G. E. FORSYTHE, J. G. HERRIOT, Editors

ALGORITHM 243

LOGARITHM OF A COMPLEX NUMBER [B3]

REWRITE OF ALGORITHM 48 [Comm. ACM 4 (Apr.
1961), 179; & (Jun. 1962), 347; 5 (Jul. 1962), 391; 7 (Aug.
1964), 485]

Davip 8. Correns [Recd. 24 Jan. 1964 and 1 Jun. 1964)

Computer Laboratory, The University, Liverpool, 3,
England

This procedure was tested using the DEUCE ALGOL Compiler
and a small sample of the test data and results are given below.
procedure LOGC (a, b, ¢, d, FAIL); value a, b, FAIL; real

a, b, ¢, d; label FAIL;
comment This procedure computes the number ¢ + d7 which is

equal to the principal value of the natural logarithm of ¢ -+ bi,
ie.such that —= < d < 4. A nonloeal label must be supplied
as a parameter of the procedure, to be used as an exit when the
real part of the result becomes — . Where required in the body
of the procedure the numerical values for T, v/2, and the log-
arithm of the square root of 8 are provided;

ifa =0Ab = 0then go to FAIL

else

begin

real ¢, f;
e:=05Xa; f:=05Xb;
if abs(e) < 0.5 A abs(f) < 0.5 then
begin
¢ = abs(2Xea) + abs(2XDb);
d:=8XafcXa+8Xb/cXb;
0.5 X (in{c)+in(d)) —1.03972077084

o
i

¢ = abs(0.5%e) + abs(0.5Xf);
d:=05Xc¢/lcXe+ 05X flecX;
0.5 X (In(e)+in(d)) + 1.03972077084

[y
Ml

end;
d = ifa 0 A abs(e) = abs(f) then arctan(b/a) +
(if sign(a)# —1 then 0 else if sign(b)>%—1 then
3.14159265359 else —3.14159265359) else — arctan(a/b)
+ 1.57079632679 X sign(b)

end LOGC

TEST OF LOGC
a b ¢ d
—2 —2 +1.039721 —2.356194
—2 +1 +0.804719 +2.677945
-1 -1 +0.346573 —2.356194
-1 +0 ~+0.000000 +3.141593
+0 —2 +0.693147 —1.570796
+0 -1 —+0.000000 —1.570796
+0 +1 ~+0.000000 +1.570796
+0 +2 +0.693147 +1.570796
-+1 -1 -+0.346573 —0.785398
+1 +0 -+-0.000000 -+0.000000
+2 -2 +1.039721 —0.785398
+2 +1 -+0.804719 +-0.463647

660 Communications of the ACM

ALGORITHM 244

FRESNEL INTEGRALS [S20]

Hewmur LoTsca* (Recd. 27 May 64 and 11 Jun. 64)

W. W. Hansen Laboratories, Stanford U., Stanford, Calif.
AND

Mavrcorm Grayft

Computation Center, Stanford U., Stanford, Calif.

(* now at Northrup Space Laboratories, Hawthorne, Calif.)
(f now at The Boeing Company, Seattle, Wash.)

procedure FRESNEL (w, eps, C, 8); value w, eps; real w,
eps, C, S;
comment This procedure computes the Fresnel sine and cosine
integrals C(w) = [0 cos [(r/2)£?] dt and S(w) = [§ sin [(x/2)2]
dt. 1t is a modification of Algorithm 213 (Comm. ACM, 6 (Oct.
1963), 617) such that the accuracy, expressed by eps, is improved.
eps can arbitrarily be chosen up to eps = 10 — 6 for a computer
with sufficient word length as, for example, the Burroughs
B5000 which has 11-12 significant digits. Referring to the formu-
las of Algorithm 213:if | w | < +/(26.20/x) the series expansions
C(w) and S(w) are terminated when the absolute value of the
relative change in two successive terms is <eps. If |w| =
V/(26.20/7) the series Q(z) and P(x) are terminated when the
absolute value of the terms is <eps/2. However, this truncation
point is not necessarily valid for the range /(26.20/x) < [w |
< +/(28.50/7) when eps = 10 — 6, since the asymptotic series
must be terminated before arriving at the minimum. In this
range the ignored terms of the series expansions are < 310 — 6,
and for larger arguments < 10 — 6. This accuracy may be im-
proved if desired: the switch-over point from the regular to
the asymptotic series expansions has to be displaced to larger
arguments;
begin
real z, 22, term; integer n;
if abs(w) £ 10 — 12 then
begin C := § := 0; go to aend end
else z 1= w X w/0.636619772368;
22 1= — 2 X z; ifz = 13.10 then go to asympt;
begin
real frs, frsi;
frs == x/3; n:=5;
frsi := frs + term/7;
loops: if abs((frs—frsi)/frs) S eps then go to send;
frs i= frsi; term := term X 22/(nXn—n);
frst 1= frs + term/(2Xn+1);
n:=mn -+ 2; go to loops;
send: S := frsi X w
end;
begin
real fre, fred;
Jre :==1; n:=4; term := £2/2;
fred i= 1 + term/5;
loope: if abs((fre—frei)/fre) £ eps then go to cend;

term = z X 22/6;

Jre := frei; term = term X 22/ (WXn—n);
frei := fre 4+ term/(2Xn+1);
n = n+ 2; go to loopc;
cend: C := frei X w
end;
go to aend;
asympt:
begin
real sl, s2, half, lemp; integer 1;
*2 1= 4 X 32; term := 3/22; sl := 1+ term; n := 8;
for 7 := 1 step 1 until 6 do
begin
n = n -+ 4;

term = term X (n~7) X (n—>5)/22;
sl := sl 4 term;

YVolume 7 / Number 11 / November, 1964



if abs(term) = eps/2 then go to next
end ;

next: term := §2 := 0.5/z; n := 4;

for 7 := 1 step 1 until 6 do
begin
n = n -+ 4;
term := term X (n—35) X (n—3)/z2;
$2 1= 82 4 term;
if abs(term) =< eps/2 then go to final
end ¢;

final: half := if w < 0 then —0.5 else 0.5;
term := cos(z); temp := sin(zx); 2 := 3.14159265359 X w;

C := half + (tempXsl—iermXs2)/x2;
S 1= half — (termXsl+tempX s2)/x2

end;

aend:

end FRESNEL

Revised Algorithms Policy « May, 1964

A contribution to the Algorithms department must be in the form of
an algorithm, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in capital and lower-case
letters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Material
to appear in boldface type should be underlined in black. Blue underlin-
ing may be used to indicate italic type, but this is usually best left to the
Editor.

