ALGORITHM 236

BESSEL FUNCTIONS OF THE FIRST KIND [S17]
WarTeER GauTrscuI (Recd. 10 Aug. 1963 and 10 Apr. 1964)
Oak Ridge National Laboratory, Oak Ridge, Tenn.*

* Now at Purdue University, Lafayette, Ind}

real procedure {(y); value y; real y;

comment This is an auxiliary procedure which evaluates the
inverse function { = i(y) of y = tIn¢ ({=1) to an accuracy of
about 19,. For the interval 0 £ y < 10 a fifth degree approxi-
mating polynomial was obtained by truncating a series expan-
sion in Chebyshev polynomials. For ¥ > 10 the approximation
ty) = (y/Inly/e)) A+ (Ine—Inlnly/a))/(1+1In(y/a)))? where
In o = .775% is used;

begin real p, z;
if y £ 10 then
begin
p = .000057941 X y — .00176148; p :=
p =y X p — .129013;
t =y X p-+1.0125

y X p -+ .0208645;
p =y X p+ 85777,

end
else
begin
=1In (y) — .775; p := (T75=In (2))/(1+2);
=1/Q+p); t:=y X p/z
end
end ¢;

procedure Japlusn (z, a, nmaz, d, J); value z, a, nmazx, d;
integer nmaz, d; real z,a; arrayJ;

comment This procedure evaluates to d significant digits the
Bessel functions Js..(x) for fixed a, z and forn = 0,1, , NIMAZ.
The results are stored in the array J. It is assumed
that 0 < a < 1,z > 0, and nmag = 0. If any of these variables is
not in the range specified, control is transferred to a nonlocal
label called alarm. The procedure makes use of the real procedure
t. In addition, it calls for a nonlocal real procedure gamma which
evaluates I'(z) for 1 £ z £ 2. (See [2].) The method of computa-
tion is a variant of the backward recurrence algorithm of J. C.
P. Miller. (See [1].) The purported accuracy is obtained by a
judicious selection of the initial value » of the recursion index,
together with at least one repetition of the recursion with » re-
placed by » + 5. Near a zero of one of the Bessel functions
generated, the accuracy of that particular Bessel function may
deteriorate to less than d significant digits. The algorithm is
most efficient when z is small or moderately large;

begin integer n, nu, m, limit; real epsilon, sum, dl, r, s, L,
lambda; array Japproz, Br[0:nmaz];
ifa<0Vazl1lVz=20V nner <0then go toalarm;
epsilon 1= .5 X 107 (—d);
for n := 0 step 1 until nmaz do Japproz(n] := 0;

1 In an earlier version of this procedure the author used « = 1.
The value In o = .775 was found empirically by H. C. Thacher, Jr.
to yield somewhat better approximations.

Volume 7 / Number 8 / August, 1964

e Ricdeg u b 2
G. E. FORSYTHE, Editor

sum = (z/2)]a/gamma (1+a);

dl := 2.3026 X d + 1.3863;

if nmaz > 0 then r := nmaz X t(.5Xdl/nmaz) else r := 0;
= 1.3591 X z X 1(.73576Xd1/x);

nu := 1 + entier (if r<s then s else r);
L0: m:=0; L:=1; lLmit := entier (nu/2);
Ll: m:=m -+ 1;

L:=LX (m—l—a)/(m-i—l),

if m < limit then go to L1;
=2Xm; r:=3s:=0;
L2: r = 1/@2X (a+n)/z—r);
comment Conceivably, but very unlikely, division by an
exact zero, or overflow, may take place here. The user may
wish to test the divisor for zero, and, if necessary, enlarge it
slightly to avoid overflow, before this statement is carried out.
As such a test depends on the particular machine used, it was
not included here;
if entier (n/2) ¢ n/2 then lambda :=
begin
L:=L X (n+2)/(n+2Xa);
lambda := L X (n+a)
end;
s := r X (lambda+s); if n £ nmaz then Rr[n—1] := r;
n:=n—1; ifn = 1 then go to L2;
J0] := sum/(14s);
for n := 0 step 1 until nmaz — 1 do J[n+1] :=
for n := 0 step 1 until nmaz do

