8. Conclusion

Because the output of one pass is read backwards by the
next pass, this method is particularly suited to machines
with tapes that can be read in either direction. Disk files
or drums are also suitable for the intermediate storage,
and can lead to very fast second and third passes.

On a machine with a large main memory many methods
of optimization which use large parts of core are feasible.
Since the first pass is usually highly input limited, it might
be an advantage to use the method outlined above on
several programs simultaneously; that is, the compiler
program is time-shared by several inputs and auxiliary
devices, each using a small piece of memory for data
storage.

Partial optimization of the object code in a machine
independent fashion is certainly feasible using a small
amount of main memory with a reversible auxiliary store.
On most machines it is likely that the input time for the
source program will dominate the compile speed. Optimi-
zation of the use of machine features such as index registers
is a harder problem, probably requiring two further passes,
one in each direction, since in the proposed compiler,
information about which addresses would best be in index
registers is not available until pass II, and pass II must
generate code whose length can be determined by the end
of pass II.

REcEIVED MARCH, 1965

REFERENCES

1. Froyp, R. W. An algorithm for coding efficient arithmetic
operations. Comm. ACM 4 (Jan. 1961), 42.

2. Gear, C. W. Optimization of the address field compilation in
the ILLIAC IT assembler. Comput. J. 6 (Jan. 1964), 332.

3. HuxTaBrLg, D. H. R. On Writing an Optimizing Translator
for ALGOL 60. In Introduction to System Programming,
P. Wegner (Ed.), Academic Press, 1964, 137.

4. IBM. SystemsManual for 704 FORTRAN and 709 FORTRAN
Appl. Programming Dept., IBM, April, 1960.

5. SameELsoN, K., aND Baugr, F. L. Sequential formula trans-
lation. Comm. ACM 3 (Feb. 1960), 76.

Draft Specification of COBOL
Available

COBOL Information Bulletin #6 contains a draft specifi-
cation of COBOL produced by ASA Working Group X3.4.4.
The specification is a working document in the standardiza-
tion process. ASA Subcommittee X3.4 has authorized publica-
tion of the specification to elicit comment and eriticism. The
document, with whatever changes it may undergo during
evaluation, is intended to be the basis for a standard to be
adopted by the American Standards Association.

To obtain a copy of the bulletin, write to Editor, COBOL
Information Bulletin, BEMA/DPG, 235 East 42nd Street,
New York, New York, 10017.

488 Communications of the ACM

J. G. HERRIOT, Editor

ALGORITHM 259

LEGENDRE FUNCTIONS FOR
LARGER THAN ONE* [S16]

Wavrrer Gavurscar (Reed. 5 Mar. 1965)

Purdue University, Lafayette, Ind. and Argonne National
Laboratory, Argonne, Ill.

* Work performed in part under the auspices of the U.S. Atomic Energy
Commission.

ARGUMENTS

begin

comment Control is transferred to a nonlocal label, called
alarm, whenever the input variables are not in the intended
range;

procedure integer Legendre 1 (z, a, nmaz, P);
value z, a, nmaz; integer a, nmaz; real z; array P;

comment This procedure generates the associated Legendre
funections of the first kind,

(g2 — 1)ne Jatn
2s q! dxotm

P(x) = (=2 — 1)e,

for n = 0(1)nmaz, assuming ¢ > 0 an integer, and z > 1. The
results are stored in the array P. The method of computation is
derived from the (finite) continued fraction

m+a)la+1—nn+at1l)la—mn)

(n + a)Fn/Fn—l =

nr + 4+ Dy +
mta+2@—n—-1 2al Lsnsa),
n+4 2z + ax;

where F, = Po(zx)/(n+a)!, 2y = 22(x?—1)7%, and the identity
Fo+ 223 Fu = [z+@—1)al.
n=1

If z is very close to 1, the computation of z, is subject to can-
cellation of significant digits. In such eases it would be better
to use y = z—1 as input variable, and to compute (z2—1)%
by [y(2+y)]! everywhere in the procedure body;

begin integer n; real 21, ¢, sum, r, s;
array Rr|0:nmazx—1];
ifz<1Va<0YV nmnax <0 then go to alarm;
ifz =1V a=0then

begin
P[0] :=1; for n := 1 step 1 until amax do P[n]";:= 0;
go to L

end;

for n := a+1 step 1 until nmaz do P[n] := 0;

7l := sqrt (z72—1);

c:=1; forn := 2step 1l untila do ¢ := n X ¢;

sum := (z+zl)fa/c; zl := 2 X z/xl;

r:=g§:=0;

for n := a step — 1 until 1 do

begin
r = (a+1—n)/(nXzl4(n+a+1)Xr); s 1= r X (2+s);
if n < nmax then Rrin—1] :=r

end;

