree Lagrange
polynomial, given N + 1 data coordinates, and w the value
where interpolation is desired. X is the abscissa array and Y
the ordinate array. ANS is the resultant value of the function
at u. The notation is that used in R. W. Hamming, Numerical
Methods for Scientists and Engineers, pp. 94-95 (McGraw-Hill
Book Company, Inc., 1962);

begin integer 7, j; real L;
ANS := 0.0;
for j := step 1 until N+1 do

begin L := 1.0;
for ¢ := step 1 until N+1 do

begin if 7 # j then L := L X (u—X[])/(X{j]-X[]D

end;
ANS := ANS + L X Y[j]

end end

Volume 6 / Number 10 / October, 1963

ALGORITHM 211

HERMITE INTERPOLATION
GrorGE R. ScHUBERT*

University of Dayton, Dayton, Ohio

* Undergraduate research project, Computer Science Program, Univ. of
Dayton.

procedure HERMITE (n,u, X, Y, Y1, ANS);
Y1,

integer n; real u, ANS;

comment This procedure evaluates a(2n+1)th degree Hermite
polynomial, given the value of the function and its first deriva-
tive at each of n -+ 1 points. X is the abscissa array, Y the
ordinate array, and Y1 the derivative array. ANS is the interpo-
lated value of the function at v. REFERENCE: R. W. Hamming,
Numerical Methods for Scientists and Engineers, pp. 96~97 (Mc-
Graw-Hill Book Company, Inc., 1962);

begin integer 7, j; real b, a;
ANS = 0.0;
for j := 1 step 1 until » + 1 do

begin b := 1.0; a := 0.0;
for 7 := 1 step 1 until = + 1 do

begin if ¢ = j then go to out;
b= h X (u=X[EDT2/(X[5]-XEDT2;
a:=a+ 1.0/(X[/]-X[D;

out: end;
ANS = ANS 4+ h X ((X[]—w)X @XaX Y[j1-Y1[) + Y [5])

end end

real array X, Y,

ALGORITHM 212
FREQUENCY DISTRIBUTION
Marncorm D. Gray

The Boeing Co., Seattle, Wash.

procedure FREQUENCY (N, A, B, IUL, K, X, KA);
integer N, IUL; integer array KA; real A, B, K;
real array X;
comment Given a set X of variables in some interval I = [a, b]
such that ¢ £ min 2, maxz £ b, FREQUENCY determines the
frequency distribution of X over & equal, half open subintervals
of I. The interval I is transformed to the interval J = [0, k]
with unit subintervals by z’ = (z:—a)/[(b—a)/k], i=1,2,---,
n, and considering 2’ = L. X M, L and M integers. The value
L then immediately determines the subinterval and M is used
for boundary points. If JUL = 0, the subintervals are open
on the upper end, except the kth. On entry, the array KA is
agsumed identically zero; on return, KA4[:i] eontains the fre-
quency of X in the ¢th subinterval;
begin integer ¢, L; real BAK, XP;
BAK = (B—A)/K;
for 7 := 1 step 1 until N do begin
XP .= (X[{]-4)/BAK;
L := entier (XP);
if XP = L then go to p2 else L :=
p2: if IUL = 0 then go to p3 else if L
go to p5;
p3:if XP % K then L := L + 1;
p5: KA[L] := KA[L] + 1;
end;

end FREQUENCY

L+ 1; go to p5;
=0then L := L + 1;

ALGORITHM 213
FRESNEL INTEGRALS
Marcorm D. Gray

The Boeing Co., Seattle, Wash.

real procedure FRESNEL (w, 8, C); value w; real S, C;
comment FRESNEL computes the Fresnel sine and cosine in-

Volume 6 / Number 10 / October, 1963

tegrals S(w) = [¥sin [(x/2)#2) dt and C(w) = [Pcos [(=/2)2] dit
using the series expansions
o (— 1)1
Sw) = — " and
W =wl G he— o
o (_ 1)i+1x2i—2
Clw) = Y 4 — 32— 2)!

for |w| < +/22/x and & = 7w?/2, and using the asymptotic series

Sw) = a — ﬁ [P(2) sin (z) 4 Q(2) cos (2],

Clw) = a — iw [P(z) cos (z) — Q(z) sin (z)]

where |w| 2 V22/7, = = Tw¥/2,

o (—1)i(dg — o (it (A
Q(x):l_z(_l)_m_f))”, P(x)=zulz2_:)}:l.7§)_!_!,

i=2 (22)%2 i=1

and ol = nm—2)(n—4)---1. If w = 0, then &« = £, orif w <0,
then o = —%.

