g
G. E. FORSYTHE, Editor

ALGORITHM 225

GAMMA FUNCTION WITH CONTROLLED

ACCURACY

S. J. Cyvin anp B. N. Cyvin (Reed. 25 Oct. 1963)

Technical University of Norway, Trondheim, Norway

real procedure GAMMA (m, x);
real z;

comment I'(r) is calculated with at least m significant figures
(disregarding the machine’s roundoff). The range of z is reduced
by recursion to 5 < z £ 6, for which I'(z) is found (with m—2
significant decimals) according to

value m, z; integer m;

T =]
Iiz) = f t=e™t dt + f 1= le™t dt.
0 T

Simpson’s formula is applied to the former integral, which is
divided into 2n parts. Here n, as well as T, are chosen auto-
matically to give a result with the required accuracy. For z
near zero or a negative integer, I'(z) is put equal to a large value,
10%, The procedure is slower than other algorithms for T'(z)

¢ [see Nos. 31, 34, 54, 80], but has the advantage of controlled
aceuracy;
begin integer 7,n,f,T; real yh,S;
hi=1; y 1= z;
A if abs(y) < 10—60 then begin GAMMA := 1060; go to
FE end else

go to A end else
go Lo A end else

ify > 6 then beginy :=y—1; h:=hXy;
ify < 5then beginh :=h/y; y:=y+1;
begin real a;

T = 20;

U: if (T15 + 4XT T4 + 16XT 13 + 48XT 12 + 96XT +
96)Xexp(—T1)>.25X10 1 (2—m) then begin T := T-5;
go to U end;

n = 1 4 entier(sqri(sqrt(T' T5X10 7T n—2)/30)));
S:=0; f:=4;
for i := 1 step 1 until 2Xn do
begin
a = B5XiXT/n; 8 :=8 4+ fXal y—1)Xexp(—a);
fi=ifi = 2Xn—1 then 1 else if f = 4 then 2 else 4
end
end;
GAMMA := (SXT/(BXn) + (5XT 15+ 3XT 14+ 12XT 13
4+ 36XT T2 + 72XT + 72)Xexp(—T))Xh;
E:
end of GAMMA

ALGORITHM 226

NORMAL DISTRIBUTION I'UNCTION

S. J. Cyvin (Reed. 15 Oct. 1963)

Technical University of Norway, Trondheim, Norway

real procedure Fi(mzx); value mx; integer m; real z;
comment &(z) = (1/\/21r)Ji°C> exp(—3zu?) du is found by com-
puting f(’f exp(—3u?) du with aid of Simpson’s formula. The

latter integral is divided into 2n parts, where n automatically

Volume 7 / Number 5 / May, 1964

is adjusted to give a result with at least m significant decimals
(disregarding the machine’s roundoff). The error function is
obtainable as erf (¢) = 2®(z/+/2) — 1. The practical use of the
present method is not restricted to small or large ranges of z.
Probably the method has some advantages compared to Algo-
rithms 123, 180, and 209;
begin integer i,n, f; real b,S;
b 1= abs(z);
n 1= 1 - entier(sqrt(sqri(b 7 5X10 T m/
(480X sgrt (2 3.14159265))))) ;
ifn <4thenn:=4; S:=1; f:=4;
for 7 := 1 step 1 until 2Xn do
begin
8= 8+ f X exp(—(@EXb/n) 12/8);
fi=if7 = 2Xn—1 then 1 else if f=4 then 2 else 4
end;
Fi = 5 4 sign(x) XSXb/(6XnXsqrt(2X 3.14159265))
end Fi

ALGORITHM 227

CHEBYSHEV POLYNOMIAL COEFFICIENTS

S. J. Cyvin (Reed. 15 Oct. 1963)

Technical University of Norway, Trondheim, Norway

procedure T'cheb(n,A); valuen; integern; integer array 4;

comment This procedure finds (by recursion) the coefficients
of T'n(x), rather than the value of the polynomial, which is the
subject of Algorithms 10 and 36. The (n+2)<+2 nonvanishing
coefficients are stored in one-dimensional integer array 4 in
the following way:

Toplz) = i A[i+41] 2% (n even),

i=0

Tin(@) = 3 Af+1154 (0 odd);