P[0} := ¢ X sum/(1+s);

Volume 8 / Number 8 / August, 1965

for n := 0 step 1 until if nmaxr < o then nmaz—1 else a—1 do
Pln+1] := (n+a+1) X Rrin] X Pinl;
L: end integer Legendre 1;
procedure integer Legendre 2(x, m, nmaz, d, Q);
value z, m, nmaz, d; integer m, nmaz, d; real z; array Q;
comment This procedure generates to d significant digits the
associated Legendre functions of the second kind, @.™(z), for
n = 0(1)nmazx, assuming m > 0 an integer, and z > 1. The
results are stored in the array @. The procedure first generates
Qo™ (z) from the recurrence relation
. 2rx .
Tt S @)~ DT =0
(22 —1) 60
(r=12---,m—1)
with n = 0, and the initial values
z+ 1

z -1’

1
Q@) = In Qoiz) = —(at — 1L
Then a variant of the backward recurrence algorithm of J. C.
P. Miller is applied to the recursion

(n'_m','l)QZ.-i-l — @n+1)z@™ + (n+m)Q71':—1 =0 @)
(n=1) 2,3, -).

(For more details see [2]. See also [4] for a very similar al-
gorithm.) If m > 1, the leading coefficient in (2) vanishes
for n = m — 1, which invalidates the theoretical justification
for the backward recurrence procedure. Nevertheless, it appears
that the procedure produces valid results for arbitrary m > 0.
Convergence of the backward recurrence algorithm is slow for
z near 1, but improves rapidly as z increases;

begin integer n, nu, p; real 21, Q0, Q1, Q2, epsilon, r;
array Qapproz, Rr[0: nmaz);
ifz <1V nmar <0V m <0 then go to alarm;
zl 1= sqrt (x12—1);
Q1 := 5 X in ((z4+1)/(z—1));
if m = 0 then Q[0] := @1 else

begin
Q2 := —1/z1; =zl := 2 X z/x1;
for n := 1 step 1 until m — 1 do
begin
Q0 :=Q1; Q1 := Q2
Q2:=—n X 21 X Q1 — n X (n—-1) X Q0
end;
QI0] := @2
end;
for n := 0 step 1 until nmaz do Qapproz[n] := 0;

epstlon := 5 X 107(—d);
nu := 20 + entier (1.25 X nmazx);
LO: r:= 0;
for n := nu step — 1 until 1 do
begin
r = (n+m)/((2Xn+1) Xz~ (n—m—+1) X7);
if n < nmazr then Rrjn—1] := r

end;
for n :=0 step 1 until nmaz—1 do Qrn+1) := Rr[n] X Q[n];
for n := 0 step 1 until nmazr do

if abs(Q[n]—Qapproxz[n]) > epsilon X abs(@[n]) then
begin
for p := 0 step 1 until nmaz do Qapprox(p] := Q[p];
nu = nu + 10; go to LO
end
end integer Legendre 2;

procedure integer Legendre 3(x, n, mmaz, d, Q);
value z, n, mmaz, d; integer n, mmaz, d; realr; array @;
comment This procedure generates to d significant digits, and
stores in the array @, the Legendre functions of the second kind,
@."(x), for m = 0(1)mmaz, assuming » > 0 an integer, and

Volume 8 / Number 8 / August, 1965

z > 1. The procedure integer Legendre 2 is used to obtain initial
values Q.%, @, and subsequent values are obtained from the
recursion (1) of the preceding comment;
begin integer m; real z1; array Q1[0:n];
if n <0V mmar < 0 then go to alarm;
integer Legendre 2(z, 0, n, d, Q1); Q0] := Q1In];
zl = 2 X z/sqrt(z]2—1);
if mmar > 0 then
begin
integer Legendre 2(x, 1, n, d, Ql); Q|1] := Q1[x]
end;
for m := 1 step 1 until mmazr—1 do
Qm~+1] 1= —m X 21 X Q[m] — (m+n) X (m—n—1) X Q[m—1]
end integer Legendre 3;
procedure Legendre 1(z, alpha, nmaz, d, P1);
value =, alpha, nmaz, d; integer nmaz, d;
real z, alpha; array Pl;
comment This procedure evaluates to d significant digits the
Legendre functions

TMat+n+1) {7
T+ 1) Jy

for n = 0(1)nmaz, where z > 1 and « is real. The results are
stored in the array P1. It is assumed that a nonlocal procedure
gamma be available which evaluates I'(z) for 0< z £ 2. (See
[3].) The procedure first generates the quantities fo = Pa"(z)/
T'(a+n+1) from the recurrence relation

