ALGORITHM 23

POISSON-CHARLIER POLYNOMIALS [823]

J. M. 8. S1m8Es Pereira (Recd. 6 Jan. 1964)
Gulbenkian Scientific Computing Center, Lisboa, Portugal

real procedure PCpolynomial (z, n, a);
integer n; real z, a;

comment PCpolynomial computes values of the Poisson-
Charlier polynomial p.(z) defined by L. Carlitz, Characteriza-
tion of certain sequences of orthogonal polynomials, Portugaliae
Mathematica 20 (1961), 43-46:

In this algorithm u stands for the successive terms of the summa-
tion, s stands for the sum of these terms and all other symbols
possess evident meanings. Clearly each term of the summation
is obtained from the preceding one by the indicated multipli-
cation;

begin
integer j; real u, s, c;
u = (—1)Tn;
§ 1= u;
c:=1;

for j := 1 stepluntilndoc := ¢ X j;
for j := 0 step 1 until n — 1 do
beginu := —uX (n — ) X x—H/@X GF+1); s:=
s + u end;
PCpolynomial := sqrt{aTn/c) X s
end PCpolynomial
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RANDOM PERMUTATION [G6]
Ricrarp DUrsTENFELD (Recd. 2 Jan. 64)
General Atomic, San Diego 12, Calif.

procedure SHUFFLE (a, n, random);
value n; integer n; real procedure random; integer
array a;
begin
comment SHUFFLE applies a random permutation to the
sequence a[¢] where 7 = 1,2, ... , n. The procedure random is
supposed to supply a random element from a large population
of real numbers uniformly distributed over the open unit
interval 0 < r < 1. The array a is declared to be integer but
actually it suffices for its type to agree with that of the vari-
able b (in the procedure body);
integer 7, j; real b;
for i := n step — 1 until 2 do
begin j : = entier (¢ X random + 1);
b:=ali]; ali] := aljl; alil:=b
end loop 1
end SHUFFLE
Note. Numbers in brackets following Algorithm titles indicate the subject

category for the algorithm, based on the Modified SHARE Classification listing
given in the March, 1964 issue of the Communications of the ACM.
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REMARK ON ALGORITHM 60 [D1]}

ROMBERG INTEGRATION [F. L. Bauer, Comm.
ACM 4 (June 1961) 255; 5 (Mar. 1962), 168; 5 (May
1962), 281]

Hexry C. TuACHER, Jr.* (Recd. 20 Feb. 1964 and 23 Mar.
1964)

Argonne National Laboratory, Argonne, Ill.

* Work supported by the U. 8. Atomic Energy Commission.

The Romberg integration algorithm has been used with great
success by many groups [1, 2], and appears to be among the most,
generally reliable quadrature methods available. It is, therefore,
worth pointing out that it is not entirely foolproof, and that a sig-
nificant class of integrands exists for which the extrapolated values
are poorer estimates of the integral than the corresponding
trapezoidal sums.

The validity of the Romberg procedure depends upon the possi-
bility of expanding the error of the trapezoidal rule in powers of
h?, where h is the stepsize. One expansion of this type is the Euler-
Maclaurin sum formula. An alternative expression may be ob-
tained from the Fourier series expansion. The coefficients of k* in
the Euler Maclaurin formula are proportional to the difference of
the values of the (2r+1)-th derivative at the two ends of the range.
Thus, any integral for which the odd derivatives of the integrand
either vanish or are equal at the limits will not be improved by
Romberg extrapolation. Among the common examples of such
integrals are integrals of periodic functions over a period and
integrals for which the derivatives vanish at both limits. An exam-
ple of the last type is the integral approximation to the modified
Hankel function [3], &K, (z) = [§ e*t—cosh Dcosh (pt)dt, where L is
taken so large that the contribution of the integral from L to «
may be neglected. Several other examples are given under the
heading “Exceptional cases” by Bauer, Rutishauser and Stie-
fele [7]. This paper is among the most extensive discussions of
the Romberg method in English.

The algorithm also fails when the expansion of the error term
contains other powers of k along with the even ones. Rutishauser
[4] discusses estimating integrals of the form f% flx) de =
f%(go (z)/+/z) dz. If such integrals are estimated by the trapezoidal
rule, assigning the value 0 to £(0), the error may be expressed in
the form Y eh®* + +/h 2 dib*. Although the standard Romberg
extrapolation fails when applied to this sequence of estimates,
Rutishauser presents a modified procedure which is effective.

The extrapolation is also invalid when the integrand is discon-
tinuous, although this exception is trivial from the computational
standpoint.

