tive functions and general framework on which any desired al-
gorithm can be built. In certain instances the position of the report
seerns to be at variance with these principles, and it might be
worthwhile to re-examine the document with respect to these
points,

Appendix

Tllegal Character Check. Outside of strings, only the following

characters are legal:

0 through 9
4 — ., (blank) 10

Count Check Over o Format Item

-+ or — : Not more than two
.+ Once only
10 : Once only

I'memediate Sequence Check

Current Symbol

Previous
Symbol
0-9 4 or — . 10 Blank ,

0-9 E* E*
-+ or — E E
. E B E E
10 E B E
Blank
) E E E E

* Allowed only if in the last field of segment and if required there by format.

Remate Sequence Check (after the appearance of first digit)

Current
Symbol Action
0-9
: ‘
10 1
blank I*

-

Format Conformance Check

Aciual Symbol

Expected
Symbol
-9 “+ or — . 10 Blank ,
DorZ * w w * w
-+ or — W W w E
R W w w W w
1 w W W W w
C w w W A w

W = warning only
E = nonrecoverable error
* = OK if to left of first digit encountered

Volume 8 / Number 3 / March, 1965

G. E.

ALGORITHM 251

FUNCTION MINIMISATION [E4]

M. WerLs (Reed. 13 July 1964 and 5 Oct. 1964)
Electronic Computing Lab., U. of Leeds, England

procedure FLEPOMIN (n, z, f, est, eps, funct, conv, limit, h,
loadh);

value n, est, eps, loadh, limil;
real f, est, eps; integer n, limit;
array z, by procedure funct;

comment function minimisation by the method of Fletcher
and Powell [Comput. J. 6, 163-168 (1963)]. On entry z[l:n] is an
estimate of the position of the minimum, est an estimate of the
minimum value, ¢ps a tolerance used in terminating the proce-
dure when the first derivative of f nearly vanishes, and loadh
indicates whether or not an approximation to the inverse of the
matrix of second derivatives of f is available. If loadh is true
the procedure supplies the unit matrix as this estimate, other-
wise it is assumed that the upper triangle of a symmetric posi-
tive definite matrix is stored by rows in A[l:n X (n+1)/2].
The statement funct (n, z, f, ¢) assigns to f the function value
and to g{l:n] the gradient vector.

A successful exit from FLEPOMIN, with conv true, occurs
if two successive values of f are equal, or if a new value of f
is larger than the previous value (due to rounding errors), or
if after n or more iterations the lengths of the vectors s and
sigme are less than eps. If the number of iterations exceeds
limit, then an exit occurs with conv false. In either case, the
final function value, estimated position of the minimum and
inverse matrix of second derivatives are in f, x and h;

begin
real oldf, sg, ghg;
integer ¢, , k&, count;
array g, 8, gamma, sigma [Lin];
real procedure dot (a, b};
array a, b;
comment inner product of ¢ and b [In this procedure and
in up dot greater accuracy would be obtained by accumulat-
ing the inner products in double precision.—Ref.};
begin integer ¢; real s; s :=(;
for 1 := 1 step I until n do s 1= s + afZ] X b[¢];

Boolean conv, loadh;

dot := s
end of dot;
real procedure up dot (a, b, 7);
value ¢;
array a, b; integer 7;
comment multiply & by the ith row of the symmetric

matrix @, whose upper triangle is stored by rows;
begin integer j, k; reals; k:=1; s :=0;
for j := 1 step 1 until 7 — 1 do
begin s ;= s + a[k] X blj]; k:=k + n — j end steps
to diagonal. Now go along row;
for j := 4 step 1 until n do s := s + alk+7—¢] X b[jl;
up dot := s
end of up dot;
set initial h:
if loadh then

Communications of the ACM 169



begin k := 1;
for ¢ := 1 step 1 until » do
begin hlk] 1= 1;
for j := 1 step 1 until n — ¢ do hlk+j] = 0;
ki=k-+n—i+1
end
end formation of unit matrix in A;

start of mintmisation:

cony = true;
Junct (n, =, f, g);
for count 1= 1, count + 1 while oldf > f do
begin oldf = f;
for 7 := 1 step 1 until n do
begin sigmali] = z{z]; gammald] = g[il;
s[7} 1= —updot(h, g, 7)
end preservation of z, g and formation of s;

Revised Algorithms Policy » May, 1964

A contribution to the Algorithms department must be in the form of
an algorithm, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in eapital and lower-case
letters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Material
to appear in boldface type should be underlined in black. Blue underlin-
ing may be used to indicate italic type, but this is usually best left to the
Editor.

