
t i r e functions and general framework on which any desired al-
gori thm can be built , In cer tain instances the posi t ion of the report
seems to be at variance with. these principles, and it might be
worthwhile to re-examine the document wi th respect to these
points.

A p p e n d i x

Illegal Character Chect< Outside of s@ings, only the following
charac ters are legM:

0 through 9
+ -., (blank} ~0

Count Check Over a Format Item

+ or -- : Not more t han two
• : Once only

~0 : Once only

Imnlediatc Sequence Check

Previous I Current Symbol
Symbol [

0 - 9

+ or --

1 o

B l a n k
J

0--9 ~or-- ___ .

E*
E
E E

E

E E

i0

E

E

E

Blank

E*
E
E
E

E

* A l l o w e d o n l y if i n t h e l a s t f ield of s e g m e n t and i f r e q u i r e d t h e r e b y f o r m a t .

Renmte Sequence Check (after the appearance of first digit)

Cttrre~tl
Symbol Action

0-9
+

lo

blank E*

Format Conformance Check

Actual Symbol
Expected
S~mbol

D o r Z

+ or - -

10

C

0--9

W
W
W
W

+ or -

W
W
W

W
W

W
W

1o

W
W
W

W

Blank

W
W
W

W
E
W
W

W = w a r n i n g o n l y

E = n o n r e c o v e r a b l e e r ro r
* = O K if t o l e f t of f i rs t d i g i t e n c o u n t e r e d

G. E. FORSYTHE, J. G. HERRIOT, Editors

A L G O R I T H M 251

F U N C T I O N M I N I M I S A T I O N [E4 l

i\![. WELLS (R e c d . 13 J u l y 1964 a n d 5 Oct . 1964)

E l e c t r o n i c C o m p u t i n g Lab. , U . of Leeds , E n g l a n d

p r o c e d u r e FLEPOM[N (n, x, f , est, eps, funct, cony, limit, h,
l oadh) ;

va lue n, est, cps, Ioadh, limit;
rea l f, est, cps; i n t e g e r n, limit; Boo lean cony, loadh;
a r r ay x, h; p r o c e d u r e funct;

c o m m e n t funct ion minimisation by the method of Fletcher
and Powell [Comput. J. 6, 163-168 (1963)]. On en t ry x[l:n] is an
estimate of the position of the minimum, est an est imate of the
minimum value, eps a tolerance used in t e rmina t ing the proce-
dure when the first derivative of f nearly wmishes, and loadh
indicates whether or not an approximation to the inverse of the
matr ix of second derivatives of f is available. If Ioadh is t r u e
the procedure supplies the unit matr ix as this estimate, other-
wise i t is assumed tha t the upper tr iangle of a symmetric posi-
tive definite matr ix is stored by rows in h [l :n X (n+l) /2] .
The s ta tement funct (n, x, f, g) assigns to f the funct ion value
and to g[l:n] the gradient vector.

A successful exit from FLEPOM[N, with cony t r ue , occurs
if two successive values of f arc equal, or if a new value of f
is larger than the previous value (due to rounding errors), or
if after n or more iterations the lengths of the vectors s and
sigma are less than eps. If the :number of i terat ions exceeds
limit, then an exit occurs with cony fa lse . In e i ther case, the
final funct ion value, es t imated position of the minimum and
inverse mat r ix of second derivatives arc in f, x and h;

b e g i n
r ea l oldf, st, ghg;
i n t e g e r i, j, k, count;
a r r a y g, s, gamma, sigma [l:n];
rea l p r o c e d u r e dot (a, b);

a r r a y a, b;
e o m l n e n t inner product of a and b [In this procedure and

in up dot greater accuracy would be obta ined by accumulat-
ing the inner products in double precis iom--Ref.] ;

b e g i n i n t e g e r i ; r ea l s; s := 0;
for i := 1 s t e p I u n t i l n d o s : = s + a[i] X b[i];
dot := s

e n d of dot;
r ea l p r o c e d u r e up dot (a, b, i) ;

