
MSTII()D II . Supposed.z = piCa~ldp~=> O f o r i = 1 , 2 , . . . ,m .
This c,'~se cau have a bint~ry coded table consisting of two rows.
The first row, s, is used to keep a record of which sequence value
has been generated by using the second row. Let t~ = p~ if Pi ¢ O;
otherwise let tg = 1. Let J3.~: = 1 for j = t~, t ! + t 2 , . . . , t ~ +
t2+ "'" + & . Let B2y = 1 for j = 1 + ~ 2 } t ~ , . . . , p v +
~ - ~ & where k = 1, 2, . . . , m. The s row contains m bits while
the second row contains ~ '~ : , p~ bits. This method requires
2 ~*~*_J t, bi t positions of memory. For an example of this method,
Sequence B can have the binary coded table given in Table I by
using Rows 8 and 9, where 8 is the s row. In this case the coding to
find x,, , given n, is done so tha t the x0 accumulator is incremented
by C according to the second row, to the n th bi t in the s row. If
p~ ~ 0 for i = 1, 2, . . . , m tile second row would not have a blank
position and therefore by suitable programming would not be
necessary.

Suppose d , = D + p i C and p~ > 0 for i = 1, 2, . . . m. This = ,
sequence could have the same binary coded table as d~ = p~C and
p~ >_ 0 for i = 1, 2, . . - , m if in the program D was added to the
x0 accumulator for each B,y = 1 where j =< n.

is p o s s i b l e t o u s e o n e r o w w h e n binary coding q sequences
using Method II. Let L~ = m a x (h i , --- , tq0 where ti~ is t~ of the
j t h sequence. Let B,i = 1 for j = L~ , L~ + L2 , . . . , L~ + Le +

X-'k-~ L
• "" + L m . L e t B ~ = l f o r n = l+z..,~=~ , ~ , " " , p ~ - b ~ Y ~ L ~
where k = 1, 2, - . . , m and for H = 1 2 " - ,q . For example,
Sequences B, C and D can be generated using in Table I Rows 11,
12, 13 and 14, where Row 11 is the s-row. This same procedure could
be followed to binary code dl = t,~C~ + t~C~ + . . . + tq~Cq ,
wherety~>0= a n d / = 1 , 2 , . . . ,m .

Se, ~u ences :

A B C D

0 1 16119
1 3 1 6 1 2 0
2 4 1 8 1 2 2
3 7 241122
5 8 24 123
7 1 0 2 6 1 2 5

1 0 1 2 3 0 1 2 7
1 1 1 3 3 2 1 2 8

i 1.'1418161513 3634129129

21
22

i!i

TABLE I

MAvis GRIEBROK

22750 Myrtle St.
Hayward, California

RECEIVED ~¢:[AY, 1963

" ~ ! " ~ % ~ [> ' " g ~ " %3, '~. * ~ , ' , , ~ ~ , ' . ~ ~., ~ ~ ~ o " ~

i

G. E. FORSYTHE, Editor

ALGORITHM 223
PRIME TWINS
M. SmMRAT (Recd 7 June 1963; in final form 2 Jan. 1964}
University of Alberta, Calgary, Alberta, Canada

p r o c e d u r e Prime Twins (t, Twin1, Twin2, Storage, Act);
value Storage; i n t e g e r t, Twin1, Twin2, Storage;
p r o c e d u r e Act;

c o m m e n t This procedure will generate successive "pr ime
twins ," i.e. pairs of primes Twin1, Twin2 which differ by 2.
Storage is the maximum number of primes tha t can be stored.
Act is any procedure for recording, examining, or utilizing each
pair of twins as it is generated, t is a serial number for the
twins. P[Storage] T 2 is the last number examined;

b e g i n i n t e g e r a r r a y P[I : Storage]; i n t e g e r j , m, previous,
current;

c o m m e n t P[j] is the j t h prime;
P[1] := 2; P[2] := 3; j := 2; previous := 3; t := 0;
fo r current := 5 s t e p 2 u n t i l P[j] X P[j] d o

b e g i n m := 1; fo r m := m q-1 whi le P[m] X P[m] _< cur-
rent d o

i f current = (current + P[m]) X P[m] t h e n go to NoPrime;
c o m m e n t If this point is reached, current is not divisible by

any prime up to sqrt(current) and so is a prime. We now
record the new prime, if storage permits, then check if i t
is the second of twins;

i f j < Storage t h e n
b e g i n j := j + 1; P[j] := current
e n d ;

i f current = previous -q- 2 t h e n
b e g i n t := t q- 1; Twin1 := previous; Twin2 := current;