0 else

Rrn] X J[nl;

if abs((Jn] — Japproz[n])/J[n]) > epsilon then
begin
for m := 0 step 1 until nmax do Japprozim] := Jm];

nu := nu + 5; go to L0
end
end Japlusn;

procedure Iaplusn(z, a, nmaz, d, I); value z, a, nmaz, d;
integer nmaz, d; real z, a; array I;

comment This procedure evaluates to d significant digits the
modified Bessel functions I,,.(z) for fixed ¢, z, with0 £ a < 1,
z>0,andforn = 0,1, -+ , nmaz. The results are stored in the
array I. For the setup of the procedure, and the method of com-
putation used, see the comment in Japlusn;

begin integer n, nu, m; real epsilon, sum, d1, r, s, L, lambda;
array Iapproz, Rr[0:nmaz];
ife<0Va=1Vz=0V nmar <0 then go to alarm;
epsilon := .5 X 107 (—d);
for n := 0 step 1 until nmazr do Iapproz[n] := 0;
sum := exp(x) X (@/2) Ta/gamma(l+ta);
dl := 2.3026 X d + 1.3863;
if nmaz > 0 then 7 := nmax X t(.5Xd1/nmazx) else r := 0;

:= if z < dlthen 1.3591 X z X t(.73576X (d1—=z)/z) else
1.3591 X x;

ny 1= 1 + entier (if r<s then s else 7);

LO: =0; L:=

L1: :=n+1;

L:=LX (n+2><a)/(n+1),

if n < nu then go to L1;

r:=gs:= 0

I133

Communications of the ACM 479

L2: r:=1/2X (a+n)/z+r);
L:=L X (n+1)/(n+2Xa);
lambde := 2 X (n+4a) X L;
s :=r X (lombda—+s); if n = nmazr then Rrin—1] := r;
n:=n—1; ifn =1 then go to L2;
I[0] = sum/(1--s);
for n := 0 step 1 until nmaz — 1 do I[n+1] := Rr[n] X I[n];
for n := 0 step 1 until nmaz do
if abs((I[n]—Iapproz[n])/I[n]) > epsilon then

begin
for m := 0 step 1 until nmez do Iapproz[m] := Iim];
ny = nu + 5; go to LO

end

end Iaplusn;

procedure Jaminusn(z, a, nmaz, d, J); value z, a, nmaz, d;
integer nmaz, d; real z, a; array J;

comment This procedure evaluates to d significant digits the
Bessel functions Ja_(z) for fixed a, z, with 0 < a < Lz >0,
and forn = 0, 1, --- | nmaz. The results are stored in the array
J. The procedure makes use of the real procedure ¢, and the
procedure Japlusn. In addition, it calls for a nonlocal real pro-
cedure gamma which evaluates T'(z) for 1 < 2 < 2. (See [2].) The
accuracy may deteriorate to less than d significant digits if a is
close to 0 or 1;

begin integer n; array J1{0:1];
if a = 0 then go to alarm;
Japlusn(z, a, 1, d, J1);
J[0] := J1[0];
J1] := 2 X a X J[0)/z — Ji[1];
for n := 1 step 1 until nmaz — 1 do

Jn41l:= 2 X (a—n) X Jnl/z — Jn—1]

end Jaminusn;

procedure Iaminusn(z, a, nmaz, d, I); value z, a, nmaz, d;
integer nmazx, d; real z, a; array I;

comment This procedure evaluates to d significant digits the
modified Bessel functions I, »(z) for fixed a, , with 0 < a < 1,
2> 0,andforn = 0,1, --- , amaz. The results are stored in the
array I. The procedure makes use of the real procedure £, and
the procedure Iaplusn. In addition, it calls for a nonlocal real
procedure gamma which evaluates I'(z) for 1 £ z < 2. (See [2].)
The accuracy may deteriorate to less than d significant digits if
a is close to 0 or 1;

begin integer #n; array I11{0:1];
if a = 0 then go to alarm;
Iaplusn(z, a, 1, d, I1);

I10] := I1{0];
IM] := 2 X a X I[0]/z + I[1];
for n := 1 step 1 until nmaz — 1 do

In+1] := 2 X (a—n) X I[n)/z + In—1]

end laminusn;

procedure Complex Japlusn(x, y, a, nmaz, d, u, v); valuez,y, a,
nmax, d;
integer nmaz, d; real z, y, a; array u, v;

comment This procedure evaluates to d significant digits the
Bessel functions Juyn(2) = un 4 iva for fixed real a, fixed complex

z =gz 4 4y, and for n = 0, 1, --- , nmaz. The real parts wuo,
UL, *- -, Unmaz Of the results are stored in the array u, the imagi-
nary parts vo, ¥1, *-* , Unmazr in the array v. It is assumed that

