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COMPUTATION OF FOURIER COEFFICIENTS [C6]
Lixpa Terrero (Recd. 18 Nov. 1964 and 25 Nov. 1964)
Stanford Computation Ctr., Stanford U., Calif.

procedure FOURIER(E, eps, subdivmaz, m, cosine, sine, cind,
sint);
valuwe eps, subdivmaz, m, cosine, sine; real eps, cinl, sint;
Boolean cosine, sine; integer subdivmazx, m;
real procedure F;
comment FOURIER computes the Fourier coefficients cinf =
i F(@)eos(mmx) dr (if cosine is true) and/or sint = b Fz)
sin (maz) dz (if sine is true), where m > 0. The method is that
of Filon (for a brief exposition see (1] and for Filon’s original work
see [2] or [3]). Computation is terminated when the number of
times the interval {0,1] has been halved (n) has exceeded sub-
divmaz (10 is suggested), or when n > 5 and two successive ap-
proximations of the integral agree to within eps (107 is sug-
gested) times the value of the last approximation. In the former
case, cint or sint is assigned the value of the last approximation.
The condition n > 5 is imposed because of substantial cancella-
tions which may take place during the early stages of sub-
dividing;
begin real sumeos, sumsine, oddeos, oddsine, pi, a, b, g, t, h, p, k,
c0, ¢l, 50, s1, 1ntl, int2, previntl, prevint2, inl, &3, temp;
integer n, 7; Boolean bool;
bool := false; pi := 3.14150265359; k := m X pt;
sumeos 1= (F(1.0) X cos(k)-+F () X .5;
sumsine 1= F(1.0) X sin(k) X .5;
L0: n:=1; h:=05; t:=.5Xk; inl:=1
Li: ¢0 = ¢os(2.0X¢); ¢l := cos(t);
50 = sin(2.0X1); sl := sin(l);
3 :=1t13; p:=cl Xsl;
@ = (72—s172X2.0-tXp)/13;
b= (20X (X (clT24+1.0)—2.0Xp))/13;
g = 4.0 X (—tXcl + s1)/t3;
if bool then go to L2;
if sine then
begin
oddsine 1= F(h) X s1;
for i := 2 step 1 until inl do
begin femp 1= cl X ¢0 ~ s1 X s0;
sl = s1 X ¢0 + ¢l X $0;

I

cl = temp;
oddsine := F((2Xi—1)Xh)Xsl + oddsine
end;

if n = 1 then
begin n := 2; h:= 25; ¢:= 26Xk; (nl:=2;

prevint2 1= (aX (F(0)—F{1.0)Xcos(k))+
bX swmsine-4-gXoddsine) X .5;
sumsine 1= sumsine + oddsine; go to Ll
end
else

begin int2 := b X (@X (F(0)—F (1.0) Xcos{k))+
bX sumsine—g X oddsine) ;
if abs (prevint2—ini2) <epsXint2/\n>35 then
begin sint := ini2; bool := true; go to L0 end
else
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begin n :=n 4 1;
if n > subdivmaz then

begin bool ;= true;
sint 1= ni2; go to 10
end;
sumsine 1= sumsine + oddsine; b = 5 X h;

L= 5 X t; tnl =2 X inl;
prevint2 = int2; go to L1
end
end
end of sine computations;
L2: if cosine then
begin
oddeos 1= F(h) X ¢l;
for ¢ := 2 step 1 until 1l do
begin temp := ¢l X ¢0 — s1 X s0;
s1 o= sl X ¢0 + ¢l X 50;

cl 1= temp;

oddcos 1= F((2Xi—1)Xh) X ¢l -+ oddcos
end;
if n = 1 then

beginn :=2; h:=.25; t:= 25 Xk; inl = 2;
previntl 1= (aXF (1.0) Xsin (k) -+bX sumcos+g X oddcos)

X .5
sumecos = sumcos -+ oddcos; bool := true; go to Ll
end '
else
begin intl 1= k& X (@aXF (1.0)Xsin k) +bXsumcos+gX
oddcos);

if abs(previntl—intl) < eps X intl A n > 5 then
begin cint := intl; go to erit end
else
begin n :=n + 1;
if n > subdivmaz then begin cint := intl;
go to exit end;
sumcos := sumecos + oddcos; h := .5 X h;
t:=.5Xt; tnl:=2Xinl;
previntl := intl; go to L1
end
end
end of cosine computations;
exit: end FOURIER
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LOGARITHM OF A COMPLEX NUMBER [David S.
Collens Comm. ACM 7(Nov. 1964), 660]