This algorithm is a translation of a FAP coded subroutine
currently in use on the IBM 7094 at the Boeing Company. The
FAP program yields the following errors when tested at 0.05
increments of z:

> A8 AC
0.00, 1.00 <1 X 1077 <1l X 1077
1.05, 8.65 <1 X 10°¢ <1 X 10°¢
8.70, 10.30 3 X 107¢ 2 X 1078
10.35, 11.00 5 X 1076 4 X 107
11.05, 12.15 <1 X 10°% 3 X 1076
12.20, 15.00 <1 X 1076 <l X 107¢

where AS and AC are the approximate average absolute devi-
ations (over the range) from the reference. The user must supply
Sw) = C(w) = £4% if w — & . REFERENCES: ALGORITHMS
88-90, J. L. Cundiff, Comm. ACM, May 1962; Born, M. and
Wolf, K., Principles of Opiics, Pergamon Press (1958), pp.
369-431;
begin real z, 22, eps, term;
r = w X w/0.6366198;
22 := —xz X z; if x 2 11.0 then go to asympt;
begin real frs, frst;
frs :=z/3; n :=5;
frsi := frs + term/7;
if abs(frs—frsi) = eps then go to send; frs := frsi;
term := term X 22/n/(n—1); frst :=frs+ term/(n+n+1);
n = mn -+ 2; go to loops;
send: S := frsi X w; end;
begin real frc, frei;
fre :=1; n = 4; term := 22/2; frce := 1 + term/5;

integer n; eps := 0.000001;

term =z X 22/6;

loops:

loope: of abs(frc—frei) = eps then go to cend; fre := freig
term 1= term X 22/n/(n—1); frei := frc 4 term/(n+n+1);
n =n -+ 2; go to loopc;
cend: C := frci X w; end; go to aend;
asympt: begin real S1, 82, half, temp; integer i;
22 :=4 X x2; term := 3/22; Sl := 1+ term; n :=8§;
for 7 := 1 step 1 until 5 do begin n := n + 4;
term = term X (n—7) X (n—5)/x2; S1 := 81 4 term;
if abs(term) =< eps then go to next; end 7;
next: for 7 := 1step 1 until 5 do begin n := n + 4;
term = term X (n—35) X (n—38)/x2; 82 := 82 + term;
if abs(term) < eps then go to final; end 7;
final: ifw < O0thenhalf := —0.5elsehalf :=0.5; term := cos(x);

temp = sin(z); 22 := 3.1415927 X w;
C := half + (tempXS1—termXS2)/x2;
S = half — (termXS1+1lempXS2)/x2;
end;

aend: end FRESNEIL

Communications of the ACM 617

CERTIFICATION OF ALGORITHM 27
ASSIGNMENT [Roland Silver, Comm. ACM, Nov. 1960]
ALBERT NEWHOUSE

University of Houston, Houston, Texas

The ASSIGNMENT algorithm was translated into MAD and
suecessfully run on the IBM 709/7094 after the following correc-
tions were made:

All references to array a and d refer to the same array, i.e.
change all a[z, j] to d[¢, j]. Furthermore:

(a) 3rd line after LABEL: comment: Label and scan;
should read
begin if d[z, 7] # 0 V/ lambda [j] # 0 then go
(b) first line after J3: end j;
should read
min = d[r[1], ¢b[1]];
(c) line I2:
should read
I12: for !l := 1 step 1 until ¢bl do

Since there is no provision made for this algorithm to end the

following additions were made:
(1) in the integer declaration add the variable: flag
(2) first line after START: comment:
add the line
flag := n;
(3) first line before I1: end 4;
change to read
rli=rl +1; vlrl] :=1; muli] := —1; flag
(4) add a line after I1: end i;
if flag = n then go te FINI;
(5) change the last line of the algorithm to read:
FINI: end Assignment

In order to obtain the minimum value of the » i as; (in the
following called total) the following additions may be made:

Add a real variable total and
(A) new line after INITIALIZE;

= flag — 1

total := 0;
(B) new line after the first end 4;
total := total + man;

(C) new line after the first end 7;
total := total + min;
(D) after the line end k; after J3: end j;
add the line
total := total 4+ (rl4ebl—n) X min;

REMARK ON ALGORITHMS 88, 89 AND 90

EVALUATION OF THE FRESNEL INTEGRALS
[J. L. Cundiff, Comm. ACM, May 1962]

Marncorm D. Gray

The Boeing Co., Seattle, Wash.

