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P O I S S O N - C H A R L I E R  P O L Y N O M I A L S  [$23] 
J. M.  S. SIM5ES PEREIRA (Recd. 6 Jan .  1964) 
Gulbenkian  Scientific Compu t ing  Center,  Lisboa, Por tuga l  

real  p r o c e d u r e  PCpo lynomia l  (x, n ,  a) ;  
i n t e g e r  n;  r e a l  x, a; 

c o m m e n t  PCpo lynomia l  computes  values of the  Poisson-  
Char l ie r  polynomial  p~(x) defined by  L. Carl i tz ,  Charac te r iza-  
t ion  of cer ta in  sequences of or thogonal  polynomials ,  Portugal iae 
Mathematica 20 (1961), 43-46: 

() (:) p~(x) a~12(n~)_ll~ ~ ( _ 1 ) . ~  n = . r !  a ~ 
r=0 r • 

In  th is  a lgor i thm u s tands  for the  successive te rms of the  summa-  
t ion,  s s tands  for the  sum of these te rms and  all o ther  symbols  
possess evident  meanings.  Clearly each t e rm  of the  summat ion  
is ob ta ined  from the  preceding one by  the  ind ica ted  mul t ip l i -  
ca t ion;  

b e g i n  
i n t e g e r  j; real u, s, c; 
u := (--1) Tn;  
S : =  U; 

c : = l ;  
f o r ]  := 1 s t e p  1 u n t i l n d o c  := c X j ;  
fo r  j := 0 s t e p  1 u n t i l  n -- 1 do  

b e g i n  u := --  u X (n -- j)  X (x -- j ) / ( a  X (] -~- 1)); s := 
s + u e n d ;  

PCpo lynomia l  := sqrt(a T n / c )  X s 
e n d  PCpolynomia l  
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R A N D O M  P E R M U T A T I O N  [G6] 

RICHARD DURSTENFELD ( R e c d .  2 J a n .  64)  

G e n e r a l  A t o m i c ,  S a n  D i e g o  12, Ca l i f .  

p r o c e d u r e  S H U F F L E  (a, n ,  random) ; 
va lue  n; i n t e g e r  n; real  p r o c e d u r e  r a n d o m ;  i n t eger  

array a; 
b e g i n  

c o m m e n t  S H U F F L E  applies a r andom p e r m u t a t i o n  to the  
sequence a[i] where i = 1, 2, . . .  , n. The  procedure  random is 
supposed to supply  a r andom element  f rom a large popula t ion  
of real  numbers  uni formly  d i s t r ibu ted  over  the  open un i t  
in te rva l  0 < r < 1. The  a r ray  a is declared to be in teger  bu t  
ac tua l ly  i t  suffices for i ts  type  to agree wi th  t h a t  of the  var i -  
able b (in the  procedure  body) ;  

integer i ,  j ;  r e a l  b ;  

fo r  i : =  n s t e p  -- 1 u n t i l  2 do  
b e g i n  3" :=  entier (i X random -~ 1); 

b : =  a[i]; a[i] : =  a~']; a[]] : =  b 
e n d  loop i 

e n d  S H U F F L E  

Note. Numbers in brackets following Algorithm titles indicate the subject 
category for the algorithm, based on the Modified SHARE Classification listing 
given in the 1Viarch, 1964 issue of the Communications of the ACM. 

R E M A R K  O N  A L G O R I T H M  60 [D1] 
R O M B E R G  I N T E G R A T I O N  [F. L. Bauer ,  Comm. 

ACM 4 (June 1961) 255; 5 (Mar.  1962), 168; 5 ( M a y  
1962), 281] 

HENRY C. THACHER, JR.* (Recd. 20 Feb.  1964 and 23 Mar .  
1964) 

Argonne  Nat iona l  Labora to ry ,  Argonne,  Ill. 
* Work suppor ted  by  the  U. S. Atomic Energy  Commission.  

The  Romberg  in teg ra t ion  a lgor i thm has  been used wi th  grea t  
success by  m a n y  groups [1, 2], and  appears  to  be among the  mos t  
general ly  rel iable quad ra tu re  methods  avai lable .  I t  is, therefore ,  
wor th  poin t ing  out  t h a t  i t  is no t  en t i re ly  foolproof, and  t h a t  a sig- 
nif icant  class of in tegrands  exists for which the  ex t rapo la ted  values  
are poorer  es t imates  of the  integral  t h a n  the  corresponding 
t rapezoidal  sums. 

