ALGORITHM 248

NETFLOW [H]

Wictiav A. Bricas (Reed. 18 Jan. 1964 and 17 Aue.
1964)

Marathon Oil Company, Findlay, Ohio

procedure NETELOW (nodes, arcs, I, J, cost, ki, lo, flow, pi,

INFEAS);
value nodes, arcs; inleger nodes, arcs;
integer array I, J, cost, ki, lo, flow, pi; label INFEAS;

comment This procedure determines the least-cost flow pat-
tern over an upper and lower bound capacitated flow network.

Gach directed network arc e is defined by nodes Ila] and
Jle), has upper and lower flow bounds Aila] and lola], and cost
per unit of flow costfa). Costs and flow bounds may be any
positive or negative integers. An upper flow bound must be
greater than or equal to its corresponding lower flow bound for
a feasible solution to exist. There may be any number of parallel
ares connecting any two nodes,

A multi-source, multi-demand, capacitated transportation or
transshipment problem may be stated as a network flow problem
as follows:

Append to the network (1) bounded arves from the demand
node(s) to a ‘“‘super sink,” (2) bounded arcs from a ‘“‘super
source” to the supply node(s), (3) an arc directed from the
“super sink”” to the “super source” with zero lower bound, &
farge positive upper bound, and a negatively large cost.

NETFLOW will maximize flow through the low-cost are from
“supper sink” to ‘‘super source’’--subject to the capacity
constraints of the network—fulfilling all demands optimally.

The procedure returns vectors flow and pi. Flowla] is the
computed optimal flow over network arc . Pi[n] is & number
—the dual variable—which represents the relative value of
injecting one unit of flow into the network at node n. NETFLOW
may be entered with any values in vectors flow and pi (such as
those from a previous or a guessed solution) feasible or not. If
the initial contents of flow do not conserve flow at any node,
the solution values will also not conserve flow at that node, by
the same amount. This fact can be frequently used to advantage
in transportation problem definition. The closer initial values
of flow and pi are to solution values, the shorter the computa-
tion,

Procedure NETFLOW is a mechanization of the out-of-kilter
network flow algorithm described by D. R. Furkekrson in J.
Soc. Indust. Appl. Math. 9 (1961), 18-27, and elsewhere. Many
thanks are due the referee for noting some erroneous comments
and for suggesting ways to increase the efficiency and utility of
the procedure;

begin integer a, ack, ¢, cok, del, e, eps, inf, lab, n, ni, nj, src, snk;
integer array na, nbll: nodes];
integer procedure nun (z, y); value z, y;
begin if x < y then min = v else min =y end min,
comment check feasibility of formulation;
fora := 1step 1 until aresdoif lola)> hila] thengoto INFEAS;
inf := 99999999; comument sel inf to max available integer;
0;

comment

integer x, Y

i

aok :
find an out-of-kilter arc;

Volume 8§ / Number 2 / February, 1965

G. E. FORSYTHE, J. G. HERRIOT, Editors

Seek: for a:= 1 step | until ares do
begin ¢ := cost [a] + pi ({la]] — pi (]a]];
if flow [a] < lo [a} V (¢ <OA flowla]<hila]) then

begin sre :=J {a];, snk:=Tla]; e¢:= +1; goto LABL
end;
if flow la] > ki [a] V (e>0Aflowla] > ole)) then
begin sre = [a|; snk = Ja); ¢ = —1; go to LABL
end;
end;
comment no remaining out-of-kilter ares;
go to PINI;
commenl attempt to bring found out-of-kilter are into kilter;
LABL: ifa = aok N nalsre] 5% 0 then go to SKIP;
aok = a;
for n : step 1 until nodes do neln}] = nbin} 1= ()
nalsre abs (snk) X e; nblsre] = abs {(aok) X ¢;
SKIP: cok = ¢,
LOOP: lab := (;

for o ;= 1 step | until arcs do

begin if (na{llal]=0Anal/a]}=0) V
(na[l{a))=<0/Analt [a]}0) then go to X
¢ = costla] -+ pillla]l ~ pildial];
it naf{lla}]] = 0 then go to Ni;
it flowla) Z hilal \/ (flowla]zlolalAe>0) then go to X
nalf{al]l = lal; nbl/le]] = a; go to NB;

