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p r o c e d u r e  qBessel (t, q, n, j, s); i n t e g e r  n, j;  r ea l  t, q, s; 
a r r a y  s; 

c o m n a e n t  This precedure computes values of any q-Bessel func- 
t ion In(t) for n integer (positive, negative or zero) by the use 
of the well-known expansion 

In(t) = 
q½k(~-l) +½(n+k) (a+k-t) ta+2k 

k=0 (q)~(q)~+k 

where Iql < 1, (q)~ = (1--q)(1--q ~) "'" (1--q ') ,  (q)0 = 1 and 
1/(q)_~ = 0 ( n = l ,  2, 3, . . . ) .  (See L. Carlitz, The product  of 
q-Bessel functions, Port. Math. 21 (1962), 5--9.) Moreover,  j 
denotes the number of terms (at least 2) retained in the summa- 
tion, and sill stands for the sum of the first i + 1  terms of the 
expansion. This procedure has been t rans la ted  into FORTRAN 
for the IBM 1620 and run successfully; 

begir t  i n t e g e r  k, m, p; rea l  c, u; m := abs(n); c := 1; i f  
n = 0 t h e n  go to  A; 

f o r  p := 1 s t e p  1 u n t i l m d o c  := c X (1-qTp);  i f n  < 0 t h e n  
go  t o  B; 

A: u := qT (nX(n--1) /2)  X (tTn)/c; s[0] := u; 
f o r  k = 1 s t e p  1 u n t i l  ] do 
h e g i n u  := u X q ~ (n+2Xk--2)  X (tT2)/((1-qi"k)× (1-qT(n+k)) ) ;  

s[k] := s[k-1]  + u e n d ;  
B: u := qT( (m-1)×m/2)  X t 1" (n+2Xm) /c ;  s[m] := u; 
f o r  k := m + 1 s t e p  1 u n t i l  j do  
b e g i n  u := u X q T ( n + 2 X k - 2 )  X (tT2)/((1-qTk)(1-C(n+k))); 

s[k] := s[k--1] + u e n d  
e n d  

A contr ibution to this depar tment  must  be in the form of 
an Algorithm, a Certification, or a Remark.  Contr ibut ions  
should be sent in duplicate to the Edi tor  and should be 
wr i t ten  in a style pa t te rned  after recent contr ibut ions 
at)pearing in this depar tment .  An algori thm must  be wri t ten  
in. ALGOL 60 (see Communications of the ACM,  January  
1963) and accompanied by a s ta tement  to the Edi tor  indicat- 
ing tha t  it has been tes ted and indieating which computer  
and programming language was used. For  the convenience 
of the pr inter ,  contr ibutors  are requested to double space 
material  and underline delimiters and logical values tha t  
are to appear  in boldface type.  Whenever feasible, Certi-  
fications should include numerical values. 

Although each algorithm has been tes ted by its contrib- 
utor,  no warranty ,  express or implied, is made by the con- 
t r ibutor ,  the Editor ,  or the Association for Comput ing 
Machinery as to the accuracy and functioning of the al- 
gori thm and related algorithm material ,  and no responsi- 
bili ty is assumed by the contr ibutor ,  the Editor ,  or the 
Association for Computing Machinery in connection there-  
with. 
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p r o c e d u r e  Shanks (nmin, nmax, kmax, S) ; 
va lue  nmin, nmax, kmax; 
i n t e g e r  nmin, nmox, kmax; 
a r r a y  S; 
c o m m e n t  This procedure replaces the elements S[nmin] th rough  

S[nmax-2Xkmax]  of tile array S by the e[kmax] t ransform of 
the sequence S. The elements S[nmax--2Xkmax+l]  through 
S[nmax--1] are destroyed.  The e[k] t ransforms were discovered 
by D. Shanks (3". Math. Phys. 34 (1955), 1-42). e[1] is equivalent  
to the (delta) T 2 t ransformat ion.  The e[k] t ransforms are par-  
t icularly valuable in es t imat ing B in sequences which may be 
w r i t t e n i n t h e f o r m S [ n ]  = B +  ~ a [ i ] X  q[i]Tn ( i=1 ,2 ,  . . .  , 
k). 