Py(x) = [z+ (&2 — Dtcosd® cos nt dt

2nx n—a—1
lfﬂ_l_ 2 fn—1= 0;

f"+l+(n-l-a+1)(ﬂvz—l)2 n4a-t1
and the identity
< [z + (22 — 1)}
f0+2nz=:1fn— F(a+1) 3

applying a variant of the backward recurrence algorithm of
J. C. P. Miller. (See [2] for more details.) Then P."(z) =
I'(a+n+1)f, is obtained recursively. If « < —%,weleta = —a—1
and compute P, (z) = P,*(z). The substitution is made to
avoid loss of accuracy when z is large. The rate of convergence
of this procedure decreases as z increases. A general idea of the
speed of convergence may be obtained from the graphs in [2, §6].
If z is very close to 1, the same changes as mentioned in the
first procedure are recommended;
begin integer n, nu, m; reala, epsilon, z1, sum, ¢, r, s;
array Papproz, Rr(0:nmaz];
if z < 1V nmax < 0V entier(alpha) — alpha = 0 then
go to alarm; ifz = 1 then
begin
P1[0] := 1; for n := 1 step 1 until nmar do Pln] := 0;
go to L1
end;
a := if alphe < —.5 then — alpha — 1 else alpha;
for n := 0 step 1 until nmaez do Papproz[n] := 0;
epsilon := .5 X 101(—d);
if a < 1 then ¢ := gamma(l+a) else
begin
m = entier(a) — 1; ¢ := gamma(a—m);
forn := 0 step 1l untilmdo ¢ := (a—n) X ¢
end;
zl := sqrt (z12—1); sum := (z+zl)lafe; z1 := 2 X z/zl;
nu = 20 + entier ((37.26+4.1283X (a+38.26) Xz) Xnmaz/
(37.264.1283 X (a+1) Xz));
LO: r =5 :=0;

for n := nu step — 1 until 1 do
begin
r := (a+1—n)/(nXal+n+tat+1)Xr); s =7 X (2+s);
if n < nmar then Rrin—1] ;= r
end;
Communications of the ACM 489

P1[0] := sum/(1+s);
for n := 0 step 1 until nmaz — 1 do
Plin+1] := Rr[n] X Plin];
for n := 0 step 1 until nmaz do
if abs (Pl{n]— Papprox|n]) > epsilon X abs (Pl[n]) then
begin
for m := 0 step 1 until nmaz do Papprox [m] := Plim];
nu := nu + 10; go to L0
end;
P1[0] := ¢ X P1[0};
for n := 1 step 1 until nmaz do
begin
¢ := (a+n) X ¢; Pln] := ¢ X Pl[n]
end;

L1: end Legendre 1;

procedure Legendre 2(z, a, m, nmaz, d, P2);
value z, a, m, nmaz, d; integer m, nmaz, d;
array P2;

comment This procedure evaluates to d significant digits the
Legendre functions PG, .(z) for fixed z > 1, a, m > 0, and for
n = 0(1)nmaz. The results are stored in the array P2. They are
obtained recursively from

realz, a;

2n 4+ 2a + 1 n4+a+m

nt+a—m-+1 nt+a—m-+1
the initial values being calculated with the help of the proce-
dure Legendre 1,

begin integer n; array Pl[0:m];
if m < 0 then go to alarm;

Pliualz) = 2P%n(z) — Plina(a),

Legendre 1(z, a, m, d, P1); P2[0] := Plm];
if nmax > 0 then

begin

Legendre 1(z, a+1, m, d, P1); P2[1] := Pl|m]
end;

for n := 1 step 1 until nmaz—1 do

P2[n+1} := (@2Xn+2Xa+1)XzX P2[n]
— (n+a+m)X P2[n—1)})/ (n+a—m—1)
end Legendre 2;

procedure conical (z, taw, nmaz, d, P);
value z, tau, nmaz,d; integer nmaz,d; realz,lau; array P;

comment This is an adaption of the procedure Legendre 1 to the
case « = —% 4 ir, where 7 is real. The procedure thus generates
Mehler’s conical functions Pin,(r) to d significant digits for
n = 0(1)nmaz and z > 1. The results are stored in the array P.
To avoid excessively large and excessively small numbers, we
let fo = PZ3yi(x)/n! and first compute f, from the recurrence
relation

2nx n—3242
(n+1) (22— 1)’3f" + nin + 1)
and the identity

fn+l + fn_l = 0,

fo 4 22 Nafa = [z @=1)4"% cos (7 In [a+(*—1)}),
n=1

where
TG —in)
rg —ir+n)J°

r@G+in
A = 1! -
TG +ir+mn)

The N’s are obtained recursively by

N Ny 2T
R TE+A G+
1
1+-
n

)\"+1 = —-——Tz (2>\n - >\'n~1)
(+2)+ ()
2n n

490 Communications of the ACM

(n=23,-:).

