Mernop L. Suppose ds = p:Cand p; 2 0fors = 1,2, -, m.
This case can have a binary coded Lable consisting of two rows,
The lirst row, g, is used to keep a record of which sequence value
hus been generated by using the sceond row. Let ¢; = pi il py #~ Q:
otherwise let ¢, = 1. Let By = { for y= 1, &y +ta, - , b1 +
b Let By=1 for j=1+ 284, ppt
Eki; ti where £ =1, 2, -+- | m. The s row confains = bits while
the second row contains Z:Z-’LL p: bits. This method rcquires
2 Zfll ¢ bit positions of memory. For an example of this method,
Sequence B can have the binary coded table given in Table I by
using Rows 8 and 8, where 8 is the s row. In this case the coding to
find z. , given n, iz done so that the 2 accumulator is incremented
by C aceording to the second row, Lo the nth bit in the s row. Tt
p; # 0for+d = 1,2, .-+ . m the second row would not have a blank
position and therefore by suitable programming would not be
NECESSATY.

Suppose d; = D+ p,C and p; 2 0 for ¢ =1, 2, ---  m. This
sequence could have the same binary coded table as d; = p,C and
pr = 0fore = 1,2 -« mif in the program D was added to the
zo accumulator for cach B;; = 1 where j £ n.

It is possible to use one s row when binary coding ¢ sequences

. using Method I1. Let L; = max(l), , -+ , f;;) where {;; is ¢; of the
Jih sequence. Let By = 1 for j =L, , Li+ Ly, -+ , In+ Ly +

St F Lo . LetBa.= lforn =1+ Y idTp, oo, pu+ S0 Ls

cwhere k=1,2, -+ ,mand for H=1, 2, ---  q. For example,
SBequences B, C' and D can be generated using in Table T Rows 11,
12,13 and 14, where Row 11 is the s-row, This same procedure could
be followed to binary code di = fuCl + lz-;(jg + e + 3@'041 y
where tp 2z O0andi=1,2, -+, m.

TABLE I
Sequences:
> __ | [
lele e b [ R T
2
0|1/ 16 119 XX X ]
113 18l 120, |.
3 X
2] 4|18 122 X B
307 o4 122 |,
581 24 123 B
47101 2 125 z
5 ‘ :
110 12 | 30| 127 XXX PP P
1113 | 32 128
Tiafis | s nae| & PR AXRX
16 (15| 36| 129]
;18 B
% 81 Ix|x X% 1%l oxIxix| |
- L e ok xIxx xoxdx x| [xIx
10
n fx Ix x|l xoxix| Ix

12 XXX XX

X1 XX
X
) X
X
X
X
X
X
X

X
X

13 x

14 X

Mavrs GRIEBROK
28750 Myrtle St.
; Hayward, California
Rece1vep May, 1963

Volume 7 / Number 4 / April, 1964

G. E. FORSYTHE, Editor

ALGORITIIM 223

PRIML TWINS

M. SrMraT (Reed 7 June 1963; in final form 2 Jan. 1064)
University of Alberta, Calgary, Alberta, Canada

procedure Prime Twins (¢, Twinl, Twin?, Storage, Act);
value Storage; integer t, Twinl, Twin2, Storage;
procedure Act;
comment This procedure will generate successive ‘‘prime
twins,” i.c. pairs of primes Twinl, Tuin2 which differ by 2.
Slorage is the maximum number of primes that can be stored.
Aet is any procedure for recording, examining, or utilizing each
pair ol twins as it is generated. ¢ is a serial number for the
twins. P[Storage] T 2 is the last number examined;
begin integer array P{l: Storage]; integer j, m, previous,
current;
comment P[j]is the jth prime;
Pll}:=2; P[2]:=3; j:=2, previous .= 3; {:= 0,
for current := 5 step 2 unltil P[j] X P[j] do
begin m ;= 1; for m :=m + 1 while P[m] X Pln! = cur-
reni do
if current = (current + Plnl) X Plm] then ga te NoPrime;
comment If this point is reached, surrent is not divisible by
any prime up to sgri{current) and so is a prime. We now
record the new prime, if storage permits, then check if it
is the second of twins;
if j < Storage then
begin j := j -+ 1;
end;
if current = previous + 2 then
begin ¢ := ¢+ 1; Twinl = previous;
Act (¢, Twinl, Twin2)
end;
PrEVIOUS = Curreni;
NoPrume:
end;
end procedure Prime Twins

Pij] 1= eurrent

Twin2 := current;

ALGORITHM 224
EVALUATION OF DETERMINANT
Lso J. RoTENBERG
{Reed 7 Oct. 1963; in final form 20 Dec. 1963)
Box 2400, 362 Memorial Dr., Cambridge, Mass.

real procedure delerminant (a, n);
valne n; real array a; integer n;
comment This procedure evaluates a determinant by triangulari-
zation. The matrix supplied by the calling procedure is modified
by this program. This procedure is an extensive revision and
correction of Algorithm 41;
begin real product, factor, temp, div, piv, abpiv, mazpiv;
integer ssign, €, J, T, tax;
ssign = 1; product := 1.0;
for r := 1 step 1 until n—1 do
begin maxpir 1= 0.0;
for i := r step 1 until n do

