ALGORITHM 252 [Z]
VECTOR COUPLING OR CLEBSCH-GORDAN
COEFFICIENTS
J. H. Gunn
(Recd. 17 Aug. 1964, 13 Nov. 1964 and 21 Dec. 1964)
Nordisk Institut for Teoretisk Atomfysik, Copenhagen,
Denmark

real procedure VCC(J1, J2, J, M1, M2, M, factorial);

value J1, J2, J, M1, M2, M;

integer J1, J2, J, M1, M2, M; array faclorial;

comment VCC calculates the vector coupling or Clebsch-Gor-
dan coefficients defined by the following formula

(Frmy Joma |1 J2j m)
@+ D+ 5= D — s+ DU=Gi+ jo+ 7 !]*

(i 47+ D!
X (G + m) Gy — m) (s + m) (G — m (G + m)1(f — m) 1]}
X Z (=1l i+ je—jF— )W Gr—mi— 2) ]

= 6(m1 + mz,m)l:

(ot me— )G —Jotm+ 21— 51— ms+ 2)1]

where j1 = J1/2, 52 = J2/2,j = J/2, ml = M1/2, m2 = M2/2,
m = M/2. [Reference formula 3.6.11, p. 45 of EpmonDs, Alan
R. Angular momentum in quantum mechanics. In Investiga-
tions in Physics, 4, Princeton U. Press, 1957.]. The parameters
of the procedure, J1, J2, J, M1, M2 and M, are interpreted as
being twice their physical value, so that actual parameters may
be integers. Thus to call the procedure to calculate (3 010 | 3
$ 0 0) the call would be VCC(1, 1,0, 0, 0, 0, factorial). The pro-
cedure checks that the triangle conditions for the existence of a
coefficient are satisfied and that j1 + 72 + 5 is integral. If the
conditions are not satisfied the value of the procedure is zero.
The parameter factorial is an array containing the factorials
from 0 up to j1 + 72 4+ j 4 1. Since in actual calculations the
procedure VCC will be called many times it is more economical
to have the factorials in a global array rather than compute
them on every entry to the procedure;
begin integer z, zmin, zmaz; real cc;
if M1+ M2 = M \/ abs(M1) > abs(J1) \V/ abs(M2) > abs(J2) \/
abs(M) > abs(J) V J > J1 + J2\/ J < abs(J1—J2) \V J1
+J2 4+ J #= 2 X (J1+J24+J)+2) then VCC := 0 else
begin zmin := 0;
if J — J2 + M1 < 0 then zmin := —J + J2 — M1;
ifJ — J1 — M2 + 2min < 0 then zmin := —J + J1 + M2;
mar: = J1 + J2 — J;
if J2 4+ M2 — zmax < O then zmaz := J2 + M2;
if J1 — M1 — zmaz < 0 then zmaz := J1 — M1;
cc = 0
for z := zmin step 2 until zmaz do
cc := cc + (if 2=4X (z+4) then 1 else —1)/(factorial[z+2]
X factorial[(J14+J2—J —2z) +2]
X factorial[(J1—M1—z) +2]
X factorial[(J2+M2—2z) +2]
X factorial[(J—J24M1+2) 2]
X factorial[(J—J1—M2+2) +2]);

Volume 8 / Number 4 / April, 1965

VCC = sgri((J+1) X factorial[(J1+J2—J)+2]

X factorial[(J1—J2+J)+2]
X factorial[(—J14+J2+J)+2] X factorial[(J1+M1)~+2]
X factorial[(J1—-M1)+2] X factorial[(J2+M2) 2]
X factorial[(J2—M2)+2] X factorial[(J+M) 2]
X factorial[(J—M) +2]/factorial[(J1+J24+T+2) +2])
X cc
end
end VCC

ALGORITHM 253 [F2]

EIGENVALUES OF A REAL SYMMETRIC MATRIX
BY THE QR METHOD

P. A. BusINGER*
(Recd. 17 Aug. 1964, 3 Nov. 1964 and 8 Dec. 1964)

University of Texas, Austin, Texas

* This work was supported in part by the National Science Foundation through
grant NSF GP-217 and the Army Research Office through grant DA-ARO(D) 31~124~
G388. Thanks are due the referee for suggesting several improvements.

procedure symmetric QR 1 (n, g);
array ¢,

comment uses Householder’s method and the QR algorithm to
find all n eigenvalues of the real symmetric matrix whose lower
triangular part is given in the array g[1:n, 1:n]. The computed
eigenvalues are stored as the diagonal elements g[s, ¢]. The
original contents of the lower triangular part of g are lost during
the computation whereas the strictly upper triangular part of g
is left untouched.

value n; integer n;

REFERENCES:

Francis, J. G. F. The QR transformation—Part 2. Comput. J. 4 (1961}, 332-345.