The procedure converges rather slowly if z and = are both large
(see the graphs in §6 of [2]). If the accuracy requirement as
specified by d is too stringent the procedure may not converge
at all due to the accumulation of rounding errors;

begin integer n, nu, m; real epsilon, t, z1, 22, sum, lambda 1,
lambda 2, lambda, v, s; array Papproz, Rr[0:nmazx];
ifz <1V nmaez < 0 then go to alarm;
if x = 1 then

begin
P[0} :=1; for n := 1 step 1 until nmar do Pln] := 0;
go to L3
end;
t:= laul2;
for n := 0 step 1 until nmazr do Papproz(r] := 0;

epsilon := .5 X 107(—d);

xl = sqri(z12—1); 22 := z + zl;

sum := cos(lauXin(x2))/sqri(x2); zl := 2 X z/xl;

nu = 30 + entier ((14(.1404-.0246Xtau) X (z—1))Xnmaz);
LO: n:=2;

lambda 1 := 1/(.25+¢);

lambda 2 1= (3-4X1t)/((.25641)X (2.25+1));

L1: lambda := (141/n) X (2Xlambda 2—Ilambda 1)/

((1+.5/n)12 + (tau/n)12);

if n < nu then

begin

lambda 1 := lambda 2; lambda 2 := lambda;
n:=n-4+1;, gotoll

end;
ri=s:=0;
L2: r:= —((1—.5/n)12+ (tau/n)12)/ (21 +(1+1/n) Xr);
s :=r X (lambda 2-+s);
if n < nmar then Rrin—1] := r;

lambda 1 := lambda 2;
lambda 2 := 2 X lambda 2 — ((14.5/n)12+ (lau/n)12)
X lambda/(1+1/n);
lambda := lambda 1;
n:=n—1; ifn > 1 then go to L2;
P[0] := sum/(1+4s);
for n := 0 step 1 until nmaz — 1 do Pln+1] := Rr[n] X P[n];
for n := 0 step 1 until nmar do
if abs (P[n]— Papproz[n]) > epsilon X abs(P[n]) then

begin
for m := 0 step 1 until nmaz do Papprozim] := Pim];
nu := nu + 60; comment To avoid an infinite loop in

case of divergence the user should provide for an upper
bound on nu, say 1000, and exit from the procedure when
nu exceeds this bound, printing an appropriate error

message;
go to L0
end;
t:=1;
for n := 1 step 1 until nmaz do
begin
t:=n X1t; Pn]:=tX Pln]

end;
L3: end conical;

procedure toroidal (z, m, nmaz, d, Q);
value z, m, nmaz, d; integer m, nmaz, d; real z; array Q;
comment This procedure generates to d significant digits the
toroidal functions of the second kind, Q@7,.(z), for n = 0(1)
nmazx, where z > 1, and m is an integer, positive, negative or
zero. The method of computation is based on the recurrence
relation

(n—m+3Q 1 (@) — 2m2Q73n(2) + (Rt+m—3QT (@) = 0,
and the identity

- _ mi2
QU () +2 Z QT3 inlz) = (=™ \/%r Tom + 3@ — 1)_%<x + 1> ’
n=1

z —1

Volume 8 / Number 8 / August, 1965

to which a variant of J. C. P. Miller’s backward recurrence
algorithm is applied. (See {2] for more details.) The convergence
of this procedure is slow for x near 1, and improves rapidly as z
increases;
begin integer n, nu, p; real epsilon, zl, ¢, sum, r, s;
array Qapprozx, RBr|0:nmaz);
ifx <1V nmar < 0 then go to alarm;
for n := 0 step 1 until nmaz do Qapproz|n] := 0:
epsilon := .5 X 107(—d);
¢ 1= 2.2214414691;
if m > 0 then

forn := 0 step 1 until m—1do ¢ := —(n+.5) X ¢
else
for n := 0 step —1 until m+1do ¢ := —¢/(n—.5);

sum := ¢ X ((z+1)/(z—1)T(m/2)/sqrt(x~1); zl := 2 X z;
nu = 20 + entier ((1.154(.01464-.00122Xm)/(x—1)) Xnmaz);
LO: r:=s:=0;

for n := nu step —1 until 1 do

begin
r = (n+m—.5)/(nXzl—(n—m+.5)Xr); s :=r X (2+s);
if n < nmaz then Rrjn—1)] := r

end;