NAvif flowla] 5 lofa] / (flowla] Shile]Ac<0) then go to N0

nallla]] = —Jlal; nbllial] = —a;
XB: lab = +1;
comment node labeled, test for breakthea;

if nalsnk] # 0 then go to INCE;
XC: end;
comment no breakthry;
if lub # 0 then go to LOOP;
comment determine ehange to po vector;
del = inf;
for ¢ = 1 step 1 until ares do
begin if (na{llull=0/nel/la]]=0) V
(nall{a)}=0Anal/ {a]}0) then go to N1
¢ = costla) -+ pilllal] — pel/lell;
if naldlall = 0 A flowla] < hila] then del = win (del, ¢);
if naldlal] # 0 A flowla] > lojo] then del = min (del, —c);
XD: end;
if del = inf A (flowlaok|=hilaok N Aewlaok|=lolaok]) then
del = abs (cok);
if del = inf then go Lo INFEAS;
flow pattern;
comment change pi vector by computed del;

comment erit, no feasible

for n = 1 step 1 until nodes do if nafn] = 0 then plin} =
pifn] -+ del;
comment find another out-of -kilter are;

go to SEEK;

comment breakthru, compute incremental flow;
INCR: eps := inf;

ni = Sre;
BACK: nj := abs (nalnil); o := abs (nbinil};

¢ = costla] — abs (pilni]—~pilnjf) X sign (ablni]);
if nbini] < 0 then go to NE;
it ¢ > 0 A flowia] < lole] then eps = min (eps, lola]—flowlal);

Communications of the ACM 103

it ¢ = 0 A flowla] < hila] then eps = min (eps, hila]—flowlal);
go to X7 ‘
NE: if ¢ < 0 A flowla] > hila] then eps = min (eps, flowla]
—hilal);
if ¢ 2 0 A flowla) > lola] then eps := min (eps, fowla]—lolal);
Nt onioi== ong; if ni 5 sre then go to BACK;
comment change flow veetor by computed eps;
SACK2: nj = abs (nalnil); o = abs (nblni]);
Noalal o= flowla] + eps X sign (nhinil};
ni =y if ni # sre then go to BACKZ;
comment find another out-of-kilter are;
aok 1= 0; go to SEFEK;
FINT: end NETFLOW with o feasible, optimal flow pattern

ALGORITHM 249

OUTRISAL N [I5]

Nikpavs B Winrn (Reed. 28 Aug. 1964 and 2 Nov. 1964)
Computer Science Div., Stanford UL, Stanford, Calif.

procedure oulreal n (chamn);
value ch, ©, n; integer ¢h, n;

comment owlreal nooutputs to channel ¢k the real number z as
a sequence of characters with n significant decimal digits in the
form =k dud -+ dio £ d -+ d, where d stands for a digit. Like the
procedures oulboolean, autstring, ininteger (¢f. Report on Input-
Output Procedures for ALGOL 6O, [Comm. ACM 7, (Oct. 1964),
628-629]) and inrcal [Alg. 239, Comm ACM 7 (Aug.1964), 481] it
constitutes an example of the use of the primitive procedure
pair insymbol-oulsymbol defined in the referenced Report;

real x;

begin integer 4, /, &, 5; real f; integer arvay a|lin];
procedure oulchar(x) value @r; inleger
vutsymbol — (ch, 0V23456780 4 — ., a+1);
R I | PR BT
owdchar (if ¢ 2 0 then 10 else 11); @
if & = 0 then begin oulchar Q)
if v 2 1 1then
begin L1 [= [X 10
fo= X 01, 5=y — |
end
else
begin L2: [= X 0.1; s
if o < fthen go to 2

v abs(e);
zo to 14 end;

;o e 2 fthen goto L1

)

=8 - 1

end;
= o/, comment now I < o < 10;
for j:= L step 1l until n — L do
begin ¢ 1= ¢nticr(v); alj] = 4; x = {x—{) X 10 end;
aln) = x;
for j := n — | step —1 until 1 do

begin if a[j+1] < 10 then go to L6; afj+1] := 0;
alj] = alg} + 1

end;

if all] = 10 then begin 1] = 1;
L6 owtchar(all]); outchar(12);

for j 1= 2 step 1 until n do outchar(alj]);

comment now process the scale factor s;

if 5 = 0 then go to [4;

outchar(13);

outchar (if s 2 0 then 10 else 11); s := abs(s);

7= 10;
L3: ifs = jthen beginj:=j X 10; k:
L5: if k > 0 then

begin j := j + 10; ¢ := s + J;

s = § + 1 end;

i

ket 1

go to L3 end;

oulchar (2); 8 :=8 — i X §;

k:=1Fk—1;, gotols
end;
outchar(s);
[A4:
end
104 Communications of the ACM

ALGORITHM 2350

INVERSE PERMUTATION [G6]

B. H. Boonstra (Recd. 12 Oct. 1964)
Nationaal Kasregisters, NCR Holland,

procedure snversepermutation (P) of natural numbers up to: {n);
value n; integer n; integer array r;
comment given a permutation P(i) of the numbers 7 = 1(1)s,
the inverse permutation is computed n situ. The process is
based on the lemma that any permutation can be written as g
product of mutually exclusive cycles. Procedure wnversepermauto-
tion has been tested for several permutations including n = 1,
begin integer i, j, k, first;
switch sss 1= tag, cycle, next, endcycle, finish;
lag: for i := 1step 1 until n do P[] := —P[i};
comment now P[i] contains 8 negative number if original and
a positive number if inverse;
Jirst = 1;
cycle: k = first; © = —Plk|;
next: § = —Pll; PR} = k;
if 1 = first then go to endcycle;
k= 1; 1 :=7J; go to next;
endeycle: if first = n then go to finish;
first = first + 1;
if Plfirst] < 0 then go to cycle else go to endcycle;
finish: end inversepermutation

Amsterdan,

REMARK ON ALGORITHM 135 [F4]

CROUT WITH EQUILIBRATION AND ITERATION
[W. M. McKeeman, Comm. ACM & (Nov. 1962), 553-
555, 557; 7 (July 1964), 421]

Loren . MEessNvEr (Reed. 21 Oet. 1964)

Lawrence Radiation Lab., U. of California, Berkeley.

L. The following error in the published algorithm is noted: The
procedure IP1 forms the sum of A[i, p| X A[p, k]; however, two
lines above the bottom line of procedure CROUT an attempt is
made to use I’ to form the sum of Ak, p] X Afp, jl.

A possible way of correcting this is to add a procedure 1Pl
which is identical with 7P1 except that k is written for ¢ and]
for k. Since the procedure is used often, making the correction in
this way is not unreasonable. A more extensive undertaking would
be to modify CROUT to use a more general procedure such 4
INNERPRODUCT {1}

2. The following comment is made in view of the refercnee to
this algorithm in a recent Editor’s Note [2]: Tn the use of Algo-
rithm 135 as a determinant evaluator, it may be well to st m, the
“number of right-hand sides” to 1 instead of zero and give an
arbitrary nonzero right-hand side such as (1,0,0, ---). This will
cause a calculation of the “condition,” and possibly an exit 1o
singular, to call the user’s attention to cases in which the deter-
minant is nonsense.

REFERENCES:

L. Forsyrae, G, E. Crout with Pivoting. Algorithm 16. Comm. ACM 3 (Sept:
1960y, 507.

2. RoreNnerg, L. J. Remark on Revision of Algorithm 41, Comm. ACM 7 (e
1964), 144,

REL/‘[AR,K ON ALGORITHM 206 [B1]

ARCCOSSIN [Misako Konda, Comm. ACM 6 (Sept
1963), 519]

HENIFY J. Bowroen (Recd. 30 Sept. 1964 and 5 Nov. 1964)

Westinghouse Electric Corp., R&D Ctr., Pittsburgh, P
. Algorith 1 206 was transcribed into Burroughs Extended ALGot

atteI: correcting one typographical error, namely the value ¢!

/2 in the statement labeled L3, which should be 1.5707963.

Volume 8 / Number 2 / February, 1963

Results were obtained for a selection of values of the argument
between 0 and 1. Accuracy is about 7+ decimal digils over Lhe
entive range, by comparison with the tables of inverse sines in
[Handbook of Mathematical Functions, National Bureau of Stand-
ards Applied Mathematics Series %55, U.S. Government Printing
Off., Washington, D.C., June 1064, 203-212{. Average execution
time was 43 milliseconds.

The efficiency of the procedure could be significantly improved
by avoiding the computation of ¢« X 27 (— r—1). Powers of 0.5
may be accumulated within the loop, and the modification of A
may be skipped entirely when o = 0. Actually, if efficieney is im-
portant, procedures using the intrinsic arctan and the common
trigonometric identitics are preferable. Such routines, on the
B-5000, give full machine accuracy (114 significant figures) in
about 2 milliseconds execution time.

CERTIFICATION OF ALGORITHM 234 [S823]

POISSON-CHARLIER POLYNOMIALS [J. M. 8.
Simoes-Pereira. Comm. ACM 7 (July 1964), 420]

oA SBamer (Reed. 17 Aug. 1964)

Computation Lab., The University, Southampton, Eng.

PC polynomial was compiled correctly by the Pegasus-AvLcoL
compiler and ran without trouble. The procedure was tested for
n = 0{1)4, values of ¢ in the range 0.2 to 2.0, and z in the range
¢ to 1. The values produced were spotchecked by hand.

The procedure could be improved by

{iy putting z, n, a in the value part.

(it} replacing v := (—1)Tn by

%= if n = n+ 2 X 2 then 1 else —1

{iii} eliminating the separate evaluation of n! by including
the evaluation of ¢®- (n!)™ in the main loop. This gives a simpler
argument for sgré in the final assignment statement.

The revised algorithm then reads
real procedure PCpolynomial {(x, n, a);

value z, n, u; real x, ¢; integer n;
begin integer j; real u, s, c;

s=u:=ifn = n + 2 X 2 then 1 else —1;

¢ =1

for j = O step 1l until n — 1 do

begin w 1= —u X (n—j) X &—5/@ X (G+1);

$ =8+ u;
c:i=c¢ Xa/(j+1)
end;
PCpolynomial .= sqri(c) X s
end PCpolynomial
This version gave the same results as the original but was ap-
preciably faster.

CERTIFICATION OF ALGORITHM 236 [S17]

BESSEL FUNCTIONS OF THIE FIRST KIND [Walter
Gautsehi, Comm. ACM 7 (Aug. 1964), 479]

Warrer Gavrscrnr (Reed. 24 Aug. 1964 and 2 Nov. 1964)

Purdue University, Lafayette, Ind.

All procedures were tested on the CDC 1604-A computer, using
the Oak Ridge Ancon compiler.

1. The proecedure Japlusn was submitted to the following tests:

(a) Values of J,(2) and J,12(10) were produced for n = 0(1)10,
calling for an accuracy of d = 6 significant digits. The values ob-
tained for J.(2) agreed with those of Table 9.4 in [1] to 10 signifi-
cant digits (with occasional discrepancies of one unit in the tenth
figure). The results for J,:(10) were compared against those of
Jupz(10) = 2.523132521 X 7.(10) obtained from Table 10.5 in [1}.

Yolume 8 / Number 2 / February, 1965

The maximumn discrepancy was found to be five units in the tenth
figure, oceurring for n = 3,

(b) To observe the performance of the procedure near a zero
of a Bessel function, we generated J.(x), n = 010, for

for d = 10 significant digits. The results are shown in the table
below,

7 Juldon) % Tl o)

0 —1.1936252775,,—9 6 3.4048184902,— 3
1 5.1914749680,—1 7 6.0068836955,,—4
2 4.3175480738,—1 8 9.2165787385,0—5
3 1.9899990578 10— 1 9 1.2517271082:0—5
4 6.4746666371,0—2 10 1.5253656182:—6
5 1.6389243276,,—2

The entry for n = 1 agrees to 9 figures with that of ~Jo' (ju.1) given
in Table 9.5 of reference [1].

(¢) We drove the procedure to caleulate Jpv1(x) to 6 signifi-
cant digits, forz = 4(4)20, » = 0(.1)1.9. The results agreed with
those tabulated in {2].

2. The procedure Iaplusn was called to generate test values to
6 significant figures of [,,(20), [n412(10), Loan(.1), for n = 0(1)10.
The first two sets of values were compared with those in [3] and
in Table 10.10 of (1], respectively, and {found to be in error by at
most 5 units in the tenth figure. The value for I1(.1) agreed to L0
figures with that given in [5).

3. Further checks were made on the procedures Japlusn,
Taplusn, as well as the procedures Jaminusn, laminusn, by having
them ““verify” the relation

feura(28) = fari(x) -+ 27;) Fan(Z)farnra(x)

forz =1, a = .2(.2).8, where f.(z) stands for either J,(x) or I,(x)
(cf. [4], p. 100, formula (21)). That is, we printed the relative errors
incurred when the infinite series is truncated after the (N-+1)-
st term, N = 0(5)20. Selected results (rounded to four digits) are
shown in the table below.

a\\N’ 0 5 10 15 20
\J
|
2 [.16510—2 2.51910—4 —3.56810—5 1.04310—5 —4.23410—6
.8 —7.94550—~2 4.96810—5 —3.45%0—6 6.517w0—7 ~1.92310—7
4 —8.00110—-2 1.24510—4 —1.45610—5 3.71410—6 —1.36110~6
61 —1.02350—1 7.59010—5 ~7.04110—6 1.55310—6 ~~5.11510~7

The first two lines refer to f = J, the last two lines to f = I. The
driver program follows.

begin integer n; real a, sumdJ, suml, s/, sI, errovd, errorl;
array J1, 71{0:3], J2, I12(0:22], J3, 13[0:20];

for ¢ := .2 step .2 until .9 do
begin
if 2 X a < 1 then
begin

Japlusn (2.0,2 X «,2,6,J1); Ilaplusn (2.0,2 X a,2,6,1I1);
sumd = J12]; suml := I1{2]

end
else
begin
Japlusn (2.0, 2 X a—1, 3, 6, J1);
Taplusn (2.0, 2 X a—1, 3, 6, I1);
sumJ = J1[3]; suml := I1[3]
end;

Japlusn (1.0, a, 22, 6, J2); Jaminusn (1.0, ¢, 20, 6, J3);
Taptusn (1.0, a, 22, 6, 12); Ilaminusn (1.0, a, 20, 6, I3};
sJ =8l :=0;
for n := 0 step 1 until 20 do
begin
sJ 1= sJ + J3[n] X S2n+2];
if entier (n/5) = n/5 then

sl :=sI + I3[n] X I2[n+2];

Communications of the ACM 105

begin
errord = (21172 -+ 2 X sf —sumJ)/sumd;
error] = (I211] 12 -+ 2 X sl—suml)/swmnl;

outstring (1, ‘a=’); outreal (1, a);
outstring (L, ‘N="); outinteger (1, n);
outstring (1, ‘ervor ="); outreal (1, errorJ);
outstring (L, ‘errorl="); oulreal (1, errorl)
end
end
end;
wo to skip;
alarm: outstring (1, ‘parameters not in range’):
skip: end

4. The procedure Compler Japlusn underwent the following
tests:
(a) Values of J,.(r¢®) were produced forn = 0,1, ¢ = (r—2)
X 30°, v = 1(1)6, calling for an accuracy of 6 significant digits.
Comparison with [6] showed agreement to 9-10 significant figures.
(b) We asked the procedure to “verify’’ the identity (cf. [4],
p. 99, formula (2))
w

(/2" Jole) = 3

= (n!

ri - a)rg{l@
(I —a — n)

((L + zn)J(z i—Zn(Z),

by printing the moduli of the relative errors incurred when trun-
cating the infinite series at n = 0(1)5. We let a and z run through
values a = 2(.2) .8, z = 2exp (ip), ¢ = —150° (30°) 150°, respec-
tively. Selected results (rounded to three figures) are displayed
in the table below.

1 2 3 4 3
55103 1.3Lio—4 1.850~6 1.7210—8 2.0200—10
2.020—2 5.6Lio—4 8.7010—6 8.640—8 5.27T.0~10
1.6510—2 4.67T0—3 7.4lio~b6 75108 3.9310—10
4.00t0—2 1.200—3 2.2310~5 2.4l10—7 1.7510—0

The same pattern persists throughout the range of the variables.
The driver program follows.

begin integer m, n; veal a, phi, ¢, s, x, y, suml, sum2,

q, 81, 82, p, error; array u, v[{0:10};
for ¢ := 2 step .2 until .9 do
for m = —35 step 1 until 5 do
begin

phi = 52359877560 X m;

¢ = coslaXphi); s .= sin{aXphi);

a = 2 X cos{phi); y = 2 X sin(phi);

Complex Japlusn (z, y, 0, 0, 6, u, v);

sumi = ¢ X ul0] — s X v[0]; sum2 = ¢ X o[0] + s X u[0];
Complex Japlusn (z, y, a, 10, 6, u, v);

q = gamma (1+a);
s1 := ¢ X ul0}; s2 := g X o{0}; p:= q/a;
n o= 0;
Li ogrvor = sqrt (((suml—sl) 12+ (sum2—s2) T2)/(suml T2

+ sum2 TD));
outstring (1, ‘a=");
outstring (1, ‘phi="};
outstring (1, ‘n=");
outstring (1, ‘error=");

oulreal (1, a);
outinteger (1, 30X1);

outinteger (1, n);

outreal (1, error);

n o= 1 + 1
i n = 5 then
begin
p o= —p X ((n+a~l)/‘n)?2; q = {(a+2Xn) X p;

5= sl + ¢ X u2Xn]; s2 1= s2 4 ¢ X v[2Xn];
zo to L
end
end;
go to skip;
106

Communications of the ACM

alarm:
skip:

e

[+

. Asmramowrtrz, M., axp &

. Amey, J. R.
. BAAS.
. Erpsuyy, A, (Ko

. NarioNAL BURBAU OF STANDARDS.

oulstring (1, ‘paramelers not in range’);
end
RereruNcEs:

o LA (Bos.)y Handbook of Mathematical Fupg.
Rer. 55, U8, Govt. Printing Off., Washiugton, D.C,

tHons, NBS Appl. Math.
1964.

Bessel functions of nearly equal order and arguroent. hlos, Mag,
(7) (5 (1935), 230235,

Bessel functions, purt I, Functions of positive integer order. Mathematica]
Tables, vol. X, Cambridge U, Press, London, 1952.

Higher Transcendental Functions, vol. 11, MeGraw-Hill, Ney

York, 19a3.

Tubles of Bessel functions of fractional order,
vol. II. Columbia U, Press, New York, 1949,

Table of the Bessel Functions Jo(2) and J1(z) for Complex Argumenis. Co.
lumbia U. Press, New York, 1643,

Revised Algorithms Policy » May, 1964

A contribution to the Algorithms department must be in the form of
an algorithm, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in capital and lower-case
letters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Material
to appear in boldface type should be underlined in black. Blue underlin-
ing may be used to indicate ttalic type, but this is usually best left to the
Editor.

An algorithm must be written in the Avncor 60 Reference Language
[Comm. ACM € (Jan. 1963), 1-17], and normally consists of a commented
procedure declaration. Each algorithm must be accompanied by a complete
driver program in Argor 60 which generates test data, calls the procedure,
and outputs test answers. Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm.
The driver program may be published with the algorithm if it would be of
snajor assistance to a user.

Input and output should be achieved by procedure statements, using
one of the following five procedures (whose body is not specified in Avaot):
{see “Report on Input-Output Procedures for ALGOL 60,” Comm, ACM 7
(Oct. 1964), 628-629].
procedure inreal (channel, destination): value channel; integer channel;

real destination; comment the number read from channel channd is

assigned to the variable destination;. . .;

procedure oulreal {channel, source); value channel, source; integer channel;
real source; comment the value of expression source is output to channel
channel; .. ;

procedure inint (ch I, destination);

value channel; integer ckannel, destination; . .. ;
procedure outinteger (channel, source);

value channel, source; integer channel, source; ... ;
procedure outsiring (channel, string); value channel; integer channel;

string string; . . .;

If only one channel is used by the program, it should be designated by 1
Examples:

outstring (1, ‘z =); outreal (1, 2);
for i := 1 step | until n do outreal (I, Al);
intnteger (1, digit [17]); }

It is intended that each published algorithm be a well-organized, clearly
commented, syntactically correct, and a substantial contribution to the
Ancol literature. All eontributions will be refereed both by human beings
and by an AnaoL compiler. Authors should give great attention to the cor-
rectness of their programs, since referees cannot be expected to debug them.
Because Avngon compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithms are written in a recognized
subset of ALGoL 60 [see “Report on SUBSET ALGOL 60 (IFIP),” Comm.
ACM 7 (Oct, 1964), 626-627).

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded !
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and ecareful
proofreading is of paramount importance.

Although each algorithm has been tested by its author, no liability is a%-
sumed by the contribusor, the editor, or the Association for Computing
Machinery in connection therewith,

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduetion is for publication pur-
poses, reference must be made to the algorithm author and to the Communt-
catirns issue bearing the algorithm.—G.E.F.

i

e

Volume 8 / Number 2 / February, 1963