ORTEGA, J. M., anp Kamser, H. F. The LLT and QR methods for symmetric tri-
diagonal matrices. Comput. J. 6 (1963), 99-101.

ParrLETT, B. The development and use of methods of LR type. New York U.,
1963.

Wikinson, J. H. Householder’s method for symmetric matrices. Numer. Math. 4,
(1962), 354-361.

TrsT REsuLTs:

A version of this procedure acceptable to the Oak Ridge ALcoL
compiler was tested on a CDC 1604 computer (relative machine
precision 1.5-11). For a number of testmatrices of order up to
64 the dominant eigenvalue was found to at least 8 digits and
it was always among the most accurate values computed. In
some cases the accuracy of the nondominant eigenvalues varied
greatly, in one case the least accurate value had only 4 good
digits.

ExAMPLE:
For the 5X5 symmetric matrix whose lower triangular part is

5
4 6
3 07
2 4 6 8
13579
this prodecure computed the eigenvalues 22.406875305,

7.5137241530, 4.8489501197, —1.0965951813, 1.3270455994 ;
begin

real procedure sum (i, m, n, a); value m, n;

integer 7, m, n; real a;
begin real s; s := (;
fori:=m stepluntilndos := sta; sum:=3s

end sum;

real procedure maz (a, b); value a, b;
maz := if @ > b then q else b;

procedure Householder tridiagonalization 1 (n, g, a, bq, norm);
value n; integer n; array g, a, bg; real norm;
comment nonlocal real procedure sum, max;

real a, b;

Communications of the ACM 217



comment reduces the given real symmetric » by n» matrix g
to tridiagonal form using n—2 elementary orthogonal trans-
formations (/—2ww’) = (I-gamma uw’). Only the lower tri-
angular part of g need be given. The diagonal elements and
the squares of the subdiagonal elements of the reduced matrix
are stored in a[l:n] and bg[l:n—1] respectively. norm is set
equal to the infinity norm of the reduced matrix. The columns
of the strictly lower triangular part of g are replaced by the
nonzero portions of the veectors u;

begin integer ¢, j, k; real t, absb, alpha, bela, gamma, sigma;
array p(2:n];
norm := absb := 0;
for k := 1 step 1 until n—2 do
begin alk] := glk, kl;

stgma = bqlk] := sum(, k+1, n, gli, k] 72);
t := absb+abs(alk]); absb := sqrt(sigma);
norm := maz{norm, t+absb);
if stggma # 0 then
begin alpha = glk+1, k];
beta := if alpha < 0 then absb else—absb;
gamma = 1/(sigma—alphaXbeta); glk+1, k] := alpha—
beta;
for ¢ := k+1 step 1 until n do
plt] := gammaX (sum(j, k+1, 1, gli, j1Xgls, k1) +
sum(j, i+1, n, glj, :1Xglj, kD);
t := 0.5XgammaXsum (v, k+1, n, glt, k]IXpli]);
for 7 := k+1 step 1 until n do p[¢] := p[i]—tXygli, kl;
for ¢ := k+1 step 1 until » do
for j := k+1 step 1 until ¢ do
gle, g1 := gli, j1—gli, KIXplil—plIXgls, k]
end
end k;
aln—1] := gln—1, n—1]; bgln—1] := gln, n—1]72;
a[n] := gln, nl; t := abs(gln, n—1]);
norm := maz(norm, absb+abs(aln—11)-+1);
norm := mazx(norm, t+abs(aln]))

end Householder tridiagonalization 1;

integer 7, k, m, ml; real norm, epsq, lambda, mu, sql, sq2, u,
pq, gamma, {; array allin], bgl0:n—1];