Q0] := sum/(1+s);

forn := 0 step 1 until wimax — 1 do Q[n+1] := Rr(n] X Q[n];

for n := 0 step 1 until nmaz do
if abs(Q[n]—Qapproz[n]) > epsilon X abs(Q[n]) then
begin

for p := 0 step 1 until nmaz do Qapproz(p] := Q[pl;
nu := nu + 10; go to LO
end
end foroidal;
comment All procedures were tested on the CDC 3600 computer.
Some of the tests that were run are described below;
comment The procedures integer Legendre 1-3 were driven to
print test values to 6 significant digits of P,"(z), Qn*(x), @ (x),
m = 0(1)10, for z = 1.5, 3, 10, and n = 0(1)5. As far as pos-
sible, the results were compared with values tabulated in [5],
and found to be in complete agreement. Similarly, test values of
P7yn(x), m = 0(1)4, were obtained from the procedure Legendre
1, for z = 1.5, 3, 10, and » = 0(1)5. All agreed with values
tabulated in [5]. More extensive tests could be run by having
the procedure ‘‘verify’’ the addition theorem

Ptx(xy_'\/(x2 -1 \/(Zﬁ 1) = Pa(x)Pa(y)

+ 2 Z (*DMMPam(x)Pam(y)y

z>1y>1;
1 Ta+m<+1) Y

comment The procedure conical (with d=6) was run to produce
test values of PZy,;.(z), m = 0, 1, for z = 1.5, 5, 10, 20, and
r = 0(10)30. The results agreed to 6 significant digits with
those in [10], [11];

comment The procedure loroidal was driven to generate test
values to 6 significant digits of Q74 (x), @ T n(zx), n = 0(1)5,
for £ = 1.5, 3, 10, and m = 0(1)4. All values of Q74 (x) were
checked against those in [5]. There were no discrepancies. The
values of QZj4n(z) were compared with those of [['(n—m-+3)/
T'(n+m+4)]Q7% 4 (2). The largest relative error observed was
1.5, — 9, occurring at m = 4, n = 5, z = 1.5;

commernt Integrals of the form

/2
foll2 o) = (—1)"[[1 — Esintylrcos2ny dy, 0 <k <1,
0

are repeatedly encountered in applied mathematics (see, e.g.,
[6]-19]), where @ = —3%, or @« = —3). It is readily seen that

7 Tae +1) P 2 — k2
Matnin &~ ¥)Pe (2\/(1—192))‘

(k2 = (=1D»=

a2, 0) = (=1 2 TatntD

The program that follows generates (1—k2)f.(k2, @), n =
0(1)10, for « = —$%, —3, and k2 = .1, .5, .9, calling for an ac-

Volume 8 / Number 8 / August, 1965

curacy of 6 significant digits. Selected results are shown below.
@ k2

-1.5 1

By

A — #2) fu(k2, @)
1.5307576371
5.245644047210—8
9.080164866710—16
3.437822884910—1
2.829584442310—3
1.821595488010—5
4.861556123710—1
5.287840870810—2
8.810774395410—3

1.6169191877
2.396902298410—7
7.339411710610— 15
8.472130846310— 1
1.494014960510—2
1.476430268410—4
4.9389962376
9.707320038310— 1
2.169517031710—1

—

—-2.5 .1

—
O OINT == O;MO O N NN O OO

Those for « = —2£ were compared with values tabulated in [6].
There was agreement in all four decimal places given;
begin integer n; real alpha, k2, ¢; array P1{0:10];

for alpha := —1.5, —2.5 do
for k2 := .1, .5, .9 do
begin

¢ := 1.570796327 X (1—£k2)T(1+alpha/2);
Legendre 1 (.5X (2—£2)/sqrt(1—k2), alpha, 10, 6, P1);
for n := 0 step 1 until 10 do

begin
Plin] := ¢ X Pl[n]; ¢ := —c/(n+alpha-+1);
outreal (1, Plin])
end
end;
go to skip;
alarm: outstring (1, ‘parameters not in range’);

skip: end,;
comment The integrals

szj(k)=f A—Kkcosp)tidsy, 0=<k<1j=012:--
0

arose in recent radiation field studies ([1]). One has
2,(6) = w(1—k)=GDEP_y, (1—K)).

The program below calculates Q;(k) to 8 significant digits for
k2 = .2(.2).8, 7 = 0(1)9. The results agree to 8 figures with the
values tabulated in {1];
begin integer j; real k2, z, 21;
for k2 := .2 step .2 until .9 do
begin
z 1= 1/sgrt(1—k2172);
Legendre 2(x, —.5, 0, 9, 8, P2);
zl := 3.1415926536 X sgri(z);
omega [0] := z1 X P2[0];
for j := 1 step 1 until 9 do
begin
zl := z X z1; omega[j] := 21 X P2[j]
end;
for j := 0 step 1 until 9 do outreal (1, omegal[j])
end;
go to skip;
alarm: outstring (1, ‘parameters not in range’);
skip: end
end
REFERENCES:
1. EpstEIN, L. F., Anp HusBELL, J. H. Evaluation of a general-
ized elliptic-type integral. J. Research NBS 67B (1963), 1-17.

array P2, omega [0:9];

Communications of the ACM 491

10.

