ALGORITHM 242

PERMUTATIONS OF A SET WITH REPETITIONS
(G6]

T. W. Sag (Recd. 10 Feb. 1964 and 19 June 1964)

Math. Dept., Manchester U., Manchester, England

procedure PERMUTATION (X, K, j, process);
array X; integer array K; integer j; procedure process;
comment PERMUTATION generates all the distinet permuta-
tions of an array of numbers consisting of K[1] numbers equal to
X[1], K[2] numbers equal to X[2], --- , K[j] numbers equal to
X[jl. The K[i]’s must be positive integers. Each permutation is
stored in the array Y and processed according to the user’s wish
by the procedure process before the next permutation is gen-
erated.
{The procedure is more efficient if the sequence K[7]is mono-
tone decreasing.—Ref.};
begin
real z; integer M, N,¢; array B[1:K[j]];
procedure permutation (z, M, N, j, B, process);
real z; integer M, N,j; array B; procedure process;
begin
real A; integer 7, KK, N1, N2, j1;
integer array J[{1:N+1];
array Y[1:N+M]; N2:= N + M;
if M = 0 then go to 1;
for i := N + 1 step 1 until N2 do Y[i] := z;
1: for i :=1step 1 until N do J[i] : = 4;
JIN+1]:= N2+ 1; j1:=j~1; KK := N;

2: for ¢ := 1step 1 until KX do Y[J[i]] := B[i];
if j1 < 1 then begin process(Y); go to 3 end;
A 1= X[j1-1]; N1 := K[j1-1];

permutation (A, N1, N2, 1, Y, process);
3: fori := 1 step 1 until N do
begin

YJED i==; J£] := Jl] + 1;

if J{¢] — J[i+1]1 + 1 £ 0 then go to 4 else go to 5;
4: KK :=1; go to 2;
5: J]:=1
end

end of permutation;
if j = 1 then begin z : = X[1];
z:i= X[j—-11; M := K[j—1];
1: for i := 1step 1 until K[j] do B[i] := X[j};
permutation (z, M, K[j], j, B, process);
end of PERMUTATION

M:=0; gotolend;

CERTIFICATION OF ALGORITHM 203 [E4]

STEEP1 [E. J. Wasscher, Comm. ACM 9 (Sept. 1963),
517]

Prinrr Warnack (Reed. 25 May 1964)

Republic Aviation Corp., Farmingdale, L. I., N. Y.

STEEP1 was translated into Forrran IV and run on the IBM
7004. The program was tested on the function 2t + y* — 1, with

Yolume 7 / Number 10 / October, 1964

;‘,, ; L0 : > ‘
G. E. FORSYTHE, J. G. HERRIOTT, Editors

starting values x = y = 1.5. Other parameter values were those
suggested in the body of the algorithm. After 17 steps the values
of the variables were x = .0180, ¥y = .0191, and the function value
fmin = —.9999999.

I feel that good programming practice requires that a count be
kept of the number of steps taken in STEEP] and the number of
iterations in ATIV E, with running checks on both these quantities
to control looping. Counters were set up for this purpose in the
version of the program I ran.

CERTIFICATION OF ALGORITHM 207 [M1]

STRINGSORT [J. Boothroyd, Comm. ACM 6 (Oct. 1963),
615]

CuarLEs R. Brair (Recd. 31 Jul. 1964)

Department of Defense, Washington 25, D. C.
STRINGSORT compiled and ran successfully without correc-

tion on the ALpaP translator for the CDC 1604A. The following

sorting times were observed.

Number of Items Time in Seconds

10 0.03

20 0.05

50 0.20
100 0.38
200 1.03
500 3.22
1000 6.43
2000 12.85
5000 38.72
10000 90.72

CERTIFICATION OF ALGORITHM 218 [D2]

KUTTA MERSON [Phyllis M. Lukehart, Comm. ACM
6 (Dec. 1963), 737]

KAREN BorMaN PrieBE (Recd. 10 Feb. 1964)

Woodward Governor Company, Rockford, Illinois

Algorithm 218 was translated into Fast for the NCR 315 and
gave satisfactory results with the following corrections, if the
equations were scaled as recommended in the comment of the
original algorithm. Ignoring this scaling can lead to results that
do not satisfy the intended error criterion.

1. procedure KuttaMerson (n,t,y, eps, h, fct, first, z);
instead of
procedure KuttaMerson (n, t, y, eps, h, fct, first);
2. real array y, z;
instead of
real array y;
3. if first then begin for ¢ := 1 step 1 until n do y0[i] : = y[i];
he :=h;
instead of
if first then begin hc : = h; +--

Communications of the ACM 585



4, if loc < ploc then

begin
if increase /\ loc = (loc+2) X 2 A ploc > 1 then
begin
he := 2 X he;
loc := loc + 2;
ploc 1= ploc + 2
end;
go to next
end;

for i := 1 step 1 until n’do 2z[¢] : = y0[{];
end KuttaMerson
instead of
if loc < ploc /\ increase - --
end KuttaMerson

Revised Algorithms Policy + May, 1964

Editor.

major assistance to a user.