Householder tridiagonalization 1(n, g, a, bg, norm);

epsq 1= 2.25-22Xnorm 12; comment The tolerance used in
the QR iteration depends on the square of the relative ma-
chine precision. Here 2.25;0-22 is used which is appropriate
for a machine with a 36-bit mantissa;

mu = 0; m = n;
inspect: if m=0 then go to return else ¢ := k := ml := m—1;
bql0] := 0;
if bg[k] £ epsq then
begin g[m, m] := a[m}]; mu :=0; m :=Fk;
go to inspect
end;

for 7 := i—1 while bg|Z] > epsgdo k := ;
if & = ml then
begin comment treat 2 X 2 block separately;
mu = a[ml]Xa[m]—bg[ml]; sql := afmll+alm];
sq2 := sqrt((a[ml]—a[m]) T 2+4Xbg[ml]);
lambda := 0.5X (if sql = 0 then sql-+sq¢2 else sql—sq2);
glml, ml] := lambda; g[m, m] := mu/lambda;
mu :=0; m:=m—2; go toinspect
end;
lambda := if abs(a[m]—mu) < 0.5Xabs(a[m]) then a[m]+0.5X
sqrt(bg[ml]) else 0.0;
mu = a[m]; sql := sq2 := u = 0;
for ¢ := k step 1 until m1 do
begin comment shortcut single QR iteration;
gamma = alt]—lembda—u;
pg := if sgl=1 then gamma T 2/(1—sql) else (1—s¢2)X
boli—1];
t := pq+bqli]; beli—1] := sglXt; sq2 := sql;

Il

218 Communications of the ACM

sql = bqlil/t; w := sqlX (gamma-+ali+1]—lambda);

alz] := gamma+u-tlambda

end 7;

gamma = a[m]—lambda—u;

bglml] = sgIX(if sql#1 then gammal2/(1—sgl) else
(1—s¢2) Xbg[ml]);

a[m] := gamma--lambda; go to inspect;

return: end symmetric QR 1

ALGORITHM 254 [F2]
EIGENVALUES AND EIGENVECTORS OF A REAL
SYMMETRIC MATRIX BY THE QR METHOD
P. A. BusiNgER*
(Reed. 17 Aug. 1964, 17 Nov. 1964 and 8 Dec. 1964)

University of Texas, Austin, Texas
* This work was supported in part by the National Science Foundation through

grant NSF GP-217 and the Army Research Office through grant DA-ARO(D) 31-124-

(3388. Thanks are due the referee for suggesting several improvements.

procedure symmetric QR 2 (n, g,z); valuen; integer n;
array ¢, &;

comment uses Householder’s method and the QR algorithm to
find all n eigenvalues and eigenvectors of the real symmetric
matrix whose lower triangular part is given in the array g. The
computed eigenvalues are stored as the diagonal elements
gli, 7] and the eigenvectors as the corresponding columns of the
array z. The original contents of the lower triangular part of g
are lost during the computation whereas the strictly upper
triangular part of g is left untouched.

REFERENCES:
Frawcis, J. G. F. The QR transformation—Part 2. Comput. J. 4 (1961), 332-345.
ParieTT, B. The development and use of methods of LR type. New York U.,
1963.
WiLkinsoN, J. H. Householder’s method for symmetric matrices. Numer. Math.
4 (1962), 354-361.
TesT RESULTS:
A version of this procedure acceptable to the Oak Ridge ALcown
compiler was tested on a CDC 1604 computer (relative machine
precision 1.5,5-11). For a number of testmatrices of order up to
64 the dominant eigenvalue was found to at least 9 digits. Eigen-
values much smaller in magnitude than the dominant eigenvalue
have fewer accurate digits. In some cases the components of the
eigenvectors were slightly less accurate than the eigenvalues.

ExAMPLE:
For the 5 X 5 symmetric matrix whose lower triangular part is

= N W Ut
Wk oo
Gt &~

8
79
this procedure computed the eigenvalues A\ =22.406875300,

ne=T 5137241547, A;=4.8480501203, A= —1.0965951820,
As=1.3270455995, and the corresponding eigenvectors

z; = (0.24587793851, 0.30239603954, 0.45321452335,
0.57717715229, 0.55638458400),
ze = (0.55006195546, 0.70944033954, —0.34017913315,
—0.083410953290, —0.26543567685),
z3 = (0.54717279573, —0.31256992008, 0.61811207635,
—0.11560659356, —0.45549374666),
zs = (—0.46935807220, 0.54221219466, 0.54445240360,