) i=0
begin integer ¢,j; integer array B[l:(n+2)+2]; Boolean
EVEN;
A[l]:= B[l]:=1; EVEN :=n+2X2=mn; ifn > 1then

for 7 := 2 step 1 until (n+2)+2 do
for j := i step —1 until 1 do
begin
Aljl := if j=1¢ then 2XB[j—1] else if j=1 then —A[1]
else 2 XB[j—1] — A[j];
B[j] := if j=7 then 2 X A[{] else 2 X A[j] — B[j]
end < loop;
for ¢ := 1 step 1 until (n+2)=+2 do
A[Z] := if EVEN then A[{] else B[]
end T'ched

ALGORITHM 228 B
Q-BESSEL FUNCTIONS I,(t)
J. M. 8. Sim3ss PerEIRA (Recd. 21 Sept. 63 and 6 Jan.
64)

Gulbenkian Scientific Computing Ctr, Lisboa, Portugal
integer n, j;

procedure ¢Besselbar (t,q,n,7,s); real {,q,s;

" comment This procedure computes values of any ¢-Bessel

function I,(t) for n integer (positive, negative or zero) by the
use of the expansion I.(t) = > 24 (#"*%/((q)r(¢)nss)) Where
(@n = A=)(A~=¢*)---(1—=g"), (@ = 1 and (1/(g)-)=0 (n=1,
2, ---). This series is convergent for t € (— o, + o) if |¢| > 1
and for |t | < 1if | ¢| < 1. j+1 denotes the number of terms
(at least 2) retained in the summation and s stands for the sum
of these first terms. See L. Carlitz, The product of g¢-Bessel
functions, Portugaliae Mathematica, vol. 21;

Communications of the ACM 295

begin integer k,m,p; real cu; m = abs(n); c¢:=1;
if n = 0 then go to A;
for p := lstep luntilmdoc:=cX{1—¢1p);
if n < 0 then go to B;
Aiu = (tTn)/e; s 1= u;
for k := 1 step 1 until j do
begin v = uX{12)/(1—qtk)X0A—qT (n+k))); s :=
s + u end;
go to C};
B:wi=1t7 mt+2xXm)/c; s:= u;
for k := m + 1 step 1 until j do
begin u = uX{T2)/(1—¢ThAXA—¢ T (n+k)); s :=
s + u end;
C: end

ALGORITHM 229
ELEMENTARY
FRACTIONS
James C. MoreLock (Reced. 1 Oct. 63 and in final form
24 Jan. 64)

Computation Lab., Marshall Space Flight Ctr, NASA,
Huntsville, Ala.

procedure CONFRAC (x, n, parm, answer);
integer parm, n; real x, answer;

comment This procedure utilizes a continued fraction which is
equivalent to the diagonal of the Padé table for exp z, with
error in the computed convergent less than 22%/(2 X 62 X (10)2
X o+ X (4n — 2)2(4n + 2)). This fraction was developed by
J. C. Morelock, Note on Padé Table Approximation, Internal
Note MIN-COMP-62-9, Marshall Space Flight Center, Hunts-
ville, Alabama, 1962. For source reference see Nathaniel Macon,
On the computation of exponential and hyperbolic functions
using continued fractions, J. ACM, 2(1955), 262-266. The argu-
ment, z, is assumed to be less than #/4. For such z any desired
level of accuracy is quickly computed for each function specified
as follows:

FUNCTIONS BY CONTINUED

parm 1= 1, answer := sin & zarm 1= 5, answer := sinh z
parm := 2, answer :=: ¢os & parm 1= 6, answer := cosh z
parm 1= 3, answer :=: tan x parm =7, answer := tanh z
parm 1= 4, answer := exp T

The body of this procedure has been tested using extended
ALrcgoL for the B-5000 Computer. It gave the following results:

=050 n=1 parm =1 answer = 0.47938 801530
=050 n=2 parm =1 answer = 0.47942 547125
z =050 n=3 parm =1 answer = 0.47942 553854
z=050 n=4 parm =1 answer = 0.47942 553860
=050 n=1 parm =2 answer = 0.87760 305992
=050 n=2 parm =2 answer = 0.87758 259869
x =050 n =3 parm =2 answer = 0.87758 256193
=050 n =4 parm =2 answer = 0.87758 256189
=050 n=1 parm =3 answer = 0.54624 697337
=050 n =2 parm =3 answer = 0.54630 239019
z =050 n=3 parm =3 answer = 0.54630 248974
z =050 n =4 perm =3 answer = 0.54630 248985
=050 n=1 parm =4 answer = 1.64864 864865
=050 n =2 parm =4 answer = 1.64872 139973
=050 n =3 parm =4 answer = 1.64872 127057
=050 n=4 parm =4 answer = 1.64872 127070
=050 n=1 parm =5 answer = 0.52104 563580
x =050 n=2 parm =5 answer = 0.52109 539374
=050 n =3 parm =5 answer = 0.52109 530541
=050 n=4 parm =05 answer = 0.52109 530549
=050 n=1 parm =6 answer = 1.12760 301285
=030 n =2 parm =6 answer = 1.12762 600598
=050 n=3 parm =6 answer = 1.12762 596516
=050 n =4 parm =6 answer = 1.12762 596521
=050 n=1 parm =7 answer = 0.46208 251473
=050 n =2 parm =7 answer = 046211 721881
=050 n =3 parm =7 answer = 0.46211 715720
=050 n=4 garm =17 answer = 0.46211 715726
296 Communications of the ACM