0 £ a <1,nmaxr = 0, and that z is not on the negative real axis
z = 0,y = 0. Otherwise, control is transferred to the nonlocal
label alarm upon entry of the procedure. The procedure makes
use of the real procedure ¢. In addition, it calls for a nonloecal
real procedure gumma which evaluates T'(z) for 1 < z < 2. (See
{2].) The method of computation is a complex extension of the
method used in the procedure Japlusn. The algorithm is most
efficient when | z | is small or moderately large;

begin integer n, nu, m; real epsilon, y1, 102, r0, phi, ¢, cl, ¢2,

480 Communications of the ACM

swml, sum?2, dl, r, s, lambdal, lambda2, L, r1, 12, sl, s2; array

uapproz, vapproz, Rrl, Rr2[0:nmax];

ifa <0VazlV @=20Ay=0)V nmaz < 0 then go to alarm;

epsilon := .5 X 101 (—d);

for n := 0 step 1 until nmaz do uapproz(n] := vapprozn] := 0;

yl :=abs(y); 702 :=272+y12; 70 := sqri(r02);

phi :=ifz = 0 then 1.5707963268 elseifz > 0 then arctan(yl/x)
else 3.1415926536 + arctan(yl/x);

comment The two constants /2 and = in the preceding state-

ment are to be supplied with the full accuracy desired in the

final results;

¢ = exp(yl) X (r0/2)1a/gamma (1+a);

suml 1= ¢ X cos(@Xphi—z); sum2 := ¢ X sin(aXphi—=z);

dl := 2.3026 X d + 1.3863;

if nmaz > 0 then r := nmaz X t(.5Xdl/nwmaz) else r := 0;

s 1= if yl < dl then 1.3591 X 10 X ¢(.73576X (d1—y1)/10) else
1.3591 X 70;

nu := 1 -+ entier (if r=s then s else r);

LO: n:=0; L:=1; cl:=1; ¢2:=0;
Ll: n:=n+1;

L :=L X (n+2Xa)/(n+1);
¢c:= —cl; cl:=¢2; ¢2:=¢;
if n < nu then go to L1;

rl := 12 := sl := 2 ;= 0;

L2: ¢ := (2X(a+n)—aXrl+ylXr2) 12 4+ (@Xr2+ylXrl) 12;

rl = (2X (a+n)Xz—r02Xrl)/c;

2 1= (2X(a+n)Xyl+r02Xr2)/c;

L:=LX (n+1)/(n+2Xa); ¢:=2X (nta) X L;
lambdal := ¢ X ¢l; lambda2 := ¢ X ¢2;

c:=cl; ¢l := —c2; 2:=¢;

§ := 71 X (lambdal+-sil) — r2 X (lambda2-+s2);

§2 1= rl X (lambda2+s2) + 12 X (lambdal-+sl);

sl :=s;

if n £ nmaz then begin Rrln—1] := rl; Ri2[n—1] := 2 end;
n:i=n-—1;

if n = 1 then go to L2;

c:= (14s1) 72 + s272;

u[0] := (sumlX (14s1)+sum2Xs2)/c;

I

v[0] := (sum2X (14+s1)—sumlXs2)/c;
for n := 0 step 1 until nmaz — 1 do
begin

uln+1] := Rri[n] X uln] — Rr2[n] X v[n];
v[n+1] := Rrl[n] X v[n] + Er2[n] X uln]

end;
if y < 0 then for n := 0 step 1 until nmax do v[n] := — vn];
for n := 0 step 1 until nmaz do

if sqrt(((uln]—uapprozn)) T 2+ wn]—vapprozn]) 12)
/(un] T240[n] 12)) > epsilon

then

begin
for m := 0 step 1 until nmazr do

begin uapproz(m] := u[m]; vapproz[m] := v[m] end;

ny = nu + 5; go to L0

end

end Complex Japlusn

REFERENCES

1. Gaurscrr, W. Recursive computation of special functions.

U. Mich. Engineering Summer Conferences, Numerical
Analysis, 1963.

2. ——. Algorithm 221—Gamma function. Comm. ACM 7 (Mar.

