ALGORMITH 214

¢-BESSEL FUNCTIONS I,.(¢)

J. M. 8. SimOEs PEREIRA

Gulbenkian Scientific Computing Center, Lisbon, Portugal

procedure q¢Bessel (t, ¢, n, j, 8); integer n, j; real t, q, s;
array §;

comment This procedure computes values of any ¢-Bessel fune-
tion I,(¢) for n integer (positive, negative or zero) by the use
of the well-known expansion

B, @D TR vt g2k

e RN

where [¢| <1, (@) = A—@)(A~¢) --- A=¢), (o =1 and
1/{(@)-n = 0 (n=1, 2,3, ). (See L. Carlitz, The product of
g-Bessel functions, Port. Math. 21 (1962), 5-9.) Moreover, j
denotes the number of terms (at least 2) retained in the summa-
tion, and s[¢] stands for the sum of the first {41 terms of the
expansion. This procedure has been translated into FoRTRAN
for the IBM 1620 and run successfully;

begin integer k, m, p; real ¢, u; m := abs(n); ¢ := 1; if
n = 0 then go to A;

for p := 1stepluntilmdoc := ¢ X (1—¢lp); ifn < O then
go to B;

A: uw = qgT aXm=1)/2) X (tTn)/ec; s[0] := u;

for k = 1 step 1 until j do

beginu :=u X ¢T (n4+2Xk—2) X (12)/((1—gMk)X (1— ¢l (n+k)));
slk] := slk—1] + u end;

B: wu = qT((m=1)Xm/2) X ¢ T (n+2Xm)/c; s[m] := u;

fork := m 4 1 step 1 until j do

begin u := u X ¢ T (n+2Xk—2) X (t12)/((1—qTk) A—qT (n+k)));
s[k] ;= slk—1] 4+ u end

end

A contribution to this department must be in the form of
an Algorithm, a Certification, or a Remark. Contributions
should be sent in duplicate to the Editor and should be
written in a style patterned after recent contributions
appearing in this department. An algorithm must be written
in ArcorL 60 (see Communications of the ACM, January
1963) and accompanied by a statement to the Editor indicat-
ing that it has been tested and indicating which computer
and programming language was used. For the convenience
of the printer, contributors are requested to double space
material and underline delimiters and logical values that
are to appear in boldface type. Whenever feasible, Certi-
fications should include numerical values.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the Editor, or the Association for Computing
Machinery as to the aceuracy and funetioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the Editor, or the
Association for Computing Machinery in connection there-
with,

662 Communications of the ACM

.?

g B (A

J. H. WEGSTEIN, Editor

ALGORITHM 215

SHANKS

Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Il
* Work supported by the U. 8. Atomic Energy Commission

procedure Shanks (nmin, nnax, kmaz, S);

value nmin, nmazx, kmaz;

integer nmin, nmax, kmaz;

array S;

comment This procedure replaces the elements S{nmin] through
S[nmaz—2Xkmax] of the array S by the e[kmax] transform of
the sequence S. The elements S[nmazx—2Xkmazr+1] through
S[nmaz—1] are destroyed. The e[k] transforms were discovered
by D. Shanks (J. Math. Phys. 84 (1955), 1-42). ¢[1]is equivalent
to the (delta) T 2 transformation. The e[k] transforms are par-
ticularly valuable in estimating B in sequences which may be
written in the form S[n] = B4+ 2, ali] X qlillfn (@=1,2, -+,
k).

The transformation is carried out by the epsilon algorithm
(Wynn, P., M.T.A.C 10 (1956), 91-96). ArncoL procedures for
applying the algorithm to series of complex terms are given by
Wynn (BIT 2 (1962), 232-255).

The body of this procedure has been tested using the Dart-
mouth Self-Contained ArcoL Processor for the LGP-30 com-
puter. It gave the following results on the sequence for the
smaller zero of the Laguerre polynomial, L[2](x):

n Sln] €(11(S[n]) e[2](S[n]) l1P(S[n])
0 0.0000000 0.5714285 0.5857432 0.5857616
1 0.5000000 0.58510569 0.5857854 0.5857859
2 0.5625000 0.5857318 0.5857861 0.5857861
3 0.5791016 0.5857816

4 0.5838396 0.5857859

5 0.5852172

6 0.5856198 True Value 0.5857864375

These results are in satisfactory agreement with those given by
by Wynn (1956);
begin integer j, k, limj, limk, two kmax;
real 70, T1;
two kmax = kmax + kmaz;
limj 1= nmaxz;
for j := nmin step 1 until limj do
begin 70 := 0;
lim := 7 — nmin;
if limk > two kmax then limk := two kmax) limk = limk — 1;
fork := 0 step 1 until limk do
begin 71 := S [j—k] — S [j—k—1];
if 715 0 then T1 := 70 + 1/71 else
if S j—k] = 1099 then T1 := T0 else
T1 := 1099;
comment 1099 may be replaced by the largest number
representable in the computer;
TO := 8 [j—k—1];
Sli—k—1]:=1T1
end for &
end for j
end Shanks

Volume 6 / Number 11 / November, 1963



ALGORITHM 216
SMOOTH
Ricuarp GEORGE*

Argonne National Laboratory, Argonne, Ill.
* Work supported by the U. S. Atomic Engergy Commission.