The value of n selects the continued fraction convergent;
hegin integer 7, ndigt;
real 7, f;
ri=if parm < 3then —z | 2elsez T 2;
fi=4Xn+ 2
fori:=nstep —luntil ldof:=4 X1~ 24 7/f;
ndigt : = if parm £ 3 then parm + 1 else parm —3;
answer = if ndigt = 1 then (f4z)/(f—z)
else if ndigt = 2then 2 X z X f/((f 1 2) —)
else if ndigt = 3 then ((f12)+7r)/((f12)—7)
else if ndigt = 4 then 2 X z X f/((f12)+r)
else z;
end

REMARKS ON ALGORITHM 91
CHEBYSHEV CURVE TIT [A. Newhouse,
ACM 5 (May 1962), 281; 6 (April 1963), 167]
Perer Nauvr (Reed. 27 Sept. 1963)
Regnecentralen, Copenhagen, Denmark

Comm.

In addition to the corrections noted by R. P. Hale [op. cit.,
April 1963] the following are necessary:

1. The arrays X, Y, and A cannot be declared to be local within
the procedure body.

2. The identifier A must be included as a formal parameter.

3. It should be noted that the X[7] must form a monotonic
sequence.

4. comment cannot follow the colon following a label. This
occurs in four places.

5. The end following go to FIT must be removed.

In addition, a large number of details can be made more concise
and unnecessary operations can be eliminated. Also, it seems
desirable to produce the maximum deviation as a result.

CERTIFICATION OF ALGORITHM 146
MULTIPLE INTEGRATION [W. M. McKeeman,
Comm. ACM 5 (Dec. 1962), 604]
Nr1xLaus WirtH (Reced. 6 Jan. 1964)
Computer Science Div., Stanford U., Stanford, Calif.
Algorithm 146 was translated into a generalized Arcow [ef. N.
Wirth, A generalization of ALGOL, Comm. ACM 6 (Sept. 1963),
547-554] and suecessfully run on the Stanford IBM 7090 computer.
Algorithm 60, Romberg Integration [Comm. ACM 4 (June 1961),
255; § (Mar. 1962), 168; § (May 1962), 281] was used for the real
procedure Integral.
The main disadvantage of Algorithm 146 is that the bounds of
the domain of integration must be constant, i.e. the domain
must always have the form of a rectangular hyperbox.

REMARK ON ALGORITHM 175

SHUTTLE SORT [C. J. Shaw and T. N. Trimble, Comm.
ACM 6 (June 1963), 312; G. R. Schubert, Comm.
ACM 6 (Oct. 1963), 619; O. C. Juelich, Comm. ACM
6 (Dec. 1963), 739]

Otrro C. JurLica (Recd. 18 Dec. 1963)

North American Aviation, 4300 E. T'ifth Ave., Columbus,
Ohio

The appearance of Schubert’s certification has caused me to
restudy the algorithm. What I supposed were errors amount to a
rearrangement of the order in which the comparisons are carried
out. The efficiency of the algorithm is not much affected by the
rearrangement, since the number of executions of the statements
labeled Exchange remains the same.

Volume 7 / Number 5 / May, 1964

CERTIFICATION OF ALGORITHM 215

SHANKS [H. C. Thacher, Jr., Comm. ACM 6 (Nov.
1963), 662]

LarrY ScHUMAKER (Recd. 16 Dec. 63)

Computation Ctr., Stanford U., Stanford, Calif.

Algorithm 215 was coded in Extended ArgoL for the Burroughs
B-5000 and was tested on a large number of sequences. One ap-
parent typographical error was noted. The statement lim =
j — nmin should have read limk : = j — nmin. The following tables
were reproduced exactly: (a) tables on p. 5 and p. 33 of [1]; (b)
Table T on p. 95 of [2]; (¢) Tables III and IV on p. 28 of [3].