An algorithm must be written in the ALgor 60 Reference Language
[Comm. ACM 6 (Jan. 1963), 1-17], and normally consists of & cormmented
procedure declaration. Each algorithm must be accompanied by a complete
driver program in ALGOL 60 which generates test data, calls the procedure,
and outputs test answers, Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm.
The driver program may be published with the algorithm if it would be of
major assistance to a user.

Input and output should be achieved by procedure statements, using
one of the following five procedures (whose body is not specified in AvGoL):
[see “Report on Input-Output Procedures for ALGOL 60,” Comm, ACM 7
(Oct. 1964), 628-629].
procedure inreal (channel, destination): value channel; integer channel;

real destination; comment the number read from channel channel is

assigned to the variable destination; . . .;

procedure outreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression source is output to channel
channel; . . . ;

procedure ninteger (ch I, destination);

value channel; integer channel, destination; . . . ;
procedure outinteger (channel, source);

value channel, source; Integer channel, source; . .. ;
procedure outsiring (channel, string); value channel; integer channel;

string siring; . .. ;

If only one channel is used by the program, it should be designated by 1.
Examples:

outstring (1, ‘e ='); outreal (1, 2);
for ¢ ;= 1 step 1 until » do outreal (1, A[));
ininteger (1, digit [17]);

It is intended that each published algorithm be a well-organized, clearly
commented, syntactically correct, and a substantial contribution to the
Avrcor literature. All contributions will be refereed both by human beings
and by an ArcoL compiler. Authors should give great attention to the cor-
rectness of their programs, since referees cannot be expected to debug them.
Because ALGoL compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithms are written in a recognized
subset of Arcow 60 [see “Report on SUBSET ALGOL 60 (IFIP),” Comm.
ACM 7 (Oct, 1964), 626-627].

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and careful
proofreading is of paramount importance.

Although each algorithm has been tested by its author, no lability is as-
sumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the aigorithm author and to the Communi-
cations jssue bearing the algorithm.—G.E.F.

170 Communications of the ACM

search along s:

begin real ya, yb, va, vb, ve, b, k, w, 2, ¢, ss;
yb 1= f; wb 1= dot{y, s); ss 1= doi(s, s);
if vb 2 0 then go to skip;

ko= 20X (est-f)/ob;

scale: h o= ifk > 0andk T 2 X ss < 1| then k clse l/gq;-t(ss),

ko= 0;

extrapolate: ya = yb; v = vb;

for 7 := 1 step 1 until n do alf] := z[i] + b x si)
Junct(n, z, f, 9);

yb = f; wvb = dot{y, s);

if ¥b < 0 and 0 < ya then

begin h := k := h -+ k; go to extrapolate end;

t = 0;

3

interpolate: z 1= 3 X (ya—yb)/h 4+ va -+ vb;

w = sqri(z T 2—vaXvbh);
k= h X @btw—z)/(@b—va-+2Xw);
for ¢ := 1 step 1 until n do 2[i] := x[i] + (¢~k) x slil;
Junctin, z, f, 9);
if f > ya or f > yb then
begin vc := dot(g, s);
if v¢ < 0 then
beginya := f; va :=ve; :=h:=Fkend
else
beginyb := f; vb :=we; t:=0; h:i=h—Fk end;
go to wnterpolate
end;

skip: end of search along s;

for ¢ := 1 step 1 until » do

begin sigma[i] := z[{] — sigmali];
gammali] 1= gl] — gammali]
end;