—0.42586566248, —0.088988503134),
75 = (—0.34101304185, 0.11643462042, 0.019590672072,
0.68204303436, —0.63607121400);
begin
real procedure sum (i, m, n, a); value m, n;
integer i, m, n; real a;

Volume 8 / Number 4 / April, 1965



begin real s; s := 0;

for 7 := m step 1 until n do s := s+a; sum :=s
end sum;
real procedure maz (a, b); value a, b; real q, b;

maz := if a > b then «a else b;
procedure Householder tridiagonalization 2 (n, g, a, b, z, norm);
value n; integer n; array ¢, a,b,z; real norm;
comment nonlocal real procedure sum, maz;
comment reduces the given real symmetric n by n matrix ¢
to tridiagonal form using n—2 elementary orthogonal trans-
formations (I—2ww’) = ([—gamma ww'). Only the lower
triangular part of g need be given. The computed diagonal
and subdiagonal elements of the reduced matrix are stored in
a[l:n] and b[1:n—1] respectively. The transformations on the
right are also applied to the n by n matrix z. The columns of
the strictly lower triangular part of g are replaced by the
nonzero portion of the vectors u. norm is set equal to the in-
finity norm of the reduced matrix;
begin integer 7, j, k; real t, sigma, alpha, bela, gamma, absb;
array p(2:n];
norm := absb := 0;
for k := 1 step 1 until n—2 do
begin alk] := gk, kl;
sigma 1= sum (¢, k+1, n, glt, k] 1 2);
t := absb+abs(alk]); absb := sqri(sigma);
norm := max(norm, t+absb); alpha = glk+1, kl;
blk] := beta := if alpha < 0 then absb else —absh;
if sigma # 0 then
begin gamma = 1/(sigma—alphaXbeta);
glk+1, k] := alpha—beta;
for ¢ := k-+1 step 1 until n do
plt] = gammaX(sum(j, k+1, <, gl¢, jIXgli, kD
+sum(j, i+1, n, gl7, {1Xgly, £I));
t 1= 0.5XgammaXsum (i, k-+1, n, gli, E1Xp[Z]);
for 7 := k+1 step 1 until n do p[7] := pli]—iXg[, k];
for ¢ := k+1 step 1 until » do
for j := k+1 step 1 until 7 do
gls, 7 := gli, l—glz, KIXplil—pli]Xglj, &;
for ¢ := 2 step 1 until n do
plil 1= gammaXsum(j, k+1, n, 22, 71XglJ, kD);
for ¢ := 2 step 1 until n do
for j := k+1 step 1 until n do
zlt, j] = zli, 71—pl1Xgl), k]
end
end k;
aln—1) :=g[n—1n-1]; a[n] :=g[n,n]l; bn—1]:= gn,n—1];
t := abs(b[n—1]);
norm := max(norm, absb—+abs(a[n—1])41);
norm := max(norm, t+abs(aln]))
end Householder tridiagonalization 2;
integer 1, j, k, m, ml; real t, norm, eps, sine, cosine, lambda,
mu, a0, al, b0, beta, 20, z1;
array a[l:n], bl0:n], c[0:n—1], cs, sn[l:n—1];
for z := 1 step 1 until » do
begin comment set z equal to the identity matrix;
zl[i, 1] 1= 1;
for j := 71+1 step 1 until n do z[7, j] := z[j,7] := 0
end 7;
Householder tridiagonalization 2 (n, g, a, b, z, norm);
eps := normX1.5,-11; comment the tolerance used in the
QR iteration is set equal to the product of the infinity norm
of the reduced matrix and the relative machine precision
(here assumed to be 1.5:~11 which is appropriate for a machine
with a 36-bit mantissa);

b[0] := mu :=0; m := n;

inspect: if m=0 then go to return else ¢ := k := ml := m—1;
if abs(bk]) < eps then
begin

glm, m] := a[m]; muw :=0; m:=k; go to inspect

Volume 8 / Number 4 / April, 1965

end;

for ¢ := 7—1 while abs(b[¢]) > eps do k := 1;

lambda := if abs(a|lm]—mu) < 0.5Xabs(a[m]) VV ml=Fk then
a[m]+0.5Xb[ml] else 0.0;

mu = a[m]; alk] := alk]—lambda; bela := blk];

