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C O M P U T A T I O N  O l  ? F O U R I E R  C ( ) E F F I ( ~ I I ~ N T S  [C6] 

IANI)A TEIJELO ( R e c d .  18 N o v .  1964  a1~d 25 N o v .  1964)  

Stanford  C o m p u t a t i o n  C t r . ,  S t a n f o r d  U.,  Ca l i f .  

procedure f"OUIf[ER(F, eps, subdivmax, m, cosine, sine, cint, 
sint) ; 
value eps, subdivmax, m, cosine, sine; r e a l  eps, cint, sint; 
Boolean  cosine, sine; i n t e g e r  subdivmnax, m; 

rea l  p r o c e d u r e  F; 
cotnlnent  FOUf¢IEI~ computes  the  Four ie r  coefficients cint = 

f~ F(x)cos(m~-x) dx (if' cosine is t r u e )  and /o r  sint = f~ F(x) 
sin (m~rx) dx (if sine is t r u e ) ,  where m > 0. The  me thod  is t h a t  
0fFilon (for a brief exposi t ion see [1] and  for F i lon ' s  original  work 
see [2] or [3]). Compu t a t i on  is t e r m i n a t e d  when the  number  of 
times the in te rva l  [0,1] has been ha lved  (nn) has exceeded sub- 
diwnax (10 is suggested) ,  or when n > 5 and two successive ap- 
proximations of the it~tegral agree to wi th in  eps (10 -7 is sug- 
gested) t imes the  va lue  of the last  approx imat ion .  In the  former 
ease, cint or sint is ass igned the  value  of the last  approximat ion .  
The condit ion n > 5 is imposed because of subs t an t i a l  cancella- 
tions which may take  place dur ing the  early stages of sub- 
dividing; 

begin rea l  sumcos, sumsine, oddcos, oddsine, pi, a, b, g, t, h, p, Ic, 
cO, cl, sO, sl, intl ,  int2, previntl, preying2, tnl, t3, temp; 
i n t e g e r  n, i ;  B o o l e a n  bool; 
bool := f a l s e ;  pi := 3.14159265359; k := m X pi; 
sumcos := (F(1.0) X cos(k)+F(O)) X .5; 
sumsine := F(1.0) × sin(k) X .5; 

L0: n := 1; h := 0.5; t := .5 X k; tnl  := 1; 
LI: cO := eos(2.OXt); cl := cos(t); 

sO := sin(2.0Xt); sl  := sin(t); 
t3 := t~'3; p := cl X s l ;  
a := ( t ~ 2 - - s l  ~2X2 .0+tXp) / t 3 ;  
b := (2.0N (iN (el 1" 2 + l . 0 ) - 2 . 0 N p ) ) / t 3 ;  
g := 4.0 X ( - - tXc l  + sl)/ t3; 
if  bool t h e n  go to  L2; 
if  sine t h e n  

b e g i n  
odd,sine :=  F(h) X s l ;  
tbr  i := 2 s t e p  1 u n t i l  tnl do 
beg in  temp := el  X cO -- s l  X sO; 

sl := s l  X cO + cl X sO; 
cl ;= letup; 
o&lsine := F ( ( 2 X i - I ) X h ) X s l  + oddsine 

e n d ;  
i f  n = 1 t h e n  

b e g i n  n := 2; h := .25; t := .25Xk; tnl := 2; 
prevint2 : = (a X (F (0) - F (1.0) X cos (k)) + 

bXsnmsine+gXoddsine) X .5; 
sumnsine := sumsine + oddsine; go to  L1 

e n d  
else  

b e g i n  int2 := h X (aX (F(O)-F(1.O)Xcos(k))+ 
b X sumsinne + g X oddsine ) ; 
i f  abs(prevint2-int2) <epsXint2Ann>5 t h e n  

b e g i n  sint :=  int2; bool :=  t r u e ;  go to  L0 e n d  
e l se  

b e g i n  n := n + 1; 
i f  n > subdivmax t h e n  

b c g i n  bool := t r u e ;  
sint := int2; go to  L0 

e n d ;  
sumsine := sumsine + oddsine; h := .5 X h; 

t := .5 X t; tnl := 2 X tnnl; 
prevint2 := int2; go to LI  

e n d  
e n d  

e n d  of sine computa t ions ;  
L2: i f  cosine t h e n  

b e g i n  
oddcos :=  F(h) × e l ;  
f o r  i : =  2 s t e p  1 u n t i l  tnl do 
b e g i n  temp := cl  X cO - sl  X sO; 

sl  := sl  × c 0 + c l  × sO; 
cl := temp; 
oddeos := F ( ( 2 X i - 1 ) × h )  X el + oddeos 

e n d ;  
i f  n = 1 t h e n  

b e g i n  n :=  2; h := .25; t := .25 X k; tnl :=  2; 
previntl := (aXF(1.0) Xsin(k) +bXsumeos+gXoddcos) 