243

Communiesations of the ACM



hegin piv = alt, 1];
abpiy = abs(pin);
if abpiv > mazpiv then

begin marpiv = abpiv;
diy 1= piv;
mea 1=t
end
end;

if mazpiv # 0.0 then
begin if fmaz = i Lhen go to rexume else
begin for j = 7 step 1 unlil » do
hegin temp = alimar, 71
afpmaz, i1 = alr, il
alr, 7| = femp

end;
ssign = — a&sugn;
g0 ta resime
end
end;

determinant := 0.0;
go to relurn;
jesweme: for ¢ 1= r-+1 step 1 until 7 do
begin jactor 1= al7, v /div;
for j := r+1I step 1 until » do
alt, 71 = ali, 7] — factor X afr, 7]
end
end;
for ¢ := 1 step 1 until # do
product 1= product X ali, i};
comment Exponent overflow or underflow will most lLikely
oceur here if at all. For large or small determinants the user
s cautioned to replace this with a call to a machine-language
product routine which will handls extremely large or small
real numbers;
determinant 1= ssign X product;
refurn;
end

CERTIFICATION OF ALGORITHM 182

NONRECURSIVE ADAPTIVE INTEGRATION W,
M. MeKeeman and Larry Tesler, Comm. ACM 6 (June
1963), 315]

Harowp 8. Burrer (Reed 8 Nov. 1963; rev, 6 Dec, 1963)

Btanford Linear Accelerator Center, Stanford, Calif.

A Bavngon transliteration of Sémpson has been prepared at
Stanford by its authors and it has been used in a number of prob-
fems involving nuwmerieal integration. Its value was most strik-
ingly displayed when it was utilized in 4 iriple integral in which
the final integration was over a strongly peaked function that
spanned seven orders of magnitude. Sémpson effectively minimized
the number of evaluations and completed the integration five
times faster than alternate sehemes to subdivide the region of
interest, The values of the integral agreed with independent
caleulations well within the required tolcrance.,

The following changes should be made to the published
algorithimn

Line 13 should be chznged to:
el 1= 0; absareq 1= est := 10; da = b—q;
Line 17 should read:
srl= de{lell/6.0; F1:= 4.0 X Fla + dze[lel}/2.0);
Line 20 should read: '
epspilel] = eps; Fallnll = 4.0 X F{z3{l!l] + dellvl]/2.03;
The condition of line 27 should be changed to:
if (lobslest—sum) = epspllvl] X obsaveq) A (est = 1.0 V/
(el 2 30) then

244 Communications of the ACM

CERTIFICATION OF ALGORITHMS 181 AND 19
HY PERGEOMETRIC AND CONFLUENT HYPER.
GUTOMETRIC (A, P Relph, Comm, ACM ¢ (July
1963}, 388]
Hezgy C. Tracusg, Jr.® (Reed 2 Dee, 1063
Argonne National Laboratory, Argonne, IlL
* Work supported by the U8, Atomic Enersy Commisgion.

The bodles of these two procedures were branscribed for the
Dartmouth Jeare processor for the LGP 30 computer. No gyn.
taetical errors were found, and the programs gave results sgroeeing
within roundoff (7133 with tabulated values for the following spe-
cial eases:of1{0.5, 0.5, 1; &% = /=) K{k); 505, 05,150 =
(2/m)E k) where K and K are complete elliptic integrals of the firgt
and second kinds; #4551, 1y = Jola), and with 7 (—1; 0.1; 2},
L (=05 001 ), and (P (=055 0055 x).

It should be observed that the function caleulated by 191 i
oF 1la, B ¢; 2, not (Fs(e, b; ¢; 2) as stated in the enomment. These
programs evaluate the flunctions by direct summation of the hy-
pergeometric series. They are, therefore, relatively general, but
inefficient. Precautions must also be taken against attempting to
compute outside the range of effective convergence of the series,

CERTIFICATION OF ALGORITHM 222
INCOMPLETE BETA FUNCTION RATIOS
Gautschi, Commn. ACM 7 {Mareh 1964), 143]

Warrter Gautscrr (Reed 2 Jan. 1964)

Purdue Univ., Lafayette, Ind.

begin integer n; arrvay (1, 12, 1310 10];

comment This program calls the procedures fncomplete bei ¢
fiwed and [ncomplete bela p fized to caleulate test wvalues of
Li(54n, 75, Tais, t+=a), Ls(s, 14n) for n = 0{1)10 to O
significant digits, The following results were obtained on the
CDC 1604-A computer, using the Oak Ridge Avgor compiler:

[Walter

T {34+ m T

1

103, 1 + u} Ls{3, 0+

0 99143646183 . 010239999997 .32768000004
1 934951533330 . 040959999972 . 65536000000
2 -B3367307612 096255999927 .8A196799999
3 . 69444760641 17367080987 .0437183994Y
4 54111709640 - 26656707980 08041856000
5 39800862042 . 36689674211 .99363061738
6 27831789503 46722580441 . G9803463679
7 18624810627 BBI82LTTVA2 99941875711
8 11995785836 646958156314 .99983399319
9 074724512738 ST2074301208 . 49995395031
10 045208802503 . T8272229360 LG0998753828

All results are in agreement with those tabulated in [L];
Incomplete beta g fived (4, 5,7, 10,06, [1);
Tneomplete beta p fixed (4,5, 1, 10, 6, J2);
Incomplete beta p fived (8, 5,1, 10,6, I3);
for # = 0 step 1 until 10 do
write { I1n}, I2[n], I3n))
end Driver éncomplete bela Junciion ralios
In the original publication of the algorithm, the following ¢or
rection of a printei’s error is needed in the real procedure Isuhz
p and g small, The statement labelled 10 should read as follows!
wim tho— g+ D X o X w/Ek -+ 1
(1] Peansox, K. Tables of the Incomplete Bein-Function, (Cat-
bridge University Press, Tondon, 1934.

Volumeé 7 / Number 4 / April, 1963