REFERENCES:

1. Swanks, D. Non-linear transformations of divergent and
slowly convergent sequences. J. Math. Phys. 84 (1955), 1-42.

2. WyNN, P. On a device for computing the €,(S,) transforma-
tion. MTAC 10 (1956), 91-96.

3. WynN, P. On repeated application of the e-algorithm. Chiffres
4 (1961), 19-22.

Revised Algorithms Policy « May, 1964

A contribution to the Algorithms department must be in the form of
an algorithm, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in capital and lower-case
letters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Material
to appear in bold-face type should be underlined in black. Blue underlin-
ing may be used to indicate italic type, but this is usually best left to the
Editor.

An algorithm must be written in the ArLcoL 60 Reference Language
[Comm. ACM 6 (Jan. 1963), 1-17], and normally consists of a commented
procedure declaration. Each algorithm must be accompanied by a complete
driver program in ALcoL 60 which generates test data, calls the procedure,
and outputs test answers. Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm.
The driver program may be published with the algorithm if it would be of
major assistance to a user.

Input and output should be achieved by procedure statements, using
one of the following five procedures (whose body is not specified in ALcoL):

procedure inreal (channel, destination); value channel; integer channel;
real destinution; comment the number read from channel channel is
assigned to the variable destination; . . . ;

procedure outreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression source is output to channel
channel; ... ;

procedure ininieger {channel, destination);
value channel; integer channel, destination; .. . ;

procedure outinteger (channel, source);
value channel, source; integer channel, source; . .. ;

procedure outsiring (channel, siring); value channel; integer channel;
string string; . . . ;

If only one channel is used by the programn, it should be designated by 1.
Examples:

outstring (1, ‘¢ ="); outreal (1, 2);
for 7 := 1 step 1 until n do outresl (1, Alil);
ininteger (1, digit (17]);

It is intended that each published algorithin be a well-organized, clearly
comimented, syntactically correct, and a substantial contribution to the
AvLcoL literature. All contributions will be refereed both by human beings
and by an ALGoL compiler. Authors should give great attention to the cor-
rectness of their prograims, since referees cannot be expected to debug them.
Because ALGOL compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithins are written in a recognized sub-
set of ALcoL 60, e.g., the IFIP subset [Comm. ACM 7 (May 1964), 273-283).

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and careful
proofreading is of paramount importance.

Although each algorithm has been tested by its author, no liability is
assumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith,

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduetion is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
calions issue bearing the algorithm. G. E. T,

Volume 7 / Number 5 / May, 1964

vk
GEORGE E. FORSYTHE, Editor

More on Merging

Dear Editor:

With regard to the “Three Letters on Merging,” it may be
of interest to your readers to know that analytic derivations of
the results supplied by Donald Knuth exist.

The reduction factor for a cascade merge with n+1 tapes is
the principal root of

i: ([(n + m)/z]> (=1) 2 gn=m — (),

m=0 m

An approximation for is z =~ 1 +[2(n —1) /x].

In the case of a polyphase merge, if y is the principal root of
y" > ym = 0, then the reduction factor is ! ("FHv=2ni/ D).
An approximation for y is

- 1+ 4(n — D2 — 1)
YT e

Numerically, these results agree quite well with Mr. Knuth’s
results. The proofs of these results are being prepared as an
article.

Davip E. Frreuson
Programmatics, Inc.
Los Angeles, California

On Semantics

Dear Editor:

I read with interest the February 1964 issue of the Com-
municattons and 1 have some comments. I am very interested
in the area of formal definition of languages. So 1 found the
General Discussion disappointing, with the semantic question
as the main topic. The participants in this discussion did not
seem to realize that semantics in formal languages have a dual
aspect. This may explain the misunderstandings.

Two different kinds of semantics are involved in the syntax
method: semantic definition and semaniic tnterpretation.

Semantic definitton means the possibility of additional semantic
definition beyond the syntactic definition. For example, a label
in a control statement has to appear again unchanged as a
statement number, or subscripted variables have to be declared
by their right name in array declarations, ete.

Semantic interpretation refers to the interpretation of the
syntactic units, which is done in a compiler system by the sub-
stitution of the appropriate machine (or assembler) instructions
for the syntactic units.

I hope that this helps to clarify the problem of the semantic
question.

Wavrrer H. BURKHARDT
10 Redondo Drive
Poughkeepsie, New York

Letters are continued on page 314

Communications of the ACM 297