8g := dot(sigma, gamma);
if count =z n then
begin if sqri(dot(s, s)) < eps and sqrt(dot(sigma, sigma)) <
eps then go to finish
end test for vanishing derivative;
for 7 := 1 step 1 until n do s[i] := up dot(h, gamma, 7);
ghg = dot(s, gamma);
k=1
for 7 := 1 step 1 until n do for j := i step 1 until # do
begin Akl := hlk] + sigmali] X sigma[fl/sg — s[i] X s[jl/ghg;
ki="F%+1
end updating of 4;
if count > limit then go to exit;
end of loop controlled by count; go to finish;

exit: conv := false;

finish: end of FLEPOMIN

CERTIFICATION OF ALGORITHM 139 [Al] '
SOLUTIONS OF THE DIOPHANTINE EQUATION

[J.E.L. Peck, Comm. ACM 5 (Nov. 1962), 556]

Henry J. Bowwpex (Reed. 30 Sept. 1964 and 5 Nov. 1964)
Westinghouse Electric Corp., R&D Ctr., Pittsburgh, Pa.

Algorithm 139 was transcribed into Burroughs Extended ALot

after the following typographical error was corrected: On 'ﬂl}f
line following “if d = 1 then’ replace “a := a/d,” by “a :=a/;".

The cases shown in the table were tried, with the results shows

in columns 4 and 5. These solutions are correct, but perhaps not
too useful. Of course, a definition of “useful’’ in bhis context Vj'OUId
be rather subjective; in any case, the user can always obtain an
arbitrary solution “useful” for his purpose. We have choset {0
regard a small value of r as a eriterion for usefulness, and obtall
this by inserting, just before “print (z0, 30)”’, the gtatements

=+ b; 20 =20 — ¢ X b; y0 =40 + ¢ X6 -
The following remarks have to do with matters of programmiis

taste rather than accuracy,

Volume & / Number 3 / March, 1962



{a) A value part of form value a, b, ¢; should be inserted to
woid side effects.

{b) The results should be passed back to the calling program
for use by the caller. This requires the addition of two eall-by-
pame parameters (20, y0), and the removal of the declaration
integer 20, y0;. The provisions fov printing the results should be
omitéed.

(¢} The procedure contains a deliberate possibility of an in-
finite loop. This is unacceptable on most operating systems and
should be omitted.

() The provision of an array (¢) “‘as large as storage will
allow” is rather indefinite. The algorithm as given provides no
test to prevent exceeding this arbitrary size. The number of par-
tial quotients in the Buelidean algorithm may be shown to be no
more than five times the number of decimal digits in the (largest
of the) ceefficients a, b, ¢, 8o a size of five times the number of digits
in the largest integer to be considered is sufficient.

The algorithm, modified as suggested above, gives the results
in eolumns 6 and 7 of the table below. The execution time on the
B-5000 was approximately 40 milliseconds.

original modified
@ b ¢ 20 40 %0 30
1000 23 1046 - 2002 91002 —22 1002
0 0 0 indeterminate
57 - 103 47009 2209423 1222234 73 —416
10 12 578 — 289 289 -1 49
10 12 97 no solution

REMARK ON ALGORITHM 145 [D1]

ADAPTIVE NUMERICAL INTEGRATION BY
SIMPSON’S RULE [William Marshall McKeeman,
Comm. ACM 6, (Dec. 1962), 604)

M. C. Pike (Recd. 5 Oct. 1964 and 23 Nov. 1964)

Statistical Research Unit of the British Medical Research
Council, University College Hospital Medical School,
London, United Kingdom
This procedure was tested on the ICT Atlas computer and

found satisfactory after the following three modifications were

made :

(1) add *real absarea;” on the line following “‘integer level;”’,

(2) add “absarea := 1.0;” on the line following ““level := 1;7,

(8) substitute
“Integral := Simpson (F, a, b—a, F(a), 4.0XF ((a+b)/2.0),

F ), absarea, 1.0, eps)’’

for

“Integral := Simpson (F, b—a, F(a), 4.0XF((a+b)/2.0), F ),
1.0, 1.0, eps)”.