Act (t, Twin1, Twin2)
end ;

previous := current;
NoPmme :

e n d ;
e n d procedure Prime Twins

ALGORITHM 224
EVALUATION OF DETERMINANT
LEO J. ROTENBERG

(Recd 7 Oct. 1963; in final form 20 Dec. 1963)
Box 2400, 362 Memorial Dr., Cambridge, Mass.

rea l p r o c e d u r e determinant ta. n) ;
va lue n; rea l a r r a y a; i n t e g e r n;

c o m m e n t This procedure evaluates a de terminant by triangulari-
zation. The matrix supplied by the calling procedure is modified
by this program. This procedure is an extensive revision and
correction of Algorithm 41:

b e g i n rea l product, factor, temp , die, pie, abpiv , maxpiv ;
i n t e g e r ssign, i, j , r, imax;
ssign : - 1; product := 1.0;
for r := 1 s t e p 1 u n t i l n - - 1 d o

b e g i n maxpiv := 0.0:
for i := r s t e p 1 u n t i l n d o

7 / N u m b e r 4 / Apr i l , 1964 C o m m u n i c a t i o n s of t h e ACM 243

b e g i n piv := all, r];
abpiv : = abs (pie) ;
i f abpiv > maxpiv t h e n
b e g i n maxpiv := abpiv;

die :~ piv;
imax : = i

e n d
end ;
i f maxpiv ¢ 0.0 t h e n
b e g i n i f imax = i t h e n go to resl~e else

b e g i n for j := r s t e p 1 u n t i l n do
b e g i n temp := @:max, it;

a[imax, j] := a[r, j] ;
a[r, j] := temp

end ;
ssign := -- ssign;
go to r e s ~ e

e n d
end ;
determinant := 0.0;
go to return;

resume: for i := r--~-i s t e p 1 u n t i l n do
b e g i n j'actor := all, r]/div;

for j := r + l s t e p 1 u n t i l n d o
all, j] := all, j] - factor X a[r, j]

e n d
end ;
for i := 1 s t e p 1 u n t i l n d o
product := product X all, i];
c o m m e n t Exponen t overflow or underflow will mos t l ikely

occur here if a t all. For large or small de t e rminan t s the user
is caut ioned to replace this wi th a call to a machine- language
product rout ine which will handle extremely large or smM1
real numbers ;

determinant := ssign X product;
return :
e n d

CERTIFICATION OF ALGORITHM 182
NONRECURSIVE ADAPTIVE INTEGRATION [W.

M. MeKeeman and Larry Tesler, Comm. ACM 6 (June
1963), 315]

HAnOLD S. BUTLEn (Reed 8 Nov. 1963; rev. 6 Dee. 1963)
Stanford Linear Accelerator Center, Stanford, Calif.

A BALGOL t rans l i t e ra t ion of Simpson has been prepared at
S tanford by its au thors and i t has been used in a n u m b e r of prob-
lems involving numerical in tegra t ion . I t s vMue was mos t s t r ik-
ingly displayed when i t was ut i l ized in a t r iple in tegral in which
the final i n t eg ra t ion was over a s t rongly peaked func t ion t h a t
spanned seven orders of magni tude . Simpson effectively minimized
the number of evalua t ions and completed the in teg ra t ion five
t imes fas ter t han a l t e rna te schemes to subdivide the region of
in te res t . The values of the in tegral agreed with independen t
calculat ions well wi th in the required tolerance.