While coding these algorithms in ForTRAN for the IBM 7094,
modifications were required (both in the formulation and in the
language) before execution with any degree of speed and accuracy
could be obtained. In the process it was found that the reference,
Pearcy, contains an error in the formula for C(x). This error is
contained in Algorithm 88 in the formula
1 sin (2) [

2 2z
The first minus sign above should be a plus sign.

After the necessary modifications were made, the three al-
gorithms were found to be too large and uneeonomical for our
usage. A single algorithm, incorporating these three procedures,
was written and is in current usage in a computer program which
requires several thousand evaluations of each Fresnel integral.

Clu) =

618 Communications of the ACM

REMARK ON ALGORITHM 123

ERIF(2) [Martin Crawford and Robert Techo, Comm.
ACM, Sept. 1962]

D. IBBETSON

Elliott Brothers (London) Ltd.

Elstree Way, Borehamwood, Herts., England

(1) The specification value z; was added to allow z to be an
expression and to prevent side effects.
(2) The algorithm was then modified to give the Gaussian
integral (1/4/%r) [~ exp(—4u?) du by
(a) ehanging its name to Gauss (),
(b) inserting z := x+0.70710678; immediately before Z :=0; ,
and
(¢) changing the final statement to
Gauss := (Z+41)/2 end Gauss
(3) The algorithm with the above changes was tested on a
National Elliott 803 computer using the Elliott-ALcoL translator
with c—8 substituted for ,—10. It was found to produce wrong
answers when z = =1 (corresponding to Erf(1/4/2)) giving
0.5 & 0.3467899 instead of 0.5 £ 0.3413447.

REMARK ON ALGORITHM 157

FOURIER SERIES APPROXIMATION
Mifsud, Comm. ACM, Mar. 1963]

Grorce R. ScHUBERT*

University of Dayton, Dayton, Ohio

* Undergraduate research project, Computer Science Program, Univ. of
Dayton.

Algorithm 157 has been modified to fit 2N data points and has
run suceessfully on the Burroughs 220 using BavcoL. With the
modifications, 2N constants a, (p=0, 1, --- , N) and b,
(p=1, 2, --- , N—1) are determined such that the equation
fo = a/2 + 22’;11 (ap cos mnp/N—+b, sin mnp/N) + an/2 cos mn
is satisfied.

In the modified procedure, the second and third lines after the
integer declaration should read:

CM1] := cos (pz/N);

S[1] := sin (pi/N);

The second for statement should read:

for 7 := 2 X N—1 step —1 until 1 do

The lines containing the a and b coefficients should read:

a[p] := (fl0}4+ul1]XC2]—u[2])/N;

blpl := (N1]XS[2D/N;

RererRENCE: R. W. Hamming, Numerical Methods for Scientists
and Engineers, pp. 68-73 (MeGraw-Hill, 1962).

[Charles J.

CERTIFICATION OF ALGORITHM 160

COMBINATORIAL OF M THINGS TAKEN N AT
A TIME [M. L. Wolfson and H. V. Wright, Comm.
ACM, April 1963]

RosERT F. BLAKELY

Indiana Geological Survey, Bloomington, Ind.

Algorithm 160 was translated into ALco, a compiler for the
Control Data Corp. G-15 computer (formerly the Bendix G-15).

With the restriction that m = n = 0, correct results were ob-
tained for all integer values of m and n, where 0 £ m =< 10. Several
other values were tested and all results were correct.

Volume 6 / Number 10 / October, 1963

CERTIFICATION OF ALGORITHM 161

COMBINATORIAL OF M THINGS TAKEN ONE AT
A TIME, TWO AT A TIME, UP TO N AT A TIME
[H. V. Wright and M. L. Wolfson, Comm. ACM,
Apr. 1963]

Davip H. Corrins

Indiana Geological Survey, Bloomington, Ind.

Algorithm 161 was translated into ALgo, a compiler for the
Control Data Corp. Gi-15 computer (formerly the Bendix G-15).

With the restriction that m = n = 1, correet results were ob-
tained for all integer values of m and n, where 1 < m = n £ 15.
Several other values were tested (including cases where m % n)
and all results were correct.