v a l u e i ;
a r r a y a, b; i n t e g e r i ;
eo~nlneu t mult iply b by the i t h row of the symmetric

matr ix a, whose upper t r iangle is s tored by rows;
b e g i n i n t e g e r j , k; r e a l s; /c := i ; s := O;

f o r j := 1 s tep 1 u n t i l i -- l d o
b e g i n s := s + a[k] X b[j]; k := k + n -- j e n d steps

to diagonal. Now go along row;
for j := i s t e p 1 u n t i l n d o S := s + a[k+j - i] X b[j];

up dot := s
e n d of up dot;

set initial h:
i f loadh t h e n

V o l u m e 8 / N u m b e r 3 / M a r c h , 1965 C o m m u n i c a t i o u s of t h e ACM 169

b e g i n k : = 1;

f o r i : = 1 s t e p 1 u n l : i l n d o

b e g i n h[k] : = 1.;

f o r j := 1 s t e p 1 u n t i l n -- i d o h [k q - j] : = O;

k := k + n - i q - 1
e n d

e n d f o r m a t i o n of u n i t m a t r i x in h;
slart of minimisat ion :

cony : = t r u e ;

func t (n, x, f , g) ;
f o r count := 1, count -~ 1 w h i l e oldf > f d o
b e g i n oldf := f ;

f o r i : = 1 s t e p 1 u n t i l n d o
b e g i n sigma[i] : = x[i] ; gamma[i] : = g[i] ;

s[i] : = - -up dot(h, g, i)
e n d p r e s e r v a t i o n of x, g a n d f o r m a t i o n of s ;

R e v i s e d A l g o r i t h m s P o l i c y • M a y , 1964

A contribution to the Algorithms department must be in the form of
an algorithm, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in capital and lower-case
letters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Material
to appear in boldface type should be underlined in black. Blue underlin-
ing may be used to indicate italic type, but this is usually best left to the
Editor.

An algorithm must be written in the ALGOL 60 Reference Language
[Comm. ACM 6 (Jan. 1963), 1-17l, and normally consists of a commented
procedure declaration. Each algorithm must be accompanied by a complete
driver program in Arrack 60 which generates test data, calls the procedure,
and outputs test answers. Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm.
The driver program may be published with the algorithm if i t would be of
major assistance to a user.

Input and output should be achieved by procedure statements, using
one of the following five procedures (whose body is not specified in ALooL):
lsee "Report on Input-Output Procedures for ALGOL 60/' Comm, ACM 7
(Oct. 1964), 628-629].
procedure inreal (channel, destination)r value channel; in teger channel;

real destination; comment the number read from channel channel is
assigned to the variable destination;... ;

procedure outreal (channel, source); value channel, source; Integer channel;
real source; comment the value of expression source is output to channel
channel;... ;

procedure ininteger (channel, destitution);
value channel; Integer channel, destination;... ;

procedure outinteger (channel, source);
value channel, source; Integer channel, source;... ;

procedure outstring (channel, string); value channel; Integer channel;
atr ln~ string;... ;

If only one channel is used by the program, it should be designated by I.
Examples:

outstring (1, 'x ='); outreal (1, x);
f o r i : = 1 s t e p 1 u n t i l n d o outreal (I, A[i]) ;
ininteger (1, digit [17]);

I t is intended that each published algorithm be a well-organlzed, clearly
commented, syntactically correct, and a substantial contribution to the
ALGOL literature. All contributions wi!l be refereed both by human beings
and by an ALGOL compiler. Authors should give great attention to the cor-
rectness of their programs, since referees cannot be expected to debug them.
Because ALOOL compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithms are written in a recognized
subset of ALACK 60 [see "Report on SUBSET ALGOL 60 (IFIP)," Comm.
AGM 7 (Oct, 1964), 626-627].

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and careful
proofreading i~ of paramount importance.

Although each algorithm has been tested by its author, no liability is as-
sumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
cations issue bearing the algorithm.--G.E.F.