for j := k step 1 until ml do

begin comment transformation on the left;
a0 := alj]; al := a[j+1]—Ilambda; b0 := b[jl;
t := sqri(a0 T 2-+beta T 2);

cosine := ¢s[j] := a0/t; sine := sn[j] := beta/t;
alj] := cosineXal+sineXbeta; alj+1] := —sineXb0+
cosineXal;

blj] := cosineXb0+sineXal; beta := b[j+1];
b[j41] := cosineXbeta; c[j] := sineXbeta
end j;
blk—1] := c[k—1] := 0;
for j := k step 1 until ml do
begin comment transformation on the right;
sine := snlj]; cosine := cs[jl;
a0 = a[j]; b0 := b|j];
blj—1] := blj—1]Xcosine-+c[j—1]Xsine;
alj) 1= a0Xcosine+-b0X sine+-lambda;

blj] := —a0Xsine+b0Xcosine; alj+1] := alj+1]Xcosine;
for ¢ := 1 step 1 until n do
begin 20 := z[d, jl; «l := z[1, j+1];
z[i, j1 := 20X cosine+xlXsine; z¢, j+1] := —20Xsine+
z1 Xcosine
end ¢
end j;

a[m] := a[m]+lambda; go to inspect;
return: end symmetric QR 2

CERTIFICATION OF ALGORITHM 21 [S17]
BESSEL FUNCTION FOR A SET OF INTEGER
ORDERS
[W. Bérsch-Supan, Comm. ACM 8 (Nov. 1960), 600]
J. Starrorp (Reed. 16 Nov. 1964)
Westland Aireraft Ltd., Saunders-Roe Division, East
Cowes, Isle of Wight, Eng.

If this procedure is used with a combination of a moderately
small argument and a moderately large order, the recursive evalu-
ation of rec2 in the last line of the first column can easily lead to
overflow, This occurred, for instance, in trying to evaluate
J10(0.01).

The following alterations correct this:

(1) Declare a real variable z and an integer variable m;
(ii) After line rec insert:
2z 1= MAX/4 X abs (z/k);
comment MAX is a large positive number approaching in
size the largest number which can be represented. The nu-
merical value of MAX/4 is written into the procedure;
(iii) At the end of the first column insert:
if abs(rec2) > z then

begin
recl 1= recl/z; rec? 1= rec2/z; sum := sum/z;
for m := n step —1 until p — 1 do J[m] := J[m]/z
end;

With these alterations the procedure was run on a National-
Elliott 803, for z = —1, 0, 0.01, 1,10 and n = 0, 1, 2, 10, 20. The
results agreed exactly with published seven-place tables.

[See also Algorithm 236, Bessel Functions of the First Kind
(Comm. ACM 7 (Aug. 1964), 479) which is not restricted to inte-
ger values. Although it is a much more complicated program,
Algorithm 236 is slightly faster than Algorithm 21 as corrected, at
least in some cases.—Ed.]

Communications of the ACM 219



REMARK ON ALGORITHM 231 [F1]

MATRIX INVERSION

[J. Boothroyd, Comm. ACM 6 (June 1964), 347]
Mars Ferring (Recd. 23 Nov. 1964)
Flygmotor Aeroengine Company, Trollhittan, Sweden

The algorithm cannot accept the pivot element = 0 which re-
duces the detection of singularities. We suggest the correction:

ifk >4 A j>1 N abs(alrlk], c[j]]) > abs(pivot) then

should be

if k>4 Aj> 1A abs(alrkl, cljl]) = abs(pivot) then

Revised Algorithms Policy « May, 1964

A contribution to the Algorithms department must be in the form of
an algorithm, a certifieation, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in capital and lower-case
letters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Material
to appear in boldface type should be underlined in black. Blue underlining
may be used to indicate ifalic type, but this is usually best left to the Editor.
An algorithm must be written in the Arcor 60 Reference Language
[Comm. ACM € (Jan. 1963), 1~17], and normally consists of a commented pro-
cedure declaration. Each algorithm must be accompanied by a complete
driver program in ALGoL 60 which generates test data, calls the procedure,
and outputs test answers. Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm.
The driver program may be published with the algorithm if it would be of
major assistance to a user.
Input and output should be achieved by procedure statements, using
one of the following five procedures (whose body is not specified in AncowL):
[see “Report on Input-Output Procedures for ALGOL 60,” Comm, ACM 7
(Oct. 1964), 628-629].
procedure inreal (ch 1, destination); value ch l; integer channel;
real destination; comment the number read from channel channel is as-
signed to the variable destination; . . . ;

procedure outreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression source is output to channel
channel; ... ;

procedure 1nint (ch 1, destination);
value ch l; integer ch 1, destination; ... ;

procedure outinteger (channel, source);
value channel, source; integer channel, source; . . . ;

procedure outstring (channel, string); value channel; integer channel;
string siring; ... ;

If only one channel is used by the program, it should be designated by 1.
Examples:

outstring (1, ‘x =’); outreal (1, z);
for ¢ := 1 step 1 untll n do outreal (1, A[i]);
ininteger (1, digit [17]);

It is intended that each published algorithm be a well-organized, clearly
commented, syntactically correct, and a substantial contribution to the
ArcolL literature. All contributions will be refereed both by human beings
and by an ALcorn compiler. Authors should give great attention to the cor-
rectness of their programs, since referees cannot be expected to debug them.
Because ALGOL compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithms are written in a recognized
subset of ALGoL 60 [see “Report on SUBSET ALGOL 60 (IFIP),” Comm.
ACM 7 (Oct, 1964), 626-627].

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and careful
proofreading is of paramount importance.

Although each algorithm has been tested by its author, no liability is as-
sumed by the contributor, the editor, or the Association for Computing
Machinery in conneection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communsi-
cations issue bearing the algorithm.—G.E.F,

220 Communications of the ACM

Letters—continued from p. 202

On Computers and Programs; Copyrights and Patents

Dear Editor:

I read with great interest your series of articles entitled “Com-
puters and Programs; Copyrights and Patents” which appeared
in the October 1964 issue of the Communications. Although I am
not yet a member of the Bar, as are the authors of those articles,
I beg leave to offer a few comments of my own. By way of my
qualifications to speak on this subject, I mention that a legal
paper I prepared was largely responsible for the Copyright
Office’s recent decision to register copyrights on computer pro-
grams and that I received the first such copyrights. This paper,
the only complete legal analysis of the problems of copyright
protection for computer programs published so far, appeared in
the November 1964 issue of Columbia Law Review. Copies of the
article may be obtained at no cost by writing to the author at
the address given below.

Despite our many areas of complete agreement and my re-
spect for Mr. Lawlor’s opinions in this admittedly difficult legal
area, I must take issue with his suggestion that copyright protec-
tion of a program would not preclude a reproduction in nonread-
able form, e.g. a magnetic tape. As my paper points out, the
piano roll case which he cites and the magnetic tape reproduction
situation may be distinguished on several grounds. Moreover,
since computer programs may now be copyrighted in the form of
magnetic tapes, there seems to be little fear that a court would
avoid finding that a second tape recording, identical in every way
with the original recording, is an infringement within the meaning
of the copyright law.

Mr. Hamlin and Mr. Jacobs both argue forcefully that com-
puter programs should have some form of legal protection and
that they should be patentable. Although I am fully in accord
with their first point, I would like to suggest that copyright pro-
tection would be preferable from the point of view of both the
programmer and the computer industry. Patents are expensive,
take several years to secure, have a high mortality rate in the
courts, and are available only to inventions representing a high
degree of creativity and novelty. By contrast, copyrights are
inexpensive, offer immediate protection, are favored by the courts,
and require little showing of creativity. In return, they offer
substantial protection and do not require a wide public dis-
closure. From the point of view of the data processing com-
munity, they also seem to be preferable. It would be illegal for
anyone to use a patented program during the 17-year monopoly
without the patentee’s permission. On the other hand, anyone
would be free to create a program similar to a copyrighted one
if only he didn’t copy from the copyrighted program; a freedom
he would not have with respect to a patented program. It is fair,
I think, to ask whether the advantages to be gained from patent
monopolies on programs would be commensurate with the re-
strictions on other programmers which must follow as a matter
of law.

Whatever my areas of disagreement with these articles, the
authors and the editors of ACM are to be congratulated for
keeping their readers informed in this important area.

Joun F. Banzuar III
Columbia Law Review
435 West 116 Street
New York, N.Y.

Volume 8 / Number 4 / April, 1965