(Oct. 1964), 628-629).

assigned to the variable destination; . . .;

channel; ... ;
procedure inint (ck 1, destination);
value ch l; integier ch 1, destination; . . . ;

procedure outinteger (channel, source);
value channel, source; integer channel, source; . . . ;

string siring; . .. ;
Examples:
outsiring (1, ‘z ='); outreal (1, 2);

for i := 1 step 1 until n do outreal (1, Ald]);
tninteger (1, digit [17]);

ACM 7 (Oct, 1964), 625-627].

in certifications or remarks.

proofreading is of paramount importance.

Machinery in connection therewith.

cations issue bearing tae algorithm.—G.E.F.

A contribution to the Algorithms department must be in the form of
an algorithm, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in capital and lower-case
letters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Material
to appear in boldface type should be underlined in black. Blue underlin-
ing may be used to indicate dtalic type, but this is usually best left to the

An algorithm must be written in the ArcoL 60 Reference Language
[Comm. ACM 6 (Jan. 1963), 1~17], and normally consists of a commented
procedure declaration. Each algorithm must be accompanied by a complete
driver program in Arcor 60 which generates test data, calls the procedure,
and outputs test answers. Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm.
The driver program may be published with the algorithm if it would be of

Input and output should be achieved by procedure statements, using
one of the following five procedures (whose body is not specified in ArgoL):
[see “Report on Input-Output Procedures for ALGOL 60, Comm, ACM 7

procedure inreal (channel, destination): value ch l; integer channel;
real destination; comment the number read from channel channel is

procedure oulreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression source is output to channel

procedure outsiring (channel, string); value channel; integer channel;

If only one channel is used by the program, it should be designated by 1.

It is intended that each published algorithm be a well-organized, clearly
commented, syntactically ecorrect, and a substantial contribution to the
Avcow literature. All contributions will be refereed both by human beings
and by an ArneoL compiler. Authors should give great attention to the cor-
rectness of their programs, since referees cannot be expected to debug them.
Because ALGOL compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithms are written in a recognized
subset of ALaoL 60 [see “Report on SUBSET ALGOL 60 (IFIP),” Comm.

Certifications and remarks should add new information to that already
published. Readers ars especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded

Galley proofs will be sent to the authors; obviously rapid and careful

Although each algorithm has been tested by its author, no liability is as-
sumed by the contributor, the editor, or the Association for Computing

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-

586 Communications of the ACM

5. The following sentences should be added to the initial com-
ment of the procedure:

The values of the dependent variables at ¢ + & are placed in the
array z. Note that the values of { and first are changed as side-
effects of the procedure. {As originally written, KuttaMerson
seemed unable to obtain the values of the solution at ¢ or to trans-
mit the values of the solution at ¢ + h to the outside program!—
Ed.}

6. Change array to array in the body of the procedure.
7. Insert after own integer ploc;

own array y0[{1:n];

Delete 40 from the existing array declaration.

CERTIFICATION OF ALGORITHM 221 [S14]
GAMMA FUNCTION [Walter Gautschi, Comm. ACM 7

(Mar. 1964), 143]

Van K. McCowmss (Reed. 10 Apr. 1964 and 1 Jun. 1964)
General Electrie Co., Huntsville, Ala.

The algorithm was translated into ForTraN IV for the IBM
7094. Computations were performed in double precision to take
advantage of the ten significant digits given by the polynomial
coefficients. The function I'(z) was evaluated for therange 0 <z =
10 with an inerement of 0.1, and the results were checked with the
values published in Table of the Gamma Function for Complex
Arguments, NBS Applied Mathematics Series 84 (1954). The algo-
rithm gave ten-digit accuracy for the range indicated.

CERTIFICATION OF ALGORITHM 225 [S14]

GAMMA FUNCTION WITH CONTROLLED AC-
CURACY [8. J. Cyvin and B. N. Cyvin, Comm. ACM
7 (May 1964), 295]

T. A. Bray (Recd. 25 May 1964 and 18 Jun. 1964)

Boeing Scientific Research Laboratories, Seattle, Wash.
Algorithm 225 was coded in ForTraNn II and run on the IBM

1620. No corrections were necessary and the following results were
obtained for m = 2:

% GAMMA (m, x) x GAMMA (m, x)

.01 99.44362100 3.50 3.32349920

.05 19.47214000 4.00 6.00067550

.10 9.51444650 4.50 11.63224700

.50 1.77253280 5.00 24.00270200
1.00 1.00011250 5.50 52.34511500
1.50 886206644 10.00 0.36286974,, 6
2.00 1.00011250 25.00 0.62043066,0 24
2.50 1.32939960 50.00 0.60826434:4 63
3. 2.00022510

These results are correct to at least two significant digits. The
following results and times were obtained for z = 0.5:

GAMMA (m, z) TIME(in

" seconds)
2 1.77253280 58
3 1.77254230 105
4 1.77245370 200
5 1.77244430 405
6 1.77244020 885

The correct result is 1.7724539. Note that the accuracy decreased
as m increased and the result for m = 6 is incorrect in the sixth
significant digit.

This algorithm is extremely slow as compared to some others
available. Algorithm 31 was used for the above set of arguments
and gave seven-digit accuracy in 250 milliseconds per argument.

Volume 7 / Number 10 / October, 1964