1964), 143.

Volume 7 / Number 8 / August, 1964

ALGORITHM 237

GREATEST COMMON DIVISOR [A1]

J. E. L. Peck (Reed. 16 Dec. 1963)

University of Alberta, Calgary, Alberta, Canada

integer procedure Euclidean (¢) dimension : (n) linear coeffi-
cients : (z); value a; integer array a, x; integer n;
comment This procedure finds the greatest common divisor of
the n nonnegative elements of the vector a, and produces values
for z; in the expression (a1, @z, -+, an) = @y + @z + -+~
+ AnZn
begin integer array M{l:n, l:n);
integer 7, j, min, max, imin, imazx, q, i;
comment We set up M as an identity matrix;
INITIALISE:
for 7 := 1 step 1 until n do
for j := 1 step 1 until n do M|z, j] := 0;
for ¢ := 1 step 1 until » do M[z, 7] := 1; max := 0;
comment We search for the least nonzero integer in the array
a. Note that this step need not be repeated at every iteration
(see statement labelled DIVIDES);
MINIMUM :
for ¢ := 1 step 1 until n do
begin ¢t := a[{];
if t # 0 A (maz=0\/t<maz) then
begin maz := {; 1max := 7 end
end of minimum search. If the use of the identifier maz is
confusing, observe the two statements following the label
MAXIMUM, where the confusion is resolved;
if maz = 0 then go to ERROR; comment ERROR is a global
label;
MAXIMUM: imin := {maz; min := maxz;
comment We search for the greatest element of a;
mazx := a[l]; imaz = 1;
for ¢ := 2 step 1 until n do if a[{] > maz then

begin mazr := ali]; imez := ¢ end of maximum search;
if maz # min then
REDUCTION :

begin comment Note that the identity a; = Y i mia;
holds at each stage of the reduction;

q 1= max + min; aftmaz] := maz := max — q X min;

for j := 1 step 1 until » do
Mimaz, j] := Mlimaz, j1 — q X Mlimin, j];

DIVIDES: go to if maz = 0 then MINIMUM else MAXIMUM
end of the reduction. Note that if maz > 0 then maz now con-
tains the new nonzero minimum.

If max = min then we are ready with the results;

for j := 1 step 1 until » do z[j] := M[imin, j];

Euclidean := min

end of procedure Euclidean

REFERENCE

1. BrankinsHip, W. A. A new version of the Euclidean al-
gorithm. Amer. Math. Mon. 70 (1963), 742-745.

ALGORITHM 238

CONJUGATE GRADIENT METHOD [F4]

C. M. Reeves (Reed. 18 Nov. 1963)

Electronic Computing Lab., Univ. of Leeds, England

procedure conjugaie gradients (z, r, n, matmult);

value n; real array z, r; integer n; procedure matmult;

comment The method of conjugate gradients [cf: BECKMAN,
F. 8. Mathematical Methods for Digital Compuiers. Ch. 4, Ralston,

A., and Wilf, H. 8., (Eps.), Wiley 1960.] is applied to solve the
equations Az = b where A is a general nonsingular matrix of

Volume 7 / Number 8 / August, 1964

order n, and z and b are vectors. At entry z contains an initial
approximation to the solution, and r contains b, the vector of
constants. Both x and r have bounds [1:2]. Up to n+1 iterations
are carried out and at exit the solution is in z and the corre-
sponding residuals r = b — Az are in 7.
The procedure matmult has the following heading, with semi-
colons which must now be omitted:
procedure matmull (transpose, dat, res)
Boolean transpose real array dai, res
comment The datum vector dat is premultiplied by the
matrix B and the result formed in res where, denoting the
transpose of A by At,

B = if transpose then At else A

The body of matmult will depend upon whether A is stored on

magnetic tape, and whether all or only its nonzero elements

are stored. The products should be accumulated in double

precision, if possible.;
begin integer iterations;

real array p, temp [lin];

real procedure dot (u, v);

real array u, v;

comment dof is the scalar product of the veetors u and v;

real alpha, beta, At r sq;

begin integer 7; real sum; sum := 0;
for 7 := 1 step 1 until n do sum := sum + u[7] X v[Z];
dot := sum

end of dot;

procedure combine (f) plus: (¢) times: (g) to form: (h);
value ¢;

real ¢; real array f, g, h;

comment [+ cg is formed in h;

begin integer 7;

for ¢ := 1 step 1 until »n do h[i] := flz] + ¢ X gli]
end of combine;
Start:
for iterations := 0 step 1 until n do

begin if iterations = 0

then begin matmult (false, z) in : (temp);

combine (r, —1, temp) in : (v);

matmult (true, r) in : (p);

