
MSTII()D II .  Supposed.z = piCa~ldp~=> O f o r i =  1 , 2 , . . .  ,m .  
This c,'~se cau have a bint~ry coded table consisting of two rows. 
The first row, s, is used to keep a record of which sequence value 
has been generated by using the second row. Let t~ = p~ if Pi ¢ O; 
otherwise let  tg = 1. Let J3.~: = 1 for j = t~, t ! + t 2 , . . .  , t ~ +  
t2+  "'" + & .  Let B2y = 1 for j = 1 +  ~ 2 } t ~ , . . .  , p v +  
~ - ~  & where k = 1, 2, . . .  , m. The s row contains m bits while 
the second row contains ~ '~ : ,  p~ bits. This method requires 
2 ~*~*_J t, bi t  positions of memory.  For  an example of this method,  
Sequence B can have the binary coded table given in Table I by 
using Rows 8 and 9, where 8 is the s row. In this case the coding to 
find x,, , given n, is done so tha t  the x0 accumulator is incremented 
by C according to the second row, to the n th  bi t  in the s row. If 
p~ ~ 0 for i = 1, 2, . . .  , m tile second row would not have a blank 
position and therefore by suitable programming would not be 
necessary. 

Suppose d , =  D + p i C  and p~ > 0 for i =  1, 2, . . .  m. This = , 
sequence could have the same binary coded table as d~ = p~C and 
p~ >_ 0 for i = 1, 2, . . -  , m if in the program D was added to the  
x0 accumulator  for each B,y = 1 where j =< n. 

is p o s s i b l e  t o  u s e  o n e  r o w  w h e n  binary coding q sequences 
using Method  II. Let  L~ = m a x ( h i ,  ---  , tq0 where ti~ is t~ of the 
j t h  sequence. Let  B,i = 1 for j = L~ , L~ + L2 , . . .  , L~ + Le + 

X-'k-~ L 
• "" + L m . L e t B ~ =  l f o r n =  l+z..,~=~ , ~ , " "  , p ~ - b ~ Y ~ L ~  
where k = 1, 2, - . .  , m  and for H =  1 2 " -  ,q .  For  example, 
Sequences B, C and D can be generated using in Table I Rows 11, 
12, 13 and 14, where Row 11 is the s-row. This same procedure could 
be followed to binary code dl = t,~C~ + t~C~ + . . .  + tq~Cq , 
wherety~>0= a n d / =  1 , 2 , . . .  ,m .  

Se, ~u ences : 

A B C D 

0 1 16119  
1 3 1 6 1 2 0  
2 4 1 8 1 2 2  
3 7 241122 
5 8 24 123 
7 1 0 2 6 1 2 5  

1 0 1 2 3 0 1 2 7  
1 1 1 3 3 2 1 2 8  

i 1.'1418161513 3634129129 

21 
22 

i!i 
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ALGORITHM 223 
PRIME TWINS 
M. SmMRAT (Recd 7 June 1963; in final form 2 Jan. 1964} 
University of Alberta, Calgary, Alberta, Canada 

p r o c e d u r e  Prime Twins (t, Twin1, Twin2, Storage, Act); 
value  Storage; i n t e g e r  t, Twin1, Twin2, Storage; 
p r o c e d u r e  Act; 

c o m m e n t  This procedure will generate successive "pr ime 
twins ,"  i.e. pairs of primes Twin1, Twin2 which differ by 2. 
Storage is the maximum number of primes tha t  can be stored.  
Act is any procedure for recording, examining, or utilizing each 
pair of twins as it  is generated, t is a serial number for the  
twins. P[Storage] T 2 is the last number examined; 

b e g i n  i n t e g e r  a r r a y  P[I :  Storage]; i n t e g e r  j ,  m, previous, 
current; 

c o m m e n t  P[j] is the j t h  prime; 
P[1] := 2; P[2] := 3; j := 2; previous := 3; t := 0; 
fo r  current := 5 s t e p  2 u n t i l  P[j] X P[j] d o  

b e g i n  m := 1; fo r  m := m q-1 whi le  P[m] X P[m] _< cur- 
rent d o  

i f  current = (current + P[m]) X P[m] t h e n  go to  NoPrime; 
c o m m e n t  If this point is reached, current is not divisible by  

any prime up to sqrt(current) and so is a prime. We now 
record the new prime, if storage permits,  then check if i t  
is the second of twins; 

i f  j < Storage t h e n  
b e g i n  j := j + 1; P[j] := current 
e n d  ; 

i f  current = previous -q- 2 t h e n  
b e g i n  t := t q- 1; Twin1 := previous; Twin2 := current; 