11.

. Gautscur, W. Computational aspects of three-term recur-

rence relations. Unpublished.

. ——. Algorithm 221—Gamma funetion. Comm. ACM 7

(Mar. 1964), 143.

. Hernpon, J. R. Algorithm 62—A set of associate Legendre

polynomials of the second kind. Comm. ACM 4 (July 1961),
320-321; Remark on Algorithm 62. Comm. ACM 4 (Dec.
1961), 544.

. NBS Tables of Assoctated Legendre Functions. Columbia Uni-

versity Press, New York, 1945.

. RieceLs, F. Formeln und Tabellen fiir ein in der rdumlichen

Potentialtheorie auftretendes elliptisches Integral. Archiv
der Mathematik 2 (1949/50), 117-125.

. SierManN, J. Concerning an integral occurring in airfoil

theory. STAM Review 8 (1961), 243-246.

. ——. Analysis of ring aerofoils of elliptic cross section, Part

I: General theory.J. SIAM 11 (1963), 941-963.

. ——. Note on a Riegels-type integral. Z. Angew. Math. Phys.

15 (1964), 79-83.

ZURINA, M. I, aNp KarmaziNa, L. N. Tablicy funkeii Le¥an-
dra P_y,,,(z), Vol. I. Akad. Nauk SSSR, Moscow, 1962.
——, AND Tablicy funkeii LeZandra Ply.(z). Akad.

Nauk SSSR, Moscow, 1963.

ALGORITHM 260

6-J SYMBOLS [Z]

J. H. Gu~n~ (Recd. 13 Nov. 1964)

Nordisk Institut for Teoretisk Atomfysik, Copenhagen,

Denmark

real procedure S8JS (J1,J2,J3, L1, L2, L3, factorial);

value J1,J2,J3, L1, L2, L3;

integer J1, J2, J3, L1, L2, L3;

array factorial;

comment SJS calculates the 6-j symbols defined by the fol-
lowing formula

(51 j2 j3} _ AL, 72, 3)A3, 12, 13)A3, 52, 13)A(, 12, 53)

2B 7 XD (=1)#e+1)/{((z—jl—j2—353) (z—jl—12—13)!
(z—11—j2—13) W (z—11—12—3) H(jl1+j2+HI1+12—2)!
(j24+73412418—2) {(j3+71+I3+11—2) 1)

where

A b o) = [(a—i—b —c)z(a—b+c)!(—a+b+c)1]a

a+b+c+ 1!

and wherej1 = J1/2, 72 = J2/2,43 = J3/2,11 = L1/2,12 = L2/2
13 = L3/2. [Reference formula 6.3.7 page 99 of EpMonDs, A. R.
Angular momentum in quantum mechanics. In Investigations
in Physics, 4, Princeton U. Press, 1957]. The parameters of the
procedure J1, J2, J3, L1, L2, L3 are interpreted as being twice

their physical value, so that actual parameters may be inserted'

as integers. Thus to calculate the 6-j symbol

{2 2 0}

2 20

the call would pe SJS (4, 4, 0, 4, 4, 0, factorial). The proce-
dure checks that the triangle conditions for the existence of a
coefficient are satisfied and that j1 + 72 + 73, j1 + 12 + I3,
11 4+ 72+ 13 and /1 + I2 + 53 are integral. If the conditions
are not satisfied the value of the procedure is zero. The parame-
ter factorial is an array containing the factorials from 0 up to
at least 1 + largest of j1 + 72 4+ 43,71 + 12 + 13,11 4+ j2 + I3
and I1 + 12 + j3. Since in actual caleculations the procedure
SJS will be called many times it is more economical to have the
factorials in a global array rather than compute them on every