The following changes should be made to the publ ished
a lgor i thm :

Line 13 should be changed to:
lvl := 0; absarea : = est : = 1.0; da : = b - a ;

Line 17 should read:
sx : = dx[lvl]/6.0; F1 : = 4.0 X F(a + dx[lvl]/2.0);

Line 20 should read:
epsp[lvl] : = eps; F4[lvl] : = 4.0 X F(x3[lvl] + dx[lvl]/2.0);

T h e condi t ion of line 27 should be changed to:
i f ((abs(est-sum) ~ epsp[lvl] X absarea) /~ (est ~. 1 . 0)) V

(lvl >= 30) t h e n

244 C o m m u n i c a t i o n s o f t h e A C M

(] ! , t l / [t I (A I I (N ()V A L (~ ([{ I I t t i \ [S t 9 t A N D 192

H V t) E [: I (I | ! : O M I i T I ~ I (? A N I) C () N l i ' I ~ (] i ;NT I tYPEI{ i

G l X) ~ I I , l t ~ I ({A. Ilelpl~ (p r o m . ~. (M (; (July

1963), 388]

H~,::N[~ C. Tt[.~(::'mi:~¢, Jl~.* (Reed ':2 I)ec. 1963)
Argonne National l~aboratory, Art(rune, Ill.

* Work supported by tile U.S. Atomic Energy Commission.

The bodies of these two procedures were t ranscr ibed for the
Dartmouth SC~LP processor for the LGP 30 computer . No syn-
tac t ica l errors were found, and the programs grave results agreeing
within roundoff (7I)) with t abu l a t ed values for the following spe-
cial cases: ~F~(0.5, 0.5; 1 ;k ~) = (2/7r) K(k) ; 2F,(0.5, - 0 . 5 ; 1; k ~) =
(2/~r) E(k) wilere K and E are complete el l iptic integrals of the first
and second kinds; Y~(.5; 1; iy) = ,,C0(x), and with J "~ (-1 ; 0.1; z);
~F~(-0.5; 0.1; x), and ~Fi(--0.5; 0.5; x).

I t should be observed t h a t the func t ion ca lcula ted by 191 is
2F1(a, b; c; z), not 1F~(a, b; c; z) as s t a t ed in the comment . These
programs eva lua te the funct ions by direct s u m m a t i o n of the hy-
pergeometr ie series. They are, therefore , re la t ive ly general, but
inefficient. P recau t ions mus t also be taken agair~st a t tempt ing ~o
compute outside the range of effeetive convergence of the series.

CERTIFICATION OF ALGORITHM 222
INCOMPLETE BETA FUNCTION RATIOS [Walter

Gautsehi, Comm. A C M 7 (March 1964), 143]
WALTER GAUTSCHI (Recd 2 Jan. 1964)
Purdue Univ., Lafayette, Ind.

b e g i n i n t e g e r n; a r r a y I1, [2, 1310: 10];
c o m m e n t This p rogram calls the procedures Incomplete beta q

fixed and Irzcomplete beta p fixed to calculate tes t values of
1.4(.5+n, 7), I.~(5, 1-Fn), I.s(5, 1-1c-n) for n = 0(1)10 to 6
significant digits. The following resul ts were obt~dned on the
CDC 1604-A computer , using the Oak Ridge ALGOb compiler:

n L4(.S + n, 7) I.~(5, I + n) I.s(5,1 + n)

0 .99143646185 .010239999997 .32768000004
1 .93951533330 .040959999972 .65536000000
2 .83567307612 .096255999927 .85196799999
3 .69444760641 .17367039987 .94371839999
4 .54111709640 .26656767980 .98041856000
5 .39800862042 .36689674211 .99363061758
6 .27831789503 .46722580441 .998(~463679
7 .18624810627 .56182177742 .99941875711
8 .11995785836 .646958153:14 .99983399319
9 .074724512738 .72074301208 .99995395031

10 .045203802963 .78272229360 .99998753828

All results are in agreement wi th those t abu l a t ed in [1];
Incomplete beta q fixed (.4, .5, 7, 10, 6 , / 1) ;
Incomplete beta pfixed (.4, 5, l , 10, 6, I2);
Incomplete beta p fixed (.8, 5, 1, 10, 6 , / 3) ;
fo r n := 0 s t e p 1 u n t i l 10 d o

write (I I [n] , / 2 In] , I3[n])
e n d :Driver incomplete beta function ratios

In the original pub l ica t ion of the a lgor i tbm, the following c0f
rect ion of a p r in te r ' s er ror is needed in the real procedure [sub~:
p and q small. The s t a t e m e n t label led L0 should read as follows:

u : = (~ - q + l) X x X u / (k + 1);
[1] PEARSON, K.. 2~.bles of the Incomplete Beta-Function. Cam-

bridge Unive r s i ty :Press, London, 1:934.

V o l u m e 7 / N u m b e r 4, / Apr i l , 1964

1