The  va l id i ty  of the  Romberg  procedure depends upon  the  possi- 
b i l i ty  of expanding the  error  of the  t rapezoidal  rule in powers of 
h 2, where h is the  stepsize. One expansion of this  type  is the  Euler-  
Mac laur in  sum formula.  An a l t e rna t ive  expression may  be ob- 
t a ined  from the  Four ier  series expansion.  The  coefficients of h 2" in 
the  Eule r  Maclaur in  formula  are propor t iona l  to the  difference of 
the  values of the  ( 2 r + l ) - t h  der iva t ive  a t  the  two ends of the  range. 
Thus ,  any  in tegral  for which the  odd der iva t ives  of the  in t eg rand  
e i ther  van i sh  or are equal  at  the  l imits  will no t  be improved  by 
Romberg  ext rapola t ion.  Among the  common examples of such 
integrals  are integrals  of periodic funct ions  over a per iod and  
integrals  for which the  der iva t ives  van i sh  at  bo th  l imits.  An exam- 
ple of the  las t  type  is the  in tegra l  approx imat ion  to the  modified 
Hanke l  func t ion  [3], e~Kv(x) = f ~  e ~(1-¢°~h t)cosh (pt)dt,  where L is 
t aken  so large t h a t  the  con t r ibu t ion  of the  in tegra l  f rom L to co 
may  be neglected.  Several  o ther  examples are given under  t he  
head ing  "Except iona l  cases" by  Bauer,  Ru t i shause r  and  Stie- 
fele [7]. This  paper  is among the  most  extens ive  discussions of 
the  Romberg  me thod  in English.  

The  a lgor i thm also fails when the  expansion of the  error  t e rm  
conta ins  o ther  powers of h along wi th  the  even ones. R u t i s h a u s e r  
[4] discusses es t imat ing  in tegrals  of the  form f ~ f ( x ) d x  = 
f~ (~  (x ) /~ /x )  dx. If  such integrals  are es t imated  by  the  t rapezoidal  
rule,  assigning the  value  0 to f(0) ,  the  error  may  be expressed in 
the  form ~ c k h  ~ 't- x/h ~ &,h k. Al though  the  s t anda rd  Romberg  
ext rapola t ion  fails when applied to this  sequence of es t imates ,  
Ru t i shause r  presents  a modified procedure which is effective. 

The  ex t rapola t ion  is also inval id  when the  in t eg rand  is discon- 
t inuous,  a l though th is  except ion is t r iv ia l  from the  computa t iona l  
s t andpoin t .  

I t  has also been poin ted  out  [5, 6] t h a t  the  Romberg  procedure  
may  amplify round-off errors. The  losses, while significant ,  do no t  
appear  p roh ib i t ive  for mos t  applicat ions.  
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CERTIFICATION OF ALGORITHM 128 [C6] 
SUMMATION OF FOURIER SERIES [M. Wells, Comm. 

A C M  5 (Oct. 1962), 513] 
HENRY C. TrIACRER, JR.* (Recd. 18 Mar. 1964) 
Argonne National Lab., Argonne, Ill. 

* Work supported by the U.S. Atomic Energy Commission 

The body of Fourier was t ranscribed for the Dar tmouth  SCALP 
transla tor  for the LGP-30 computer.  After  uniformizing the spell- 
ing of zeros (lines 5 and 9 in the procedure body),  the program 
compiled and ran without  difficulty. 

In the procedure s t a tement  for Fourier, the actual parameter  
corresponding to X should be an expression depending on the 
actual parameter  corresponding to r. 

The SCALP program was tes ted for the finite series: 

n-1 sin ((n -- 1)w/2) 
A = ~ cos rw = cos (nw/2) + 1 

r=0 sin (w/2) 

n-1 sin ((n -- 1)w/2) 
B = ~ sin rw = sin (nw/2) 

r~o sin (w/2) 

for w = 0.1, 0.2, 0.5 and 1.0, and for n = 1(1)51. Although the algo- 
r i thm appears to be numerically correct, the results showed evi- 
dence of serious nmnerical  instabil i ty,  part icularly for small 
values of w. For  w = 0.1, and n = 51, the error in A was .00109, 
and in B, -.00231. Since the largest A for n < 51 is 10.5, and the 
largest B about 20, the best  result  obtainable with the 7+  signifi- 
cant digit ar i thmetic of the SCALP system is about  .00001. For  
comparison, a program summing the same series using a forward 
recurrence based on the addit ion formulas for the sine and cosine 
gave errors of .00012 and --.00018. I t  was, however,  only about  
half as fast. 