procedure SMOOTH (Data) which is a list of length: (n);
integer n; real array Dala;
begin
comment This procedure accomplishes fourth-order smooth-
ing of a list using the method given by Lanczos, Applied
Analysis (Prentice-Hall, 1956). This algorithm requires only
one additional list for temporary storage;
real Factor, Top; integer Max I, I, J; array Delta [1 : n];
Factor := 3.0/35.0;
Max I :=n — 1;
for I := 1step 1 until Maz I do
Delta {I] := Daia [[+1] — Data [I1;
for J := 1 step 1 until 3 do
begin
Top := Delta [1];
Max I := Max I — 1;
for I := 1 step 1 until Max I do
Delta [I) := Delia [I41] — Delta [I]
end;
Max I :=n — 2;
for I := 3 step 1 until Mazx I do
Data [I] := Data [I] — Delta [I—-2] X Factor;
Data [1] := Data [1] + Top/5.0 + Delta [1] X Factor;
Data [2] := Data [2] — Top X 0.4 — Delia [1]/7.0;
Data [n] := Data [n] — Delta [n—31/5.0 + Delta [n—4] X Factor;
Data [n—1] := Data [n—1] + Delta [n—3] X 0.4 — Delta
[n—4]/7.0
end;

CERTIFICATION OF ALGORITHM 8§

EULER SUMMATION [P. Naur et al. Comm. ACM
3, May 1960]

Henry C. THACHER, JR.*

Argonne National Laboratory, Argonne, Il
* Work supported by the U. S. Atomic Energy Commission

The body of euler was tested on the LGP-30 computer using the
Dartmouth SCALP translator. No errors were detected.

The program gave excellent results when used to derive the co-
efficients for the expansion of In (14-2) in shifted Chebyshev poly-
nomials from the first ten terms of the power series. Forn = 0, 1,
2, 3, 4, the coefficient of z* in the power series was multiplied by
the coefficient of T,*(x) in the expression of z? in terms of the
T.*(x). The product, forz = 1, 2, --- , 10 was used as fct(¢) in the
program. Results for n = 0 were as follows:

H et (3) ds Sum
1 -+0.50000000 — el
2 —0.18750000 +0.07812500 -+0.3281250
3 +0.10416667 +0.05729166 +0.3854167
4 —0.068359375 —0.005940758 +0.3794759
5 +0.049218750 —0.001928713 4-0.3775471
6 —0.037597656 —0.001357019 +0.3761900
7 +0.029924665 +0.0001742393 +-0.3763642
8 —0.024547577 +0.0000571311 +0.3764212
9 +0.020607842 +0.0006395427 +0.3764607
10 —0.017619705 —0.0000055069 -+0.3764551

True Value! +0.3764528129. .. ..

1 Clenshaw, C. W., Chebyshev Series for Mathematical Functions.
National Physical Laboratory Math Tables, Vol. 5, London,
H.M.8.0. (1962).

Volume 6 / Number 11 / November, 1963

Errors less than 0.2 X 10~ were also found forn = 1,2, 3,4, 5,
6,7,8and 9.

This technique appears to be a useful supplement to direct
telescoping (Algorithms 37 and 38) and to the methods recom-
mended by Clenshaw!, for slowly convergent power series.

REMARK ON ALGORITHM 77

INTERPOLATION, DIFFERENTIATION, AND IN-
TEGRATION [P. E. Hennion, Comm. ACM 5, Feb.
1962]

P. E. HExNION

Giannini Controls Corp., Berwyn, Penn.

It was brought to my attention through the CERTIFICATION
OF ALGORITHM 77 AVINT (V. E. Whittier, Comm. ACM,
June, 1962) that restrictions on the upper and lower limits of inte-
gration existed, i.e., (1) zlo = za(1), (2) zup = za(nop). To remove
these restrictions the following two changes should be made.

1. Replace the two lines starting at line L12: and ending after
the statement 7b := 2; with the following code:

L12: sum := 0; syl := zlo; b := 2; jul := nop;

for ¢ := 1 step 1 until nop do begin

if za [ia] = zlo then go to L17; b := b + 1; end;
L17: for ia := 1 step 1 until nop do begin

if zup = za [jul] then go to L18; jul := jul — 1;
L18: jul := jul — 1;

2. Change line L13: to read
L13: if jm # ib then go to L14;

end;

GOSDEN et al.—cont’d from page 661

tions. Currently there appears to be no rival to CoBoL—
only variations seem to be considered; broadly speaking,
Czechoslovakia tends towards AncoL and Poland towards
Fortran for a scientific language. In particular, we
found that the Poles were well acquainted with most of
the latest developments in the West and made frequent
short and some extensive visits to computing centers in
Europe and America.

Acknowledgments. We wish to thank the national
standardization bodies of Cgzechoslovakia, Poland and
America for the arrangements that were made for our
visit, and the research institutes for the preliminary prep-
aration and valuable discussions held with them.

REFERENCES

1. BrRomBERG, H. Standardization of programming languages.
Datamation 9, 8 (Aug. 1963), 41-50.

2. Gorn, S., Ep. Structures of standards - processing organiza-
tions in the computer area. Comm. ACM 6, 6 (June 1963),
204-305.

3. Wagre, W. H., Ep. Soviet computer technology—1959. Comm.
ACM 3, 3 (Mar. 1960), 131-166.

4. BracamaN, N. M. The state of digital computer technology
in Europe. Comm. ACM 4, 6 (June 1961), 256-265.

5. SvoBopa, A., aND VaracH, M. Decimal arithmetic unit.
(In English), Stroje Na Zpracova’ni’ Informaci’, Sbomi’k
VIII, 1962.

6. Lukaszewicz, L. SAKO-—an automatic coding system. Annual
Review in Automatic Programming, Vol. 2, p. 161, 1961.

7. OrLER, A. Automatic program translation. Datamation 9, 5
(May 1963), 45-48.

Communications of the ACM 663