At r sq := dot (p, p);

end of forming r = b — Az, p = At r, and Ai r sq

else begin matmult (true, r) giving Af r in : (femp);

beta := dot (temp, temp)/At r sq;

combine (temp, beta, p) in : (p);

At rsq := beta X At r sq

end;
if At r sq = 0 then go to finish;
matmult (false, p) giving Ap in :
alpha := dot (temp, temp);
if alpha = 0 then go to finish;
alpha := dot (r, temp)/alpha;
combine (z, alpha, p) in : (z);
combine (r, —alpha, temp) in : (r)
end of iterative loop;
finish :
end of conjugate gradienis;

(temp);

ALGORITHM 239

FREE FIELD READ [I5]

W. M. McKremaN (Reed. 12 Dee. 63 and 1 May 1964)

Computation Center, Stanford University, Stanford, Calif.

procedure inreal (channel, destination);
integer channel; real destination;

begin comment Each invocation of snreal will read one (number)
[Revised Report - -- ALGOL 60, section 2.5.1] from the input

value channel;

Communications of the ACM 481

medium designated by the parameter channel and convert it

into the internal machine representation appropriate for real

numbers. Successive data values within the data string are

separated by the blank character u. Integer values from the

input medium are converted into values of type real. A nonlocal

procedure error is invoked whenever a non-(number) is en-

countered in the input string. The action of error is left un-

defined;

real sig, fp, d;

integer esig, ep, ip, ch;

integer procedure CHAR;

begin comment The value of CHAR is the integer repre-
senting the next character from the input string. tnsymbol
is defined in the “Report on Input-Output Procedure for ALcoL
60,” ALGOL Full. No. 16 (May 1964), 9-13; Comm. ACM, to ap-
pear. Characters occurring in the second parameter of in-
symbol are mapped onto the integers corresponding to their
position, left-to-right, within the string. Other basic symbols
map onto the integer 0.

The present procedure inreal differs from the inreal of
the referenced Report on Input-Output Procedures for
AvrcoL 60 in the following ways:

(a) The report does not specify what values may be pre-
sented in its inmreal, only that whatever is presented will be
assigned to the second parameter of inreal. I demand that a
{(number) be presented.

(b) No separator of values on the foreign medium is speci-
fied. I demand an Arcov string blank.;
real ¢;
insymbol (channel, ‘0123456789, — +10u’ ,6);
if ¢ £ 0 then error; comment an illegal character;
CHAR :=¢ — 1

end CHAR;
integer procedure unsigned integer;
begin comment (unsigned integer)
integer) (digit);
integer u;
% = 0;
K: u:=10 X u + ch;
¢h = CHAR,
if ¢h < 10 then go to K;
unsiyned integer 1= u
end unsigned inieger;
stg := 1.0; ep :=0; fp:=0;
L: ¢h := CHAR;
if ch = 14 then go to L; comment suppress initial blanks;
comment {(number) ::= (unsigned number) | -+{unsigned
number) | —{unsighed number);
if ch = 12 then ch := CHAR
else if ch = 11 then
begin comment;. 12 = 4’ and 11 = -7

i

(digit) | {(unsigned

s1g 1= —1.0;
ch := CHAR
end;
comment (unsigned number) ::= (decimal number) | (ex-

ponent part) | (decimal number)(exponent part);
if ch = 10 then
begin comment {(decimal number) ::= (unsigned integer) |
(decimal fraction) | (unsigned integer)(decimal fraction);
if ch < 10 then 7p := unsigned integer else ip := 0;
if ¢ch = 10 then
begin comment
ch := CHAER;
if ch = 10 then error; comment a digit must follow the
€¢Iy,
fp:=0; d:=0.1;
M: fp:=fp+chXd;
d:=dX0.l1;

{decimal fraction) ::= .(unsigned integer);