Act  (t, Twin1, Twin2) 
end ;  

previous := current; 
NoPmme : 

e n d  ; 
e n d  procedure Prime Twins 

ALGORITHM 224 
EVALUATION OF DETERMINANT 
LEO J.  ROTENBERG 

(Recd 7 Oct. 1963; in final form 20 Dec. 1963) 
Box 2400, 362 Memorial Dr., Cambridge, Mass. 

rea l  p r o c e d u r e  determinant ta. n) ; 
va lue  n; rea l  a r r a y  a; i n t e g e r  n;  

c o m m e n t  This procedure evaluates a de terminant  by triangulari-  
zation. The matrix supplied by the calling procedure is modified 
by this program. This procedure is an extensive revision and 
correction of Algorithm 41: 

b e g i n  rea l  product, factor, temp , die, pie, abpiv , maxpiv ; 
i n t e g e r  ssign, i, j ,  r, imax; 
ssign : -  1; product := 1.0; 
for  r := 1 s t e p  1 u n t i l  n - - 1  d o  

b e g i n  maxpiv := 0.0: 
for  i := r s t e p  1 u n t i l  n d o  
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b e g i n  piv := all, r]; 
abpiv : = abs (pie) ; 
i f  abpiv > maxpiv t h e n  
b e g i n  maxpiv := abpiv; 

die :~ piv; 
imax : = i 

e n d  
end ;  
i f  maxpiv ¢ 0.0 t h e n  
b e g i n  i f  imax = i t h e n  go to resl~e else  

b e g i n  for  j := r s t e p  1 u n t i l  n do 
b e g i n  temp := @:max, it; 

a[imax, j] := a[r, j] ;  
a[r, j] := temp 

end ;  
ssign := -- ssign; 
go to r e s ~ e  

e n d  
end ;  
determinant := 0.0; 
go to  return; 

resume: for  i := r--~-i s t e p  1 u n t i l  n do  
b e g i n  j'actor := all, r]/div; 

for  j := r + l  s t e p  1 u n t i l  n d o  
all, j] := all, j] - factor X a[r, j] 

e n d  
end ;  
for  i := 1 s t e p  1 u n t i l  n d o  
product := product X all, i]; 
c o m m e n t  Exponen t  overflow or underflow will mos t  l ikely 

occur here if a t  all. For  large or small  de t e rminan t s  the user 
is caut ioned to replace this  wi th  a call to a machine- language  
product  rout ine  which will handle  extremely large or smM1 
real numbers ;  

determinant := ssign X product; 
return : 
e n d  

CERTIFICATION OF ALGORITHM 182 
NONRECURSIVE ADAPTIVE INTEGRATION [W. 

M. MeKeeman and Larry Tesler, Comm. ACM 6 (June 
1963), 315] 

HAnOLD S. BUTLEn (Reed 8 Nov. 1963; rev. 6 Dee. 1963) 
Stanford Linear Accelerator Center, Stanford, Calif. 

A BALGOL t rans l i t e ra t ion  of Simpson has been prepared  at  
S tanford  by  its au thors  and i t  has been used in a n u m b e r  of prob-  
lems involving numerical  in tegra t ion .  I t s  vMue was mos t  s t r ik-  
ingly  displayed when i t  was ut i l ized in a t r iple  in tegral  in which 
the  final i n t eg ra t ion  was over a s t rongly  peaked func t ion  t h a t  
spanned seven orders of magni tude .  Simpson effectively minimized 
the  number  of evalua t ions  and  completed the  in teg ra t ion  five 
t imes fas ter  t han  a l t e rna te  schemes to subdivide the  region of 
in te res t .  The  values of the  in tegral  agreed with independen t  
calculat ions  well wi th in  the  required tolerance.  