492 Communications of the ACM

entry to the procedure. The notation is consistent with that
used in the procedure for calculating Vector-coupling coeffi-
cients. See Algorithm 252, Vector Coupling or Clebsch-Gordan
Coeflicients [Comm. ACM 8 (Apr. 1965), 217];
begin integer w, wmin, wmaz;
real omega;
real procedure della (a, b, c);
value qa, b, c;
integer a, b, c;
begin delta := sqrt (factorial [(a+b—¢c) 2]
X factorial [(a—b—+c)+2]
X factorial [(—a—+b-+c)+2]/factorial [(a+b+c+2)-+2])
end delia;
if J14-J2<J3Vabs(J1l —J2) >J3VJ1+J2+J3
2 X ((J14J24J3)+2)
VJ1+ L2 <L3VabsJ1~-12) > L3\/J1+ L2 4 L3 # 2 X
((J1+L2+L3)+2)
VLI +J2 <L3Vabs(1—J2) >L3\/ L1 +J2+L3=2X
(L14J2+L3) +2)
VILI+L2<J3Vabs(L1-12) >J3V/ L1 + L2+ J3 =2 X
((I1+412+4J3)+2)
then 8JS := 0 else
begin
omega = 0;
wmin = J1 + J2 4 J3;
if wmin < J1 4+ L2 4+ L3 then wmin := J1 + L2 4 L3;
if wmin < L1 + J2 4 L3 then wrmin := L1 -+ J2 -+ L3;
if wmin < L1 4+ L2 + J3 then wmin := L1 + L2 + J3;
wmaz = J1 4+ J2 + L1 + L2;
if wmazr > J2 +J3 4+ L2 4+ L3 then wmaz := J2 + J3 +
L2 + L3;
if wmazxr > J3 +J1 + L3 + L1 then wmaz := J3 + J1 +
L3 + L1,
for w := wmin step 2 until wmar do
omega := omega + (if w=4X (w+4) then 1 else —1)
X factorial [w-241]/(factorial [(w—J1—J2—J3)~2]
X factorial [(w—J1—L2—L3)+2]
X factorial [(w—L1—J2—L3)+2]
X factorial [(w—L1—L2—J3)+2]
X factorial [(J1+J2+L1+L2—w)=-2]
X factorial [(J24+J3+L2+L3—w)+2]
X factorial [(J3+J14+-L3+L1—w)=-2]);
SJ8 = delta (J1, J2, J3) X delta (J1, L2, L3)
X delta (L1, J2, L3) X delta (L1, L2, J3) X omega;
end

end SJS

ALGORITHM 261

9-J SYMBOLS [Z]

J. H. Gonn (Reced. 13 Nov. 1964)

Nordisk Institut for Teoretisk Atomfysik, Copenhagen,
Denmark

real procedure NJS(J11, J12, J13,J21, J22, J23, J31,J32, J33,
factorial);
value J11, J12, J13, J21, J22, J23, J31, J32, J33;
integer J11, J12, J13, J21, J22, J23, J31, J32, J33;
array factorial;
comment NJS calculates the 9-j symbols defined by the follow-
ing formula

11 712 j13 ey

o1 om ol - j11 721 531\

{]21 722 4§23 > (=1) (2k+1){j32 B3 k% [

j12 22 §32\[713 je3 ;33
21 &k j230\k g11 j12f.
where 711 = J11/2, §12 = J12/2, j13 = J13/2, j21 = J21/2,

j31 732 ;33

Volume 8 / Number 8 / August, 1965

J22 = J22/2, j23 = J23/2, j31 = J31/2, 332 = J32/2, j33 =
J33/2 [Reference formula 6.4.3 page 101 of Epmonps, A. R.
Angular momentum in quantum mechanics. In Investigations
in Physics, 4, Princeton U. Press, 1957]. The parameters of the
procedure J11, J12, J13, J21, J22, J23, J31, J32, J33 are inter-
preted as being twice their physical value, so that actual param-
eters may be inserted as integers. Thus to calculate the 9-j

symbol
2 20
2 20
000

the call would be NJS (4, 4,0, 4,4,0,0,0, 0, factorial). The
procedure checks that the triangle conditions for the existence
of a coefficient are satisfied and that j11 + j21 + 531, 521 +
J22 + 523, 731 + j32 + 733, jI1 + j12 + j13, j12 + 522 +
732, 713 + 723 + 733 are integral. If the conditions are not
satisfied the value of the procedure is zero. The parameter fac-
torial is an array containing the factorials from 0 up to at least
1 + largest of j11 + j21 + j31, j21 + j22 + j28, j31 + 732 +
733, J11 + j12 + j13, j12 + j22 + 732, j13 + j23 + j33. The
procedure makes use of the procedure SJS [Algorithm 260,
6-j symbols, Comm. ACM 8 (Aug. 1965), 492], for calculating
6-7 symbuols;
begin integer k, kmin, kmazx;
real NJ;
if J11 + J21 < J31 V abs(J11—-J21) > J31 \/ J11 + J21 +
J31 5= 2 X ((J114-J214J31)=+2)
V J21 + J22 < J23 V abs(J21—J22) > J23 \/ J21 + J22 +
J23 % 2 X ((J21+J22+4J23)+2)
V J3l + J32 < J33 V abs(J31—-J32) > J33 \VV J31 + J32 +
J33 #= 2 X ((J314+J32+J33)+2)
V JI1L + J12 < J13 V abs(J11-J12) > J13 \/ J11 4 J12 +
J13 = 2 X ((J114+J124J13)+2)
V J12 + J22 < J32 V abs(J12—J22) > J32 \/ J12 + J22 +
J32 # 2 X ((J124J224+J32) +2)
V J13 + J23 < J33 V abs(J13—J23) > J33 VV J13 4+ J23 +
J33 % 2 X ((J13+J23+.733)+2)
then NJS := 0 else
begin NJ := 0;
kmin 1= abs(J21—-J32);
if kmin < abs(J11—J33) then kmin := abs(J11—J33);
if kmin < abs(J12—J23) then kmin := abs(J12—J23);
kmax := J21 + J32;
if kmaz > J11 + J33 then kmazx := J11 + J33;
if kmax > J12 + J23 then kmaz := J12 + J23;
for k := kmin step 2 until kmaz do
NJ := NJ + (if k=2X (k+2) then 1 else —1) X (k+1) X
SJS(J11, J21, J31, J32, J33, k, factorial) X
SJ8(J12, J22, J32, J21, k, J23, factorial) X
SJS(J13, J23, J33, k, J11, J12, factorial);