X .5; 
sumcos := sumcos + oddcos; bool := t r u e ;  go to  L1 

e n d  
e l s e  

b e g i n  intl  := h X (aXF(1.0) Xsinn(k) +b Xsumcos+gX 
oddcos ) ; 
i f  abs(previntl--intl) < eps X intl  A n > 5 t h e n  

b e g i n  cint := intl; go to  exit e n d  
e l s e  

b e g i n  n : =  n + 1; 
i f  n > subdivmax t h e n  b e g i n  cint := int l;  

go  t o  exit e n d ;  
sumcos :=  sumcos + oddcos ; h :=  .5 X h; 

t :=  . 5 X  t; tnl := 2 X tnl; 
previntl := intl; go to L1 

e n d  
e n d  

e n d  of cosine computa t ions ;  
exit : e n d  FOURIER 
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L O G A R I T H M  O F  A C O M P L E X  N U M B E R  [ D a v i d  S. 
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J .  BOOTrmOYD ( R e c d .  18 Ja i l .  1965)  

C o m p u t i n g  C e n t r e ,  U .  of T a s m a n i a ,  H o b a r t ,  T a s m a n i a  

Wi th  lhe label  pa ramete r  F A l L  removed from the va lue  list to 
~ccommodate  a res t r ic t ion  of El l io t t  503 ALGO~, the a lgor i thm was 
successfully run  on an El l io t t  503, using the da ta  tes t  cases pub-  
l ished wi th  the  algori thm. The consta~nts in the a lgor i thm were 
rounded  to n ine  significant decimal digits,  and this  p robab ly  ex- 
p la ins  the two differences between the results  ob ta ined  and  those 

publ ished,  namely :  
a b c d 

- 1 - 1 0.346574 
2 1 0.463648 

(Algorithms are continued on page 330.) 
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the particular type of data being studied, the weighting 
functions are not worthwhile. 

.Programming the Algorithm. The frequencies for which 
the spectral densities are computed were chosen between 
0.625 and 100cps, spaced at ~ octave. This results it1 923 
frequencies. Since these are fixed, and for fixed ZXr, it is 
possible to compute all the cos (oosi At) terms and store 
them ia a table. 

With such a scheme, using Fern, nAN, the spectraI density 
of a sample of EEG autocovariance data can be computed 
in abottt 1½ minutes. A flowchart for this computation is 
shown in Figure 3. It the cosines must be generated, the 
computations take nearly 20 minutes. 
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Fro. 3. Computa t ion  of spectral  densRy (FoaTaaN) 

Suppose the cosines terms are stored in the following 
way: first a list of the M points fox' the first frequency, 
then fox' .the second frequency, etc. Then the list subrou- 
tines may be used for this computation as shown in "the 
flowchart of tCigure 4. Execution time for this program is 
about 20 seconds. 

SET A LIST TO IST 1 
COSINE TERM L{ST 

................... ] 

CALL LMUL 

CALL L ACCUM 

I . . . . . . . . . . . . . . . . . .  1 

I . . . . . . . . . . . . . . . . . . . . . .  ] 

- - N O  --- 4 

I YES 

F~,3.4. Computa t ion  of spectral  densi ty  

This is a speed gain of more than 4 over .FottTt~AN. The 
amount of storage space required is also much less. 
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4. Conelnsiml 

Power of the ,:If of~ted. This pcog~'atmning procedure 
lends itself well to a (:('.rtai:~ large class of problems. For 
these types of pt'oblcms, the rt>uti,~es have proven vely 
useful. Programming in machim~ language or SPS is 
greatly simplified, yet the power aud speed of maehi~e 
language is essentially preserved. 

It is the authors' epitdot~ that a set of routines such as 
described would form a useful additi(m to many program 
libraries. 

Extending the Metkod. Depending upon the type 0f 
work, other routines may be written to perform special 
types of data handling common to the particular install> 
tion. The i n p u t  and o u t p u t  routines especially should be 
adapted to the particular format commonly used. Other 
special machine functions, such as analog/digital e0a. 
version, online plotting, special readout devices, etc. ex~ be 
handled by such routines. 

The Algorithm. Computatiou of other types of spectral 
densities may be possible with this method. However, 
convergence at high frequencies has not been investigated, 
so one must be careful in using it. For the type of data u> 
der study, however, the method appears quite satisfactory. 
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Algorithms- cont. from page 279 
CERTIFICATION OF ALGORITHM 11.9 [Hi 
EVALUATION OF A PE[IT NIt 1.WOR [Burton Else> 

man and Martin Shapiro, Comm. A CM 5 (Aug. 1962), 
436] 

L. STEP IEN COLIi]S (Reed. 10 Nov. 1{)64 and 7 Dee. 196t) 
Carnegie Institute of Technology, Pittsburgh, Pa. 

The procedure was tes ted  on ~ (,DC-G20, using the A[x;ot~ 
compiler developed by Carnegie  Tech.  Before compilation was 
poss t ie ,  the followirtg modifictdions were required in order t0 
make it a correct AI,(a)l, (30 pro<~edttre. 

1. Insert  af ter  the end of scan 
swil:c|/  8'w2 ;= fll, if2; 

2. Modify c o m m e n t  lay means of the  switch, s, . '" 
to read 

c e m n n e n t  By means of the switches,  swl and su~2, ' "  
3. Modify b e g i n  s w i t c h  8 := bl,  b2; 

to read. 
b e g i n  swit ( :h  swl := bl,  b2; go to ,~wl [sl; 

4. fV[odify s w i t c h  s := g[, g2; 
to read 

go to sw2 [s]; 
Wi th  these ehnnges the procedure was operated, , suc(essh, ]Jr. o~ ~ 
number  of smMI tes t  problems.  
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