It has also been pointed out [5, 6] that the Romberg procedure
may amplify round-off errors. The losses, while significant, do not
appear prohibitive for most applications.
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CERTIFICATION OF ALGORITHM 128 [C6]
SUMMATION OF FOURIER SERIES [M. Wells, Comm.
ACM 5 (Oct. 1962), 513]
Henry C. THACHER, Jr.* (Reed. 18 Mar. 1964)
Argonne National Lab., Argonne, Ill.
* Work supported by the U.S. Atomic Energy Commission

The body of Fourier was transcribed for the Dartmouth ScaLp
translator for the LGP-30 computer. After uniformizing the spell-
ing of zeros (lines 5 and 9 in the procedure body), the program
compiled and ran without difficulty.

In the procedure statement for Fourier, the actual parameter
corresponding to X should be an expression depending on the
actual parameter corresponding to 7.

The ScaLP program was tested for the finite series:

sin ((n — Dw/2)
sin (w/2)

sin (n — Dw/2) .
WSIH (nw/2)

forw = 0.1,0.2,0.5 and 1.0, and for n = 1(1)51. Although the algo-
rithm appears to be numerically correct, the results showed evi-
dence of serious numerical instability, particularly for small
values of w. For w = 0.1, and n = 51, the error in 4 was .00109,
and in B, —.00231. Since the largest A for n < 51 is 10.5, and the
largest B about 20, the best result obtainable with the 7+ signifi-
cant digit arithmetic of the ScaLp system is about .00001. For
comparison, a program summing the same series using a forward
recurrence based on the addition formulas for the sine and cosine
gave errors of .00012 and —.00018. It was, however, only about
half as fast.

n—1
A= Y cosrw= cos (nw/2) + 1
r=0

-1
B = ) sinrw=
=0

REMARK ON ALGORITHM 135 [F4]

CROUT WITH EQUILIBRATION AND ITERATION
[W. M. McKeeman, Comm. ACM & (Nov. 1962), 555~
557, 559] :

Winiam MarsHALL McKEEMAN (Reed. 1 Apr. 1964)

Computation Center, Stanford University, Stanford,
Calif.

The following corrections to the published algorithm are recom-
mended:

1. Two lines above the bottom line of procedure SOLVE one
must change

ylk] 1=t to ylk] 1= t/Alkk]

2. In procedure EQUILIBRATE, all occurrences of the sub-
seript k must be changed to j.

3. The statement cnr : = 1.0 should be added at the start of the
body of procedure LINEARSYSTEM , so that cnr will have a value
the first time it is used.

4. Line 19 from the end of LINEARSYSTEM should be changed
from

if normdy = 0O then begin cnr := 1.0; go to enditer end;
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to read
if normdy = 0 then go to enditer;

This correction makes sure that cnr retains a reasonable value in
case normdy should be 0 for some column.

5. The symbol “-?’ must be removed from the parameter de-
limiters in the declarations of procedures LINEARSYSTEM,
RESIDUALS and SOLVE.

6. Four lines above the bottom line of procedure LINEAR-
SYSTEM, delete the first occurrence of X{i k] :=

7. In the third line of the heading of procedure I P2, the parame-
ter delimiter

} extra therm:(
should be changed to
) extra term:(

CERTIFICATION OF ALGORITHM 170 [F3]

REDUCTION OF A MATRIX CONTAINING POLY-
NOMIAL ELEMENTS [P. E. Hennion, Comm. ACM
6 (April 1963), 165; 6 (Aug. 1963), 450]

Karen B. Priese (Recd. 18 Dec. 1963 and 18 Feb. 1964)

Woodward Governor Co., Rockford, TIl.

Algorithm 170 was translated into Fast for the NCR 315 and
gave satisfactory results with the following corrections:
1. real procedure ... integer NCOL, N; should be replaced
by
procedure POLYMATRIX (A, NCOL, N, COE, NP1);
value NCOL, N; real array A, COE;
integer NCOL, N, NP1,
2. At the end of the first comment add:
The global integer procedure M AX is assumed and furnishes the
maximum of two integers.
3. integert,j, k, ... COE[1:M];
should be replaced by
integer 1, 7, k, 71, 72, 73, 4, i5, 6, §7, 38, 79, 710, 11, M;
array C1, C2[1:NXNCOL+1];
4. Immediately after start: the statement

NPl := N + 1;
should be added, and the third line after stari: i.e.,
for k := 1 step 1 until M do begin
should be replaced by
for k : = 1 step 1 until NP1 do begin
5. The third line after L10: i.e.,
fork :=1step 1l until M do ...

should be replaced by
for k := 1 step 1 until j7 do ...

The last two changes simply shorten both of the indicated ror
statements.

[EpiTtor’s NoTE. In addition to the above corrections, we have
two comments on the Remark on Algorithm 170 by Hennion,
loc. ctt., p. 450:

First, the semicolon at the end of the first line after LO musT
be removed.

Second, correction (4) is irrelevant.

The referee confirms that a transeription into Burroughs Ex-
tended ALgoL of the program as corrected by Mrs. Priebe runs on
the B5000.—G.E.F.]
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