NJS := NJ
end
end NJS
ALGORITHM 262
NUMBER OF RESTRICTED PARTITIONS OF N
[Al)

J. K. 8. McKaY (Recd. 7 Dec. 1964 and 9 Mar. 1965)
Computer Unit, University of Edinburgh, Scotland

procedure set (p, N); integer N; integer array p;
comment The number of partitions of n with parts less than
or equal to m is set in p[n, m] for all n, m such that N > n >
m > 0.
REFERENCES:
1. Gupra, H., GwyTHER, C. E., AND MILLER, J. C. P, Tables of

Volume 8 / Number 8 / August, 1965

partitions. In Royal Society Mathematical Tables, vol. 4,
Cambridge U. Press, 1958.
2. Harpy, G. H., anp Wrigur, E. M. The Theory of Numbers.
Ch. 19, 4th ed., Clarendon Press, Oxford, 1960;
begin integer m, n;
pl0, 0] := 1;
for n := 1 step 1 until ¥ do
begin p[n, 0] := 0;
for m := 1 step 1 until n do
pln, m] := pln, m—1] +
pln—m, if n—m<m then n—m else m]
end
end set

ALGORITHM 263

PARTITION GENERATOR [A1]

J. K. 8. McKay (Reed. 7 Dec. 1964 and 9 Mar. 1965)
Computer Unit, University of Edinburgh, Scotland.

procedure generate (p, N, position, pin, length);
integer array p, pin; integer N, length, posiiion;
comment The partitions of N may be mapped in their natural
order, 1 — 1, onto the consecutive integers from 0 to P(N)—1
where P(N)(=p[N, NJ]) is the number of unrestricted partitions
of N. The array p is set by the procedure set [Algorithm 262,
Number of Restricted Partitions of N, Comm. ACM 8 (Aug.
1965), 493]. On entry position contains the integer into which
the partition is mapped. On exit length contains the number of
parts and pin[l: length] contains the parts of the partition in
descending order.
REFERENCE:
1. LirtLewoop, D. E. The Theory of Group Characters. Ch. 5,
2nd ed., Clarendon Press, Oxford, 1958;
begin integer m, n, psn;
n := N; psn := position; length := 0;
A: length := length + 1; m := 1;
B: ifp[n,m] < psnthenbeginm := m 4 1;
if p[n, m] > psn then
C: begin
pinflength] := m; psn := psn — p[n, m—1}; n:=n— m;
if n # 0 then go to 4; go to D
end
elsem := m 4 1;
D: end generate

zo to Bend else

go to C;

ALGORITHM 264

MAP OF PARTITIONS INTO INTEGERS [Al]
J. XK. 8. McKay (Recd. 7 Dec. 1964 and 9 Mar. 1965)
Computer Unit, University of Edinburgh, Scotland

integer procedure place(p, n, pin);
integer array p, pin; integer n;

comment place is the inverse of the procedure generate [Al-
gorithm 263, Partition Generator, Comm. ACM 8 (Aug. 1965),
493]). The array p is set by the procedure set [Algorithm 262,
Number of Restricted Partitions of N, Comm. ACM 8 (Aug.
1965), 493]. The procedure produces the integer into which
the partition of n, stored in descending order of parts in ptn{l1}
onwards, is mapped;

begin integer j, d;
d = 0;
if n =
Jji=20;

A: j:=j+1; d:= pln, ptn[j]—1] +d; n := n — pinlj};
if n % 0 then go to 4;

B: place := d

end place

value n;

0 then go to B;

Communications of the ACM 493