The  following changes should be made to the  publ ished 
a lgor i thm : 

Line 13 should be changed to:  
lvl := 0; absarea : =  est : =  1.0; da : =  b - a ;  

Line 17 should read:  
sx : =  dx[lvl]/6.0; F1 : =  4.0 X F(a + dx[lvl]/2.0); 

Line 20 should read:  
epsp[lvl] : =  eps; F4[lvl] : =  4.0 X F(x3[lvl] + dx[lvl]/2.0); 

T h e  condi t ion of line 27 should be changed to:  
i f  ((abs(est-sum) ~ epsp[lvl] X absarea) /~ (est ~. 1 . 0 ) ) V  

(lvl >= 30) t h e n  
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H~,::N[~ C. Tt[.~(::'mi:~¢, Jl~.* (Reed ':2 I)ec. 1963) 
Argonne National l~aboratory, Art(rune, Ill. 

* Work supported by tile U.S. Atomic Energy Commission. 

The bodies of these two procedures  were t ranscr ibed  for the 
Dartmouth SC~LP processor for the  LGP 30 computer .  No syn- 
tac t ica l  errors were found, and  the  programs grave results  agreeing 
within roundoff (7I)) with t abu l a t ed  values for the following spe- 
cial cases: ~F~(0.5, 0.5; 1 ;k ~) = (2/7r) K(k) ;  2F,(0.5, - 0 . 5 ;  1; k ~) = 
(2/~r) E(k) wilere K and  E are complete  el l iptic integrals  of the first 
and  second kinds;  Y~(.5; 1; iy) = ,,C0(x), and  with J "~ ( -1 ;  0.1; z); 
~F~(-0.5;  0.1; x), and  ~Fi(--0.5; 0.5; x). 

I t  should be observed t h a t  the  func t ion  ca lcula ted  by 191 is 
2F1(a, b; c; z), not 1F~(a, b; c; z) as s t a t ed  in the comment .  These 
programs eva lua te  the funct ions  by  direct  s u m m a t i o n  of the hy- 
pergeometr ie  series. They  are, therefore ,  re la t ive ly  general, but 
inefficient. P recau t ions  mus t  also be taken  agair~st a t tempt ing  ~o 
compute  outside the  range of effeetive convergence  of the series. 

CERTIFICATION OF ALGORITHM 222 
INCOMPLETE BETA FUNCTION RATIOS [Walter 

Gautsehi, Comm. A C M 7  (March 1964), 143] 
WALTER GAUTSCHI (Recd 2 Jan. 1964) 
Purdue Univ., Lafayette, Ind. 

b e g i n  i n t e g e r  n; a r r a y  I1, [2, 1310: 10]; 
c o m m e n t  This  p rogram calls the  procedures  Incomplete beta q 

fixed and Irzcomplete beta p fixed to calculate  tes t  values of 
1.4(.5+n, 7), I.~(5, 1-Fn), I.s(5, 1-1c-n) for n = 0(1)10 to 6 
significant digits.  The following resul ts  were obt~dned on the 
CDC 1604-A computer ,  using the  Oak Ridge ALGOb compiler: 

n L4(.S + n, 7) I.~(5, I + n) I.s(5,1 + n) 

0 .99143646185 .010239999997 .32768000004 
1 .93951533330 .040959999972 .65536000000 
2 .83567307612 .096255999927 .85196799999 
3 .69444760641 .17367039987 .94371839999 
4 .54111709640 .26656767980 .98041856000 
5 .39800862042 .36689674211 .99363061758 
6 .27831789503 .46722580441 .998(~463679 
7 .18624810627 .56182177742 .99941875711 
8 .11995785836 .646958153:14 .99983399319 
9 .074724512738 .72074301208 .99995395031 

10 .045203802963 .78272229360 .99998753828 

All results  are in agreement  wi th  those t abu l a t ed  in [1]; 
Incomplete beta q fixed (.4, .5, 7, 10, 6 , / 1 )  ; 
Incomplete beta pfixed (.4, 5, l ,  10, 6, I2); 
Incomplete beta p fixed (.8, 5, 1, 10, 6 , / 3 )  ; 
fo r  n := 0 s t e p  1 u n t i l  10 d o  

write ( I I [n ] , / 2 In ] ,  I3[n]) 
e n d  :Driver incomplete beta function ratios 

In  the original pub l ica t ion  of the  a lgor i tbm,  the  following c0f 
rect ion of a p r in te r ' s  er ror  is needed in the real procedure  [sub~: 
p and q small. The s t a t e m e n t  label led L0 should  read  as follows: 

u : =  ( ~ -  q + l )  X x X u / ( k +  1); 
[1] PEARSON, K.. 2~.bles of the Incomplete Beta-Function. Cam- 

bridge Unive r s i ty  :Press, London,  1:934. 
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