J. Booruroyp (Recd. 18 Jan. 1965)

Computing Centre, U. of Tasmania, Hobart, Tasmania
With the label parameter FAIL removed from the value list to

accommodate a restriction of Elliott 503 ALgow, the algorithm was

suceessfully run on an Elliott 503, using the data test cases pub-

lished with the algorithm. The constants in the algorithm were

rounded to nine significant decimal digits, and this probably ex-

plains the two differences between the results obtained and those

published, namely:
@ b [ d
~1 -1 0.346574
2 1 0.463648
(dlgorithms are continued on page 330.)
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the particular type of data being studied, the weighting 4. Conclusion

functions are not worthwhile. Power of the Method, This programming —
Programming the Algorithm. The frequencies for which  lends itself well to a cevtatn large class of probleps, For

the spectral densities are computed were chosen between these types of problems, the rvoutines have proven very
T \ hia o ] § . ) . )

0.625 and 100cps, spaced at 3 octave. This results in 23 useful. Programuming in machine language or Spg <

frequencies. Since these are fixed, and for fixed Af, it 18 greatly simplified, yet the power and speed of machine

possible {0 compute all the cos (wsi Ar) terms and store language is essentially preserved.

them in a table. It is the authors’ opinion that a seb of routines such as
With such a scheme, using ForrraN, the spectral density (}escm.bed would form a useful addition to many program

of a sample of EEG autocovariance data can be computed  libraries.

in about 14 minutes. A flowchart for this computation is Eatending the Method. Depending upon the fype of

shown in Figure 3. It the cosines must be generated, the o1k other voutines may be written to perform special

computations take nearly 20 minutes. types of data handling common to the particular installs.

tion. The input and output routines especially should be

Tifiﬂ adapted to the particular format commonly used. Other

special machine functions, such as analog/digital con.

(oo ron cxn recauencn T version, online plotting, special readout devices, efe. can be
h“;;ijwu@ handled by such routines.

e i The Algorithm. Computation of other types of speciral

[0 rom sxon ou pomr_ f— | . densities may be possible with this method. However,

r‘mjﬁﬁ : convergence at high f rgquoqcieg has not been investigated,

} ] 80 one must be careful in using it. For the type of data un-

[Wurecy oara ev av coswe | der study, however, the method appears quite satisfactory.
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Fie. 3. Computation of spectral density (Forrrax)
RECEIVED SuprEMBER, 1964

Suppose the cosines terms are stored in the following
way: first a list of the 3 points for the first frequency,
then for the second frequency, ete. Then the list subrou-
tines may be used for this computation as shown in the
flowchart of Figure 4. Execution time for this program is A/gorlfhms—-—-conf from page 279

about 20 seconds. CERTIFICATION OF ALGORITHM 119 (H]
EVALUATION OF A PERT NETWORK [Burton Eiscu-

Sf;s,‘;;‘f;;"u‘f: : f man and Martin Shapiro, Comm. ACM 5 (Aug. 1962),

436
~~—~~{SET 8-LIST 70 0ata visT L. SteruEn Couks (Reed. 10 Nov. 1964 and 7 Dec. 1964)

Carnegie Institute of Technology, Pittsburgh, Pa.

GO
The procedure was tested on a CDC-G20, using the AnGot
caLL LACCUM compiler developed by Carnegie Tech. Before compilation \\;)
) possible, the following raodifications were required in order
STORE ® 1 RESULT LisT make it a correct Arcon 60 procedure.

1. Insert after the end of scan

switeh s1w2 = .
INCREMENT RESULT AGDRESS switch sw2 1= g1, ¢2;
P .

2. Modify comment By means of the switeh, s, -+

L to read
No @ comment By means of the switches, swl and w2,
‘ 3. Modify begin switch s := b1, b2;
ves to read
eLu begin switeh swl := b1, b2; go Lo swl [s];
Fia. 4. Computation of spectral density 4. Modify switch s := le 957

to read

This is a speed gain of more or Porrran, T | 8o tosw2 [s]; 0sS
I ga ore than 4 over Forrran. The With these changes the procedure was operated sucoessfu

amount of storage space required is also much less. | number of small test problems.
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