REMARK ON ALGORITHM 135 [F4] 
CROUT WITH EQUILIBRATION AND ITERATION 

[W. M. McKeeman, Comm. A C M  5 (Nov. 1962), 555- 
557, 559] 

WILLIAM MARSHALL McKEEMAN (Recd. 1 Apr. 1964) 
Computation Center, Stanford University, Stanford, 

Calif. 

The following corrections to the published algorithm are recom- 
mended : 

1. Two lines above the bo t tom line of procedure S O L V E  one 
must  change 

y[k] := t to y[k] : =  t/A[k,k] 

2. In procedure E Q U I L I B R A T E ,  all occurrences of the sub- 
script  k must  be changed to ]. 

3. The s ta tement  cnr : = 1.0 should be added at  the s tar t  of the 
body of procedure L I N E A R S Y S T E M ,  so tha t  cnr will have a value 
the first t ime it is used. 

4. Line 19 from the end of L I N E A R S  Y S T E M  should be changed 
from 

i f  norm@ = 0 t h e n  b e g i n  cnr : =  1.0; go to  enditer end;  

to read 

i f  normdy = 0 t h e n  go t o  enditer; 

This correction makes sure tha t  cnr retains a reasonable value in 
case norm@ should be 0 for some colunm. 

5. The symbol "-"  must  be removed from the parameter  de- 
limiters in the declarations of procedures L I N E A R S Y S T E M ,  
R E S I D U A L S  and SOLVE.  

6. Four lines above the bot tom line of procedure L I N E A R -  
S Y S T E M ,  delete the first occurrence of X[i,k] : =  

7. In the third  line of the heading of procedure IP2 ,  the parame- 
ter  delimiter 

) extra therm : ( 
should be changed to 

) extra term:(  

CERTIFICATION OF ALGORITHM 170 [F3] 
REDUCTION OF A MATRIX CONTAINING POLY- 

NOMIAL ELEMENTS [P. E. Hennion, Comm. A C M  
6 (April 1963), 165; 6 (Aug. 1963), 450] 

KAREN B. PRIEBE (Recd. 18 Dec. 1963 and 18 Feb. 1964) 
Woodward Governor Co., Rockford, Ill. 

Algorithm 170 was t ransla ted into FAST for the NCR 315 and 
gave sat isfactory results with the following corrections: 

1. r ea l  p r o c e d u r e  . . .  i n t e g e r  NCOL, N;  should be replaced 
by 

p r o c e d u r e  P O L Y M A T R I X  (A, NCOL, N ,  COE, NP1) ;  
va lue  NCOL, N;  rea l  a r r a y  A,  COE; 
i n t e g e r  NCOL, N,  NP1;  

2. At the end of the first comment  add: 
The global integer procedure M A X  is assumed and furnishes the 
maximum of two integers. 

3. i n t e g e r  i, ], k, . . .  COE[I:M]; 
should be replaced by 

i n t e g e r  i ,  ], k, ]1, j2, j3, j4, j5, ]6, ]7, ]8, j9, ]10, i l l ,  M; 
a r r a y  C1, C 2 [ i : N X N C O L + i ] ;  

4. Immedia te ly  af ter  start: the s t a t emen t  

N P 1  := N -4- 1; 

should be added, and the th i rd  line af ter  start: i.e., 

for  k : =  1 s t e p  1 u n t i l  M do  b e g i n  

should be replaced by 

for  k : =  1 s t e p  1 u n t i l  N P 1  do  b e g i n  

5. The th i rd  line af ter  L10: i.e., 

for  k : =  1 s t e p  1 u n t i l  M do . . .  

should be replaced by 

for  k : =  1 s t e p  1 u n t i l  j7 do . . .  

The last  two changes simply shor ten both  of the indicated f o r  
s ta tements .  

[EDITOR'S NOTE. In addit ion to the above corrections, we have 
two comments on the Remark on Algori thm 170 by Hennion,  
loc. cit., p. 450: 

Firs t ,  the semicolon at  the end of the first line after L0 MUST 
be removed. 

Second, correction (4) is irrelevant.  
The referee confirms tha t  a t ranscr ipt ion into Burroughs Ex- 

tended ALGOL of the program as corrected by Mrs. Priebe runs on 
the  B5000.--G.E.F. ] 
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