The t ransformat ion is carried out by the epsilon algori thm 
(Wynn, P. ,  M . T . A . C  10 (1956), 91-96). ALGOL procedures for 
applying the algorithm to series of complex terms are given by  
Wynn (BIT  2 (1962), 232-255). 

The body of this procedure has been tes ted using the Dar t -  
mouth  Self-Contained ALGOL Processor for the LGP-30 com- 
puter .  I t  gave the following results on the sequence for the  
smaller zero of the Laguerre polynomial,  L[2](x) : 

n Sin] e[t](S[n]) e[~(S[n]) 
0 0.0000000 0.5714285 0.5857432 
1 0.5000000 0.5851059 0.5857854 
2 0.5625000 0.5857318 0.5857861 
3 0.5791016 0.5857816 
4 0.5838396 0.5857859 
5 0.5852172 
6 0.5856198 True Value 0.5857864375 

e[ll~(S[n]) 
0.5857616 
0.5857859 
0.5857861 

These results are in sat isfactory agreement  with those given by 
by Wynn (1956) ; 

b e g i n  i n t e g e r  j, k, limj, limk, two kmax; 
rea l  TO, Tl l  
two kmax := kmax + kmax; 
lima" := nmax; 

f o r  j := nmin s t e p  1 u n t i l  l imj do 
b e g i n  TO := O; 
lim := j -- nmin; 
i f  limk > two kmax t h e n  limk := two kmax) limk := limk -- 1; 
f o r  k := 0 s t e p  1 u n t i l  limk do 

b e g i n  T1 := S [j--k] - S [ ] - / c - 1 ] ;  
i f  T1 # 0 t h e n  T1 := TO + 1/7'1 e l se  
i f ,S [j-k] = 1099 t h e n  T1 := TO e lse  

T1 := 1099; 
c o m m e n t  1099 may be replaced by the largest  number  

representable in the computer ;  
TO := S [ j - k - l ] ;  
S [ j - k - l ]  := T1 

e n d  for k 
e n d  for j 

e n d  Shanks 
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p r o c e d u r e  SMOOTH (Data) which is a l ist  of length :  (n); 
i n t e g e r  n; real  a r r a y  Data; 
b e g i n  

c o m m e n t  This  procedure accomplishes four th-order  smooth-  
ing of a l ist  using the  method  given by  Lanczos, Applied 
Analysis (Prentice-Hall ,  1956). This  a lgor i thm requires only 
one addi t ional  list for t empora ry  s torage;  

real  Factor, Top; in t eger  Max I ,  I ,  J ;  a r r a y  Delta [1 : n]; 
Factor := 3.0/35.0; 
M a x I  : = n - -  1; 
for I := 1 s t ep  1 u n t i l  Max I do 

Delta [I] := Data [I+1] - Data [I]; 
fo r  J := 1 s t e p  1 u n t i l  3 do 

b e g i n  
Top := Delta [1]; 
Max I := Max I -  1; 
for I := 1 s t e p  1 u n t i l  Max I do 

Delta [I] := Delta [1+1] -- Delta [I] 
e n d  ; 

M a x I  := n - - 2 ;  
for  I := 3 s t e p  1 u n t i l  Max I do 

Data [I] := Data [I] -- Delta [•-2] X Factor; 
Data [1] := Data [1] + Top/5.0 + Delta [1] X Factor; 
Data [2] := Data [2] -- Top X 0.4 -- Delta [1]/7.0; 
Data [n] := Data In] -- Delta [n--3]/5.0 + Delta [n--4] X Factor; 
Data I n - l ]  := Data [ n - l ]  + Delta I n - 3 ]  X 0.4 -- Delta 

[n--4]/7.0 
e n d ;  

CERTIFICATION OF ALGORITHM 8 
EULER SUMMATION [P. Naur et al. Comm. ACM 

3, May 1960] 
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Argonne National Laboratory, Argonne, Ill. 
* Work suppor ted  by the  U. S. Atomic Energy  Commission 

The body of euler was tes ted  on the  LGP-30 computer  using the  
D a r t m o u t h  SCALP t rans la to r .  No errors were detected.  