482 Communications of the ACM

comment a table of reciprocal powers of ten is preferable
to the statement d := d X 0.1;

ch := CHAR;
if ¢h < 10 then go to M
end
end else if ch = 13 then ip := 1 else error;
if ch = 13 then
begin comment (exponent part) ::= 10{integer);

ch := CHAR; esig := 1;

comment (integer) ::= (unsigned integer) | --(unsigned
integer) | —(unsigned integer);

if ch = 12 then ch := CHAR

else if ¢ch = 11 then

begin comment negative exponent;

estg 1= —1;
ch := CHAR
end;
if ch < 10 then ep := unsigned integer X esig else error
end;

if ¢h # 14 then error; comment the required ‘“u’’ separator;
destination := sig X (Ip+fp) X 10.0 T ep
end inreal

REMARK ON ALGORITHM 162 [J6]

XYMOVE PLOTTING [F. G. Stockton, Comm. ACM 6
(Apr. 1963), 161; 6 (Aug. 1963), 450]

D. K. Cavin (Recd. 10 Feb. 1964)

Oak Ridge National Laboratory, Oak Ridge, Tenn.

The following modifications were made to Algorithm 162 to
decrease the average execution time. The last nine lines of Al-
gorithm 162 are replaced by the following:

move 1= code(I—1); I := code(I);
repeat: A =D+ E;B:=T+ E + A;
if B = 0 then begin E := A; F := F — 2; plot(I) end
else begin E := E+ T; F := F — 1; plot(move) end;
if F > 0 then go to repeat;

return:
end

It is obvious that on any movement containing more than two
elemental pen movements the use of the code procedure in the
loop is redundant, since no more than two of the eight permitted
pen movements are necessary for the approximation of any line.
Therefore moving the call of the code procedure outside of the
basic loop reduces the execution time whenever the X, Y move-
ment requires more than two elemental pen movements. The
procedures were coded in CODAP, the assembly language for
the CDC 1604-A, and this modified version was approximately
40 percent faster in the loop than the original version. The timing
comparisons used numbers in the range —2000 to 2000 with heavy
emphasis on the subrange —150 to 150. The typographical error
noted in the certification (Comm. ACM, August 1963) was cor-
rected in both codes.

[A referee verifies that Algorithm 162 does indeed run, as
changed. —G.E.F.]

CERTIFICATION OF ALGORITHM 209 [S15]
GAUSS [D. Ibbetson, Comm. ACM 6, Oct. 1963, 616]
M. C. PirE
Statistical Research Unit of the Medical Research Council,
University College Hospital Medical School, London,
England
This procedure was tested on an Elliott 803 computer using the
Please turn to page 485

Volume 7 / Number 8 / August, 1964

ADDITIONAL BIBLIOGRAPHY

Date
4/10/64

4/10/64

(undated)

Title (or Subject)

Letter to C. A, Phillips re. Letter
Ballot on Publication of Proposed
Standard for Bit Order Sequencing
of ASCII

Letter to C. A. Phillips re. Letter
Ballot on Publication of Proposed
Standard for Bit Order Sequencing
of ASCII

Explanation for Negative Vote on
Acceptability for Publication of
Proposed Standard for Bit Sequenc-
ing of ASCII

Prepared By

R. W. Ferguson

L. Wolff

L. W. Claussen

Date Title (or Subject) Prepared By
3/9/64 Proposed American Standard for Bit

Sequencing of ASCII in Serial-by-

Bit Data Transmission X3.3/4
3/10/64 Letter Ballot on Publication of Pro-

posed Standard for Bit Order

Sequencing of ASCII C. A, Phillips
3/19/64 Statement of Position (UNIVAC) E. H. Clamons
3/20/64 Analysis of the Report of the Select

Committee on ASCII Bit Order of L. W. Claussen

Data Transmission F. C. White
3/26/64 ASCII S. N. Alexander
4/2/64 Letter to E. H. Clamons re. Clamon’s

memorandum to X3, March 19, 1964 V. G. Grey
4/9/64 Reply to ASA letter of April 2, 1964 E. H. Clamons
(undated) Letter to C. A. Phillips re. Letter

Ballot on Publication of Proposed

Standard for Bit Order Sequencing

of ASCII G. L. Bowlby

Editor’s Note

Publication of the following proposed American Standards, devel-
oped by a Subcommitiee of ASA Sectional Committee X3, has been
authorized by the American Standards Association for the purpose of
obtaining comment, criticism and general public reaction, with the
understanding that such proposed American Standards have not been
finally accepted by ASA as standards and, therefore, are subject to
change, modification or withdrawal in whole or in part. Comments
should be addressed to the Secretary, Business Equipment Manufac-
turers Association, 235 East 42 Street, New York 17, N.Y.—E.L.

