ALGORITIHIN 257

HAVIE INTEGRATOR (D]

Rosrrr N. Kupi (Reed. 9 June 1964 and 21 Dec. 1964)
The Babeock & Wilcox Co. Lynchburg, Viriginia

real procedurve haveeantegrator (e, «, b, eps, vnlegrand, m);
value ¢, b, eps, m; integer m;
veal inlegrand, ©, «, b, eps;

comment Thisalgorithm performs numerieal integration of defi-
nite integrals using an equudistant sampling of the funetion and
repeated halving of the sampling interval. Bach halving allows
the caleulation of a trapezium and o tangent formula on a finer
grid, but also the caleulation of several higher order formulas
which are defined implicitly. The two families of approximate
solutions will normally bracket the value of the integral and
from these convergence is tested on each of the several orders of
approximation. The algorithm is based on a private communica-
tion from F. Hivie of the Institutt for Atomenergi Kjeller Re-
search listablishment, Norway. A FortraN version of the al-
gorithm s in use on the Phileo-2000. A few test cases have been
run on the Burroughs 135000, In particular, a and b are the lower
and upper limits of integration, respectively, eps is the con-
vergence criterion, integrand is the value of the function to be
integrated (sampled), and m is the maximum order approxima-
tion to be considered in attempting to satisty the eps conver-
gence criterion. If convergence is not gained, then the value
returned is that of the nonlocal variable, mask. The parameter
integrand must be an expression involving the variable of in-
tegration z. See the driver program of this algorithm for ex-
amples of the procedure call;

begin real L, endpts, sumt, sumu, d;
integer ¢, j, k, n;
real array t, u, tprev, uprev[ln};

T = a; endpls := integrand; = := b; endpts := 0.5 X
(integrand-+endpts) ;
sumb = 00; 4 :=mn :=1; h:=1b — a;

estimate: ([1] 1= h X (endpts—i—-smnt) sumu 1= 0.0;
comment 1] = A X (0.5XfI014+f[1]4F2]+- - +0.5X[f1271]);
o= — h/2.0;
for j 1= 1 step 1 until » do

begin
o= b by sumu = sumu + integrand
end;
wll] i=h X swmu; k= 1;
comment w[l] = A X (f{1/204+f03/2]4+ - +@R—1)/2]), &

corresponds to approximate solution with truneation error
term of order 2k;

test: if abs(tlk]—u[k]) < eps then

begin
havieintegrator 1= 0.5 X (t[k]-++ulk]); go to exit
end;
if £ # { then
begin

= 21 @Xk);
Hk+1] = (dX!]
[I)?CU[/{ = ([k];
ulk+1] := (dXulk
upnv[/‘ = ulk];
This implicit formulation of the higher order in-
tegration formulas is given in [Romserg, W. Verecinfachte
Numerische Integration. Det Kong. Norske Videnskabers
Selskabs Forhandl, 28, 7 (1955), Trondheim; and in STrErEL,
E. Einfilrung in der Numerische Mathematik. Teubner
Verlagsges., Stuttgart, 1961, pp. 131-136. (English transla-
tion: An Introduction to Numerical Mathematics, Academic
Press, New Yorlk, 1963, pp. 149-155)]. See also Algorithm 60
where the same implicit relationship is used to ealculate
tik+1] only;

kl—tprevlk])/(d—1.0};
[~uprevik])/(d—1.0y;

comment

Volume § / Number 6 / June, 1963

=k 41
if k = m then
begin
havieintegralor 1= mask; go to exil
end;
go to fest
cnd;
= h/2.0; sumt := sumt + sum;
tpn' vlk] 1= tkl; upresfk] := wlk);
ii=d4 1 0= 2Xn,

go to estimale;
exit: end havicintegrator
Following is a driver program to test havieintegrator.
begin comment First test case, y = [2coszdr = 1.0
{0.9999999981 as executed on the B5000), is an example of the
higher order approximations yielding fast mnvergence as in
Algorithm 60; second test case, y = [¢~ do = 8862269255
(.8862260739 as executed on the B5000), is an example where
this algorithm is superior to Algorithm 60 because the higher
order approximations converge more slowly than the linear
approximations; see also [Tuacueg, H, C,, Jr., Remark on
Algorithm 60. Comm. A.C.M. 7 (July 1964), 420];
real a, b, eps, mask, y, answer;
= 0.0; b := L.5707963; eps := 0.000001; mask := 9.99;
answer = havieinlegrator (y, a, b, eps, cos(y), 12);
oulreal (1, answer);
= 00; b:=423;
answer 1= havieintegrator (y, a, b, eps, exp(—yXy), 12);
oulreal (1, answer);
end

ALGORITHM 258
TRANSPORT [H]
G. Bayer (Reced. 4 May 1964 and 4 Mar. 1965);
Technische Hochschule, Braunschweig, Germany

procedure {ransport (¢, z, a, b, m, n, inf, cost);
value m, n, inf; integer m, n, inf, cost;
integer array ¢, z, @, b;
comment The parameters are ¢[¢, j] array of costs, the quantities
available af¢], the quantities required b5}, < =1, ,m, o=
1, --+, n. Sum of a[f] = sum of b[j]. inf has to be the greatest
positive integer within machine capacity, all quantities have to
be integer. The flows z[z, §] are computed by the “primal-dual-
algorithm,” cited in [Haorey, G. Linear Programming. Read-
ing, London, 1962, pp. 351-367]. The procedure follows the de-
scription given on p. 357. Multiple solufions are left out of
account;
begin integer ¢, §, v, b, k, y, £, I;
integer array v, x5, 8, 7, listv[lm], w, xis, d, g, listu[1lon];
Boolean array zb[1:m, 1m];
integer procedure sum(, o, b, z);
integer i, a, b, z;
begin integer s;
s =
for 7 := a step 1 until b do s := s + x;
sum ;= 8

value a, b;

end;
comment Array zb for notation of “circled cells,”” listu and
listy lists of labeled rows and columns. Other notations follow

Hadley;
for ¢ := 1 step L until m do zisfi] := alil;
for j := 1 step 1 until # do zsj[j] 1= b[j];
for i := 1 step 1 until m do

inf; forj := 1 step 1 until n do

begin h : v
gl = 0; p=clt,7]; ifp <hthenh :=

begin z2fZ, p end;
wlt) 1= h;

Communications of the ACM 381