The  program gave excellent results  when used to derive the  co- 
efficients for the expansion of In ( l + x )  in shif ted Chebyshev  poly- 
nomials  from the  first ten  terms of the  power series. For  n = 0, 1, 
2, 3, 4, the  coefficient of x ~ in the  power series was mul t ip l ied  by  
the  coefficient of T~*(x) in the  expression of x ~ in t e rms  of the  
T,*(x). The product ,  for i = 1, 2, - . -  , 10 was used asfct( i)  in the  
program.  Resul ts  for n = 0 were as follows: 

i ~t(i) ds sum 

1 +0.50000000 - -  - -  

2 --0.18750000 +0.07812500 +0.3281250 
3 +0.10416667 +0.05729166 +0.3854167 
4 --0.068359375 --0.005940758 +0.3794759 
5 +0.049218750 --0.001928713 +0.3775471 
6 --0.037597656 --0.001357019 +0.3761900 
7 -+0.029924665 +0.0001742393 +0.3763642 
8 --0.024547577 +0.0000571311 +0.3764212 
9 +0.020607842 +0.0006395427 +0.3764607 

10 --0.017619705 --0.0000055069 +0.3764551 
True Value I +0.3764528129 . . . . .  

Clenshaw, C. W., Chebyshev Series for Mathematical Functions. 
Nat iona l  Physical  Labora to ry  M a t h  Tables,  Voh 5, London,  
H.M.S.O. (1962). 

Errors  less t han  0.2 X 10 .5 were also found for n = l, 2, 3, 4, 5, 
6, 7, 8 and 9. 

This  technique  appears  to be a useful supplement  to direct  
telescoping (Algori thms 37 and 38) and to the  methods  recom- 
mended by  Clenshaw ~, for slowly convergent  power series. 

REMARK ON ALGORITHM 77 
INTERPOLATION, DIFFERENTIATION, AND IN- 

TEGRATION [P. E. Hennion, Comm. ACM 5, Feb. 
1962] 

P.  E .  HENNION 

Giannini Controls Corp., Berwyn, Penn. 

I t  was b rough t  to my a t t en t i on  th rough  the  C E R T I F I C A T I O N  
OF A L G O R I T H M  77 A V I N T  (V. E. Whi t t ie r ,  Comm. ACM,  
June,  1962) t h a t  res t r ic t ions  on the  upper  and lower l imits  of in te-  
gra t ion  existed, i.e., (1) xlo ~_ xa(1), (2) xup >= xa(nop). To remove 
these res t r ic t ions  the  following two changes should be made.  

1. Replace the  two lines s t a r t ing  a t  line L12: and ending af ter  
the  s t a t emen t  ib := 2; with  the  following code: 

L12: sum := 0; syl := xlo; ib := 2 ; j u l  := nop; 
for ia := 1 s t ep  1 u n t i l  nop do b e g i n  
i f  xa [ia] __> xlo t h e n  go toLl7;  ib := ib + l ;  end;  

L17: for ia := 1 s t e p  1 u n t i l  nop do b e g i n  
i f x u p  ~ xa [ j u l ] t h e n  go t o L 1 8 ; ] u l  := j u l  -- 1; end;  

L18: ju l  := ju l  -- 1; 

2. Change line L13: to read 
L13: i f j m  ~ ib t h e n  go t o L l 4 ;  

GOSDEN et al.--cont'd from page 661 

Lions. Currently there appears to be no rival to COBOL-- 
only variations seem to be considered; broadly speaking, 
Czechoslovakia tends towards ALGOL and Poland towards 
FORTRAN for a scientific language. In particular, we 
found that the Poles were well acquainted with most of 
the latest developments in the West and made frequent 
short and some extensive visits to computing centers in 
Europe and America. 

Acknowledgments. We wish to thank the national 
standardization bodies of Czechoslovakia, Poland and 
America for the arrangements that were made for our 
visit, and the research institutes for the preliminary prep- 
aration and valuable discussions held with them. 
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