PROPOSED AMERICAN STANDARDS

Interchangeable Perforated Tape Variable
Block Formats for Positioning and
Straight Cut (RS-273) and Contouring
and Contouring/Positioning (RS-274)
Numerically Controlled Machine Tools

These standards are intended to serve as guides in the coordination of
system design, to minimize the variety of program manusecripts required
and the number of word and block format systems used, to promote uni-
formity of programming techniques, and to foster interchangeability of
input tapes between numerically controlled machine tools of the same
classification by type, process function, size and accuracy. It is intended
that simple numerically controlled machine tools be programmed using a
simple format which is systematically extensible for more complex ma-
chine tools.

These standards apply wherever a variable block format is used on
perforated tape to control positioning and straight cut and contouring
or contouring/positioning numerically controlled machine tools. These
formats will usually be used with tape read row-by-row.

Perforated tape with variable block format as described shall be usable
interchangeably among numerically controlled machine tools which con-
form to the same format classification as described in the standards.
(Note: The degree of interchangeability will depend upon the conformity
of the machines with respect to funetion, capacity, range, horsepower,
geometric relationship of axes, preparatory, miscellaneous, and tooling
functions, and use of absolute or incremental dimensions.)

The interchangeable tape described in these standards is 2 combination
of word address and tab sequential format, and includes both tab and
address characters.

These standards cover interchangeable perforated tape variable block
format only, and are not intended to specify machine tool design. In
certain cases provisions must be included by the control system builder
and machine tool builder, in order to gain full use of interchangeable
perforated tape.

[Full texts of these two standards are available from Electronic In-
dustries Association, Engineering Department, 11 West 42 Street, New
York 36, N. Y.: RS-273, $1.10; RS-274, $1.30.]

Volume 7 / Number 8 / August, 1964

4/14/64 Results of Ballot on Acceptability
for Publication of Proposed Stand-
ard on Bit Sequencing of ASCIL

and Approval of Publication Period C A. Phillips

ALGORITHMS—Cont'd from page 482

standard Elliott ArncoL compiler. The expression
2 X Gauss () — 1

was evaluated for x = 0(.01)6 and the answers checked with those
given in Tables of Probability Functions, vol. II, U.S. National
Bureau of Standards, Washington, D.C., 1942, where they are
given to 15 decimal places. There was a maximum error of 1 in
the 8th decimal place.

REMARK ON REMARKS ON ALGORITHM 48 [B3]

LOGARITHM OF A COMPLEX NUMBER [John R.
Herndon, Comm. ACM 4 (Apr. 1961), 179; 5 (Jun. 62),
347; 5 (Jul. 62), 391]

Davip 8. Correns (Reed. 24 Jan. 1964 and 1 Jun. 1964)

Computer Laboratory, The University, Liverpool 3,
England

This procedure was designed to compute log.(a+b%), namely
¢+di, and although some very necessary precautions about its
use have already been stated, some points seem to have escaped
notice. In particular, A. P. Relph [Comm. ACM, June 1962, 347]
remarked that if @ = 0, then ¢ becomes ‘—infinity’, but this is only
the case if b = 0 also. Margaret L. Johnson and Ward Sangren
[Comm. ACM, July 1962, 391] conceded that a = b = 0 was a special
case, but wrongly gave zero as the result. The only reasonable way
of dealing with this case is to exit to some nonlocal label and to
let the user decide whether to terminate his program or to assign
particular values to ¢ and d. The obvious values to use here are, for
¢, a negative number, larger than the largest which would be given
by the procedure, and possibly zero for d. (In an implementation
where 2712 ig the smallest representable nonzero number, the
largest negative value of ¢ possible is —89.416.) Finally, in the
Johnson-Sangren version of the procedure, the last conditional
statement should read

ifa = 0 A'b < 0 then begin ¢ := In(abs(d));
d := —1.570963; go to RETURN end;

the omission of the minus sign in the original being probably
typographical in origin.

Communications of the ACM 485