These corrections are necessary since absarea appears on the left-

hand side of an assignment statement, namely, in line 10 of the

real procedure Simpson, and yet when Simpson is called in the
third to last line of the real procedure Iniegral the actual parame-

ter for absarea 1s given as 1.0.

The author wishes to thank the referee for helpful suggestions.

CERTIFICATION OF ALGORITHM 203 [E4]

STEEP1 [I5. J. Wasscher, Comm. ACM 6 (Sept. 1963), 517;
Conwun. ACM 7 (Oct. 1964), 585)

J. M. Varar (Reced. 30 July 1964)

Computation Center, Stanford University, Stanford, Calif.
Algorithm 203 was run on the B5000 at Stanford with the neces-

sary modifieations for Burroughs’ Extended AvcoL. After some
testing, the following errors were found.

Volume 8 / Number 3 / March, 1965

1. There is an extra begin in procedure ATIVE. The first
statement after the comment in this procedure should be changed
from

begin ATIVE: lambda := 0;
to

lambda = 0;
[It was the author’s original intention that this begin be not in
bold-face but that it should be part of the label begin ATIVE
inserted to clarify the program.—Ed.]

Also, there is a missing semicolon in procedure ATIVE at the
end of the line preceding comp: and procedure STEP has an un-
necessary begin-end block.

2. Because the domain of definition of the function FUNK
is bounded by the rectangular hyperbox b[j] = 2[j] < ubljl,
i=1,2 -+, n, before giving a new direction in which to pro-
ceed, the value of xmin is checked (in ATIVE, under large:). If,
for any 7, amin[f] is within dz[j} of the boundary, zmin[j] is changed
80 that it is exactly de[;j] from the boundary. However, if the mini-
mum value of FUNK occurs at just such a place (say right at the
boundary), then a step will be made from this new position back
to the boundary. Then the new xmin]j) will again be within du[j}
of the boundary, so it is moved away, and so on forming a loop.
To correct this, the old value of zmin[j] should be saved (in zstep(j],
for example) and below, when A is tested, the function value set
equal to the minimum of values at amin and zstep. The author,
when 4 was true (i.e. when such a shift had been made), merely
set the function equal to the value at zmin.

Specifically, this means changing the lines following large: to

A = B := false; if zmin[j] + dz[j] > ub[j] then]

begin

astep[jl = xmin[jl;

aminlj) 1= ublj] — dxlj}; A = true
end
else if xmen{j] — dzlj] < b]j] then
begin

astep(j} 1= aminljl;

amin(f] = [b[F] + dz7]; A = true

end;
and the conditional statement involving 4 (3rd line after small:) to

if A then

begin

gamma 1= FUNK (xmin);
if fmin € gamma then xmin(j] := zstepl]]
else fmin := gamma

end;

3. Also in ATIVE, under comp:, the derivative approximations
are all normalized after the for loop by division by lambda. How-
ever, lambda will be zero if all dfdz[j] are zero to working accuracy.
So we should only divide by lambda when it is not zero.

Specifically, this means inserting the line

if lambda # 0 then
before the third line from the end of procedure ATIVE.

With these corrections, the algorithm did run successfully.
It should also be mentioned that procedures ATIVE and STEP
could just as well be blocks with labels ATIVE and STEP rather
than procedures, with the calls on them changed to go to ATIVE
and go to STEP.

REMARK ON ALGORITHM 205 [E4]

ATIVE [J. G. A. Haubrich, Comm. ACM € (Sept. 1963),
519]

E. J. Wasscrir (Reed. 23 Nov. 1964)

Philips Computer Center, N. V. Philips’ Gloeilampen-
fabrieken, Eindhoven, Netherlands
There is a misprint in this Algorithm. The first statement in

the fifth line from the end of the procedure ATIVE should read:
dzlj} := 3 X dz[jl;

Communications of the ACM 171