An algorithm must be written in the ArLcoL 60 Reference Language
[Comm. ACM 6 (Jan. 1963), 1-17], and normally consists of a commentad
procedure declaration. Each algorithm must be accompanied by a complete
driver program in Argor 60 which generates test data, calls the procedure,
and outputs test answers. Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm.
The driver program may be published with the algorithm if it would be of
major assistance to a user.

Input and output should be achieved by procedure statements, using
one of the following five procedures (whose body is not specified in AraoL):
[see “Report on Input-Output Procedures for ALGOL 60, Comm, ACM 7
(Oct. 1964), 628-629].
procedure inreal (ch I, destination)- value ch I; integer ch l;

real destination; comment the number read from channel channel is

assigned to the variable destination; . . .;

procedure outreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression source is output to channel
channel; .. ;

procedure ninleger (ck 1, destination);

value ch 1; integer ch l, destination; . . . ;
procedure outinteger (channel, source);

value channel, source; integer channel, source; . .. ;
procedure outstring (channel, string); value channel; integer channel;

string gtring; ... ;

If only one channel is used by the program, it should be designated by 1.
Examples:

outstring (1, 'z ='); oulreal 1, z);
for ¢ := 1 step 1 until n do outreal (1, A{i));
ininteger (1, digit [17]);

It is intended that each published algorithm be a well-organized, clearly
commented, syntactically correct, and a substantial contribution to the
Avcot literature. All contributions will be refereed both by human beings
and by an Aveown compiler. Authors should give great attention to the cor-
rectness of their programs, since referees cannot be expected to debug them.
Because ALGOL compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithms are written in a recognized
subset of ALgoL 60 [see “Report on SUBSET ALGOL 60 (IFIP),” Comm.
ACM 7 (Oet, 1964), 626-627].

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and careful
proofreading is of paramount importance.

Although each algorithm has been tested by its author, no liability is as-
sumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
cations issue bearing the algorithm.—G.E.F.

Volume 7 / Number 11 / November, 1964

CERTIFICATION OF ALGORITHM 199 [Z]

CONVERSIONS BETWEEN CALENDAR DATE AND
JULIAN DAY NUMBER [Robert G. Tartzen, Comm.
ACM 8 (Aug. 1963), 444].

Davip K. OrPENHEM (Reed. 10 Jul. 64 and 27 Jul. 64)

System Development Corp., Santa Monica, Calif.

Algorithm 199 was translated into Joviar J3 and tested on the
Phileo 2000. Input was generated with a random number generator
that produced uniformly distributed dates between the years
1583 and 2583. The results were checked for 50 different dates in
that range.

The procedures as written place unnecessary restrictions on
some of the parameters. Expressions cannot always be used as
inputs to the procedures. Also, the original input to JDAY,
JDATE and KDAY will be modified during the operation of the
respective procedures. It should also be noted that in many im-
plementations of ALgoL the use of parameters called by name may
be more expensive than those called by value. The call by name
is a far more powerful tool than is necessary for most of the pa-
rameters of these procedures. For these reasons the following
changes are suggested:

1. In procedure JDAY

change: integer d, m, y, j;

to: value d, m, y; integer d, m, ¥y, j;
2. In procedure JDATE

change: integerj,d,m,y; to: valuej; integerj,d,m,y;
3. In procedure KDAY

change: integer d, m, ya, k;

to: value d, m, ya; integer d, m, ya, k;
4. In procedure KDATE

change: integer k, d, m, ya;

to: value k; integerk, d, m, ya;

CERTIFICATION OF ALGORITHM 213 [S20]

FRESNEL INTEGRALS [M.D. Gray, Comm. ACM 6
(Oct. 1963), 617]

Malcolm Gray (Recd. 29 May 1964 and, revised, 11 June
1964)

Computer Science Div., Stanford U., Stanford, Calif.
(now at The Boeing Company, Seattle, Wash.)

Necessary changes to the algorithm are:
(1) in the first line, replace
real 8, C; with real w, S, C;
(2) in the formula for P(z), replace (—2)i*! with (—1)i#t
(8) the statement beginning
loopc: if abs(fre—free)
should read
loopc: if abs(fre—fred)
(4) in the body, replace the line
next: for 1 := 1 step 1 until 5 do begin n := n + 4;
with the lines
next: term := S2 := 0.5/x; n :=4;
for ¢ := 1 step 1 until 5 do begin n := n 4 4;

The procedure (with the above changes) was executed on the
Burroughs B5000 at Stanford University and gave results as
indicated in the algorithm.

Communications from Helmut Lotsch of the W. W. Hansen
Laboratories, Stanford University, and from Harold Butler of
the Los Alamos Scientific Laboratory, Los Alamos, New Mexico,
state that they found these same errors, and after the corrections
were made, similar results were obtained. Mr. Lotseh’s work was
done on the B5000 and Dr. Butler’s work was done on the IBM
7090.

Communications of the ACM 661