CERTIFICATION OF ALGORITHM 173

ASSIGN [Otomar Hijek, Comm. ACM, June 1963]

R. S. Scowen

English Electric Co. Ltd., Whetstone, Leicester, England

Algorithm 173 (ASSIGN) has been tested successfully using
the DrucE ArcoL 60 compiler. The only changes necessary were
the addition of specifications for the formal parameters a, b
(DeEuceE AncoL 60 compiler requires specifications for all formal
parameters).

The author’s example, assign (af¢[1], 7[2]], (if ¢[3]=1 then 0.0
else alZ[1], Z[2]]) + b[[1], 2[3]] X c[Z(3], ¢[2]], 3, <[s], 1, if j = 1
then n else if 7 = 2 then m else p, j);

did form the matrix produet B X C and store it in A.

The algorithm was also used to read a matrix into the computer
using the procedure call

assign (b[¢[1], ¢12]], read, 2, <[], 1,

if 7 = 1 then n else p, j);

(read is a real procedure which takes the value given by the next
number on the input tape).

These examples took about three times as long to run as the
simpler equivalent statements

for 7 := 1 step 1 until n do

for j := 1 step 1 until m do

begin

alz, j] := 0.0;
for k& := 1 step 1 until p do
al, j] := ali, 51 + blz, k] X ¢k, j]

end;

and
for j := 1 step 1 until p do
for ¢ := 1 step 1 until n do
bli, 7] 1= read;

CERTIFICATION OF ALGORITHM 173

ASSIGN [0. Hajek, Comm. ACM, July 1963]

Z. Fiusak and L. VRCcHOVECKA

Research Institute of Mathematical Machines, Prague,
and Computing Center Kancelaiské stroje, Prague

The algorithm was modified for input to the Elliott-ALGoL
system as follows. In Elliott-ALGoL, name-called parameters in
recursive procedures are prescribed. Luckily, the only parameter
which varies during the recursive call in the body of Assign is
called by value (it is the parameter d¢m which determines depth
of recursion). The body of Assign was replaced by (i) a procedure
declaration Ass(dim), whose body is that of the original 4ssign,
but with the recursive call of Assign replaced by that of Ass,
and (ii) a single statement, the activation of Ass(dim).

Volume 6 / Number 10 / October, 1963

The resulting procedure was tested (on the National-Elliott
803 in the Computing Center), on a rather large set of examples,
including those described in the text following Algorithm 173.
It was found that in the last example, matrix multiplication,
indices 7, and 7; should be interchanged throughout.

No changes of the algorithm itself were necessary. It seems
that the modification described above, motivated by limitations
of Elliott-ALcoL, also improve efficiency, at least for large di-
mensions of the arrays concerned.

CERTIFICATION OF ALGORITHM 175
SHUTTLE SORT {C. J. Shaw and T. N. Trimble, Comm.
ACM, June 1963)
Grorge R. ScHUBERT*
University of Dayton, Dayton, Ohio
* Undergraduate research project, Computer Science Program, Univ. of
Dayton.
Algorithm 175 was translated into BaLGoL and ran successfully
on the Burroughs 220. The following aectual sorting times were
observed:

Number of Items Average Time (sec)

25 1.6

50 6.2
100 25.8
250 181
500 684

The algorithm can be extended so that the sort is made on one
array, while retaining a one-to-one correspondence to a second
array. This is done by inserting immediately before end of the j
loop the following:

Temporary := Y[j]; Y[jl:= Y[+ 1]; Y[j+ 1] := Tempo-
rary; where Y[k] is the element to be associated with N[k]. Other
variations are obviously possible.

CERTIFICATION OF ALGORITHM 210

HERMITE INTERPOLATION [George R. Schubert,
Comm. ACM, Oct. 1963]

TroMas A. DWYER

Argonne National Laboratory, Argonne, Il

The body of HERMITE was transcribed for the Dartmouth
ScaLp processor for the LGP-30 computer and ran successfully
without corrections. It was tested using the error function and its
derivatives. Roundoff error in the LGP-30 began to appear for
values of n greater than 3. For n equal to 2 (third degree poly-
nomial) the interpolated value agreed with the function within
machine limitations (six significant figures) for steps in the
argument data of 0.005.

DATES TO REMEMBER

FJCC Las Vegas Nov. 12-14, 1963
SJCC Washington Apr. 21-23, 1964
ACM Philadelphia Aug. 25-28, 1964
FJCC San Francisco Nov. 17-19, 1964
IFIP New York May 22-24, 1965
ACM Cleveland Aug. 23-26, 1965

Communications of the ACM 619