,s'carch along s:
b e g i ~ r e a l y(t, yb, va, vb, vc, tz, l~:, w, z, t, ss;

yb : = f ; 7;5 : = ~ot(g, s); .qa := (~og(.s, s) i
i f vb ~ 0 t b e ~ g o to s k / p ;

;a : - 2 X (e.s~ f)/~'b;
scale: h : = i f k > 0 a n d k ~' 2 X ss < 1 ~ h e n k e l s e 1/sqrt(s~);

k : = O ; '

erclrapolatc: ya : = yb; va : = vb;

t b r i : = 1 s t e p 1 ~ m t i / n do x[i] : = x [i] -F" h X s[i];
func t (n , x, f , g) ;
yb : = f ; vb : = dot(g, s);
i f vb < 0 a n d yb < ya t h e n

b e g i n h : = k := h + k; g o t o extrapolate e n d ;
t : = O;

interpolate: z : = 3 X (ya--yb) /h q- va -~ vb;
w : = s q r t (z T 2 - v a X v b) ;
k : = h X (v b ÷ w - z) / (v b - v a - ? 2 X w) ;
f o r i : = 1 s t e p 1 u n t i l n d o x[i] : = x[i] q- (t - k) ×s [i] ;
funct (n, x, f , g) ;
i f f > y a o r f > yb t h e n
b e g i n vc := dot(g, s) ;

i f v c < 0 t h e n

b e g l n y a := f ; va : = vc; t : = h : = k e n d
e l s e

b e g i n y b := f ; vb := ve; t := 0; h : = h - k end;
g o t o interpolate

e n d ;

skip: e n d of s e a r c h a l o n g s ;

f o r i : = 1 s t e p 1 u n t i l n d o

b e g i n sigma[i] := x[i] - sigma[i];
gamma[i] : = g[i] - gamma[i]

e n d ;

sg : = dot(sigma, gamma);
i f count _~ n t h e n

b e g i n i f sqrt(dot(s, s)) < eps a n d sqrt(dot(sigma, sigma)) <
eps t h e n g o t o f inish

e n d t e s t fo r v a n i s h i n g d e r i v a t i v e ;

f o r i : = 1 s t e p 1 u n t i l n d o s[i] : = up dot(h, gamma, i) ;
ghg : = dot(s, gamma);
k : = l ;

f o r i : = 1 s t e p 1 u n t i l n d o f o r j : = i s t e p 1 u n t i l n do

b e g i n h[k] : = h[k] -~ sigma[i] X sigma[j]/sg -- s[i] X s[j]/ghg;
k : = k q - 1

e n d u p d a t i n g of h;

i f count > l imi t t h e n g o t o exit;
e n d of loop c o n t r o l l e d b y count; g o to f in@h;

exit: cony : = f a l s e ;

finish: e n d of F L E P O M L ¥

CERTIFICATION OF ALGORITHM 139 tall
SOLUTIONS OF THE DIOPHANTINE EQUATIOS

[J.E.L. Peck, C o m m . ACM 5 (Nov. 1962), 556]
HENRY J. BOWLDEN (Recd. 30 Sept. 1964 and 5 Nov. 1964)
Westinghouse Electric Corp., R&D Ctr., Pittsburgh, Ps.

A l g o r i t h m 139 w a s t r a n s c r i b e d i n t o B u r r o u g h s E x t e n d e d ALOOI,

a f t e r t h e f o l l o w i n g t y p o g r a p h i c a l e r r o r w a s c o r r e c t e d : On the
l i n e f o l l o w i n g " i f d ~ 1 t h e n " r e p l a c e " a : = a/d," by"a := a/d;".

T h e c a s e s s h o w n in t h e t a b l e w e r e t r i e d , w i t h t h e resu l t s sh0w~l
i n c o l u m n s 4 a n d 5. T h e s e s o l u t i o n s a r e c o r r e c t , b u t perhaps not

t o o u s e f u l . Of c o u r s e , a d e f i n i t i o n of " u s e f u l " i n t h i s con tex t would

be r a t h e r s u b j e c t i v e ; i n a n y ease , t h e u s e r car t a l w a y s obtain an

a r b i t r a r y s o l u t i o n " u s e f u l " for h i s p u r p o s e . We h a v e chosm~ to

r e g a r d a s m a l l v a l u e of x as a c r i t e r i o n f o r u s e f u h m s s , and obtain
t h i s b y i n s e r t i n g , j u s t b e f o r e "pr in t @0, y 0) " , t h e s ta tements

c : = x0 + b; x0 : = x 0 - c X b; y0 : = y 0 - ~ e X a ;
T h e f o l l o w i n g r e m a r k s h a v e to do w i t h m a t t e r s of programming

t a s t e r a t h e r t h a n a c c u r a c y .

V o l u m e 8 / N u m b e r 3 / M a r c h , 1965

ini

! ~il

Iiia

i 0i ̧
i iu

[70 C o m m u n i c a t i o n s o f t i l e A C M ~

(a) A v a l u e par t of form v a l , e a, b, c; should be inser ted to
~,v0id side effects.

(b) The results shonld be p:~ssed back ~o the calling program
for use by the caller. This requires the :~(htition of two eall-by-
I~ame parameters (x0, y0), and the removal of the declarat ion
integer xO, yO;. The provisions for p r in t ing the results should be
0mitred.

(e) The procedure contains a del ibera te possibi l i ty of an in-
fi~lite loop. This is unacceptable oa most opera t ing systems and
should be omitted.

(d) 2?he provision of an array (q) "as large as s torage will
allow" is ra ther indefinite. The a lgor i thm as given provides no
test to p reven t exceeding th is a rb i t r a ry size. ~l~he number of par-
tial quot ients in the Eucl idean a lgor i thm m ay be shown to be no
more t h a n five t imes the number of decimal digits in the (largest
of the) coefficients a, b, c, so a size of five t imes the number of digits
in the largest integer to be considered is sufficient.

The algori thm, modified as suggested above, gives the results
in columns 6 and 7 of the table below. The execution t ime on the
11-5000 was approximately 40 milliseconds.

ordinal modified

a b c xO yO xO yO

1000 23 1046 -2092 91002 --22 1002
0 0 0 i nde t e rmina t e

57 - 103 47009 2209423 1222234 73 - 4 1 6
10 12 578 - 2 8 9 289 --1 49
10 12 97 no so lu t ion

R.EiX,IARK ON ALGORITHM 145 [D1]
ADAPTIVE NUMERICAL INTEGRATION BY

SIMPSON'S RULE [William Marshall McKeeman,
Comm. ACM 6, (Dec. 196,), 604]

~\[. C. Pn(I~ (Recd. 5 Oct. 1964 and 23 Nov. 1964)
Statistical Research Unit of the British Medical Research

Council, University College Hospital Medical School,
London, United Kingdom

This procedure was tes ted on the I CT Atlas eolnputer and
found sa t is factory after the followillg th ree modifications were
made :
(1) add " r e a l absarea;" on the line following " i n t e g e r level;",
(2) t~dd "absarea := 1.0;" oa the line following "level := 1;",
(3) subs t i t u t e

"Integral := Simpson (F, a, b -a , F(a), 4.0XF((a~-.b)/2.0),
F(b), absarea, 1.0, eps)"

for
"Integral := Simpson (F, b-a , F(a), 4.0XF((a+b)/2.0), F(b),

1.0, 1.0, eps)".
These corrections are necessary since absarea appears on the left-
hand side of an assignment s t a tement , namely, in line 10 of the
real p r o c e d u r e Simpson, and yet when Simpson is called in the
third to las t line of the r ea l p r o c e d u r e Integral the actual parame-
ter for absarea is given as 1.0.

The au thor wishes to t h a n k the referee for helpful suggestions.

CERTIFICATION OF ALGORITHM 203 [E4]
STEEP1 [E. J. Wasseher, Comm. ACM 6 (Sept. 1963), 517;

Comm. A C M 7 (Oct. 1964), 585]
J. ~\/[. VARAH (Reed. 30 July 1964)
Computation Center, Stanford University, Stanford, Calif.

Algor i t hm 203 was run on the B5000 at S tanford wi th tile neces-
sary modif icat ions for Burroughs ' Ex tended ALGOL. After some
test ing, the following errors were found.

1. There is an extra b e g i n in procedure ATIVE. The first
s ta tement af ter the comment in this procedure should be changed
from

b e g i n ATIVE: htmbda := 0;
to

lamb& := 0;
l i t was the au thor ' s original in ten t ion t h a t this b e g i n be not in
bold-face bu t t h a t i t should be par t of the label begirt A T I V E
inserted to clarify the program.--Ed.]

Also, there is a missing semicolon in procedure A T I V E at tile
end of the line preceding comp: and procedure STEP has an un-
necessary b e g i n - e n d block.

2. Because the domain of definition of the funct ion FUNK
is bounded by the rectangular hyperbox lb[j] =< x[j] =< ub[jl,
j = 1, 2, . . . , n, before giving a new direct ion in which to pro-
ceed, the value of xmin is checked (in A TIVE, under large:). If,
for any j, xmin[j] is within dx[j] of the boundary, xmin[jl is changed
so t h a t i t is exactly dx[fi from the boundary . However, if the mini-
mum value of FUNK occurs at just such a place (say r ight at the
boundary) , t hen a step will be made from this new posi t ion back
to the boundalT. Then tile new xmin[j] will again be within dx[j]
of the boundary , so i t is moved away, and so on forming a loop.
To correct this, tile old value of xmin[j] should be saved (in xstep[jl,
for example) and below, when A is tested, the funct ion value set
equal to the minimum of values at xmin and xstep. The author,
when A was true (i.e. when such a shif t had been made), merely
set the funct ion equal to the value at xmin.

Specifically, this means changing the lines following large: to
A := I3 := f a l se ; i f xmin[j] + dx[j] > ub[j] t h e n]
b e g i n

xstep[jl := xmin[j];
xmin[j} := u b y] - dz[j]; A := t r u e

e n d
else i f xmin[fi - dx[j] < lb[j] t h e n
b e g i n

xstep[jl := z'min[jl;
xmin[j] := lb[j] + dx[j]; A := t r u e

end ;
and the condit ional s t a t ement inw)lving A (3rd line af ter small: to

i f A t h e n
b e g i n

gamma := FUNK@rain);
i f fmin ~ gamma t h e n xmin[j] := xstep[j]
else fmin := gamma

e n d ;
3. Also in ATIVE, under cornp:, the der ivat ive approximat ions

are all normal ized af ter the for loop by division by lambda. How-
ever, lambda will be zero if all dJ~z[jl are zero to working accuracy.
So we should only divide by lambda when i t is not zero.

Specifically, this means inserting the line
i f lambda # 0 t h e n

before the th i rd line from the end of procedure ATIVE .
With these corrections, the a lgor i thm did run sueeessfully.

I t should also be ment ioned tha t procedures A T[VE and STEP
could jus t as well be blocks with labels A T I V E and ~TEP ra ther
t han procedures, wi th the calls on them changed to go t o A T I V E
and go t o STEP.

REMARK ON ALGORITHm[205 [E4]
ATIVE [J. G. A. Haubrieh, Comm. ACM 6 (Sept. 1963),

5191
E. J. WASSCrtER (Recd. 23 Nov. 1964)
Philips Computer Center, N. V. Philips' Gloeilampea-

fabrieken, Eindhoven, Netherlands
There is a mispr int in this Algori thm. The first s t a t emen t in

the fifth line from the end of the procedure A T I V E should read:
dz[jl := 3 × dx[jl;

¥ o l n l n e 8 / N u m b e r 3 / M a r c h , 1965 C o m m u n i c a t i o n s of t h e